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Abstract

We show that statistical limit laws for ergodic stationary sequences of
G-equivariant observations ¢ on a probability space 2 x G are inherited by
sequences of observations ¢(-,go) on the probability space Q for each fixed
go- The statistical limit laws we consider are the central limit theorem, weak
invariance principle and the law of the iterated logarithm.

1 Introduction

Let G be a compact Lie group with (normalised) Haar measure v. We consider a fixed
orthogonal representation of G on R?. Throughout this paper, all random variables
will take values in RY.

Let (2, 1) be a probability space, f : 2 — Q a measure-preserving transformation
and v : Q — R? a measurable observation. Let h :  — G be a measurable cocycle
and define h; = h-ho f---ho f7~1. In this paper, we are interested in the asymptotic
statistical properties of the sequence of partial sums

N
YN = Z hj vV O f]
7=1
A related question is to consider the sequence defined on €2 x G given by

Zy(z,g) = Zghj(f)v o fI(x).
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Observe that Zy(z,g9) = ¢gYn(x) and Yy(z) = Zy(z,e). A fruitful approach to
studying the sequence {Yx} is to (i) study {Zy} and then (ii) deduce properties of
{Yn} from the corresponding properties for {Zxy}. Step (i) has been the subject of
recent work [4, 5, 6], and step (ii) is the subject of this paper.

The reason that {Zxy} is more tractable than {Yy} is that the increments
{gh;vo f7} form a stationary sequence. That is, we can choose a measure preserving
transformation 7" and a random variable ¢ such that

ghj(z)vo fi(z) = ¢ o T?(z, g). (1.1)

Indeed, define
T(z,9) = (f(z),gh(z)),  o(z,9) = gv(z).

Then the transformation T : Q2 x G — 2 X G is measure-preserving with respect to the
measure p X v (by translation-invariance of Haar measure v), the map ¢ : Q x G — R¢
is measurable, and (1.1) is satisfied.

It is easily seen that if Y has a G-invariant distribution and {ay} is a convergent
sequence of positive numbers such that ayYy —4 Y, then ayZy —4 Y. In general
the converse is not true. The main result in this paper is that the converse is true
when T is ergodic, ¢ € LP(2 x G) and ay = O(N~/7):

Theorem 1.1 Let T : Q) x G — Q) x G be an ergodic measure-preserving transfor-
mation with respect to p x v and let ¢ : 2 x G — R? be of the form ¢(x,g) = gv(x)
where v € LP(2,R?) for some p > 1. Let {an} be a sequence of positive numbers
satisfying ay = O(NYP). If ay Z;v:1 ¢oTI —4 Z with respect to the measure p X v

on Q x G, then ay Z;V:1 doTI(-,g0) —a Z with respect to the measure u on Q for
each fired gy € G.

Remark 1.2 It suffices to prove that ay Z;-Vzlqﬁ oT7(-,e) —4 Z with respect to

p. To see this, note first by equivariance that ¢ o T7(z, gog) = go ¢ o T7(x, g) for all
go € G. By translation-invariance of v, gyan Z;\;l ¢ o T7 has the same distribution

as ay E;V:l ¢ o T9 with respect to p x v. Hence goZ =4 Z for all gy € G.
Now suppose that ay Zévzlqﬁ oTI(-,e) =4 Z and let gy € G be fixed. Then
an Zjvzl ¢oT’(-,g) = goan Z;Vﬂ ¢poTI(-,e) =4 goZ =4 Z as required.

It turns out that the stationarity of the sequence {#o7”} does not play a large role
in Theorem 1.1. We have the following generalisation for nonstationary sequences.

Theorem 1.3 Let T : Q2 x G — ) X G be an ergodic measure-preserving transfor-
mation with respect to i x v. Let Zy : Q2 x G — R? be a sequence of measurable



functions of the form Zy(z,9) = gVn(x) where Vy : Q — R? is measurable. Assume
that for each fixed 7 > 1

ZnoT! —Zy — 0 ae. (1.2)

If Zny —q Z with respect to the measure u X v on Q X G, then Zn (-, go) —q Z with
respect to the measure p on S for each fized gy € G.

It is easy to see that Theorem 1.1 is a special case of Theorem 1.3 with Zy =
an Zjvzl ¢oT?. We must verify that condition (1.2) is valid. Since ¢ € L! it follows
from the pointwise ergodic theorem that ¢* oT™ = o(N) a.e. Hence aygpo TN — O a.e.
But ZyoT? ~Zy = an Y j_; T consists of finitely many such terms (for fixed j)
so ZyoT17 — Zy — Oa.e.

In [4, 5, 6], we proved equivariant statistical limit theorems for the partial sums
Z;.V:l ¢ o T7 in several settings, such as assuming that the transformation f : Q — Q
is uniformly hyperbolic [4, 6] or more generally nonuniformly hyperbolic [5]. These
results are phrased in terms of the measure m = pu X v on 2 x G. It is natural
to ask whether such limit theorems remain valid when restricted to the measure p
on 2 when gy € G is fixed. That is, does a statistical law for the sequence {¢y}
defined on € x G imply the corresponding statement for {¢n(-,go)} defined on Q7
It turns out that the answer is affirmative. This is easily seen for the law of the
iterated logarithm (LIL), but is less easily proved for the central limit theorem (CLT)
or the weak invariance principle (WIP). Theorem 1.1 is the main ingredient required
to obtain the CLT and WIP on Q.

Thus the results in this paper can be viewed as being a nontrivial refinement of
the statistical limit laws obtained in [4, 5, 6].

In a recent paper, we applied these refined limit laws to random iterations of
Euclidean isometries [1]. The appropriate mathematical model to study random
iterations of Euclidean isometries is to sample with respect to a measure space €2
(rather than € x G) and hence the results of [4, 5, 6] do not immediately apply. The
stronger statements we present in this paper allow the circle of results in [4, 5, 6] to
be applied in this context.

In Section 2, we consider the implications of Theorems 1.1 and 1.3 for statistical
properties of observations on €). In Section 3, we prove Theorem 1.3.

2 Statistical limit laws on {2 X G and on

In this section we consider the implications of Theorems 1.1 and 1.3 for statistical
properties of the sequence {¢x} where ¢y = Z;v:1 ¢oT7.

A well-studied example is that of hyperbolic dynamical systems. For example,
suppose that €2 is a hyperbolic basic set for an Axiom A diffeomorphism, p is a Gibbs
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measure corresponding to a Hdélder continuous potential, A : 2 — G is a Holder
cocycle, and ¢(z, g) = gv(z) where v : Q — R? is Holder. Let m = p x v and suppose
that [¢dm = 0. Suppose further that the transformation 7 : Q@ x G — Q x G
induced by h is ergodic with respect to m. Under these assumptions, it is possible to
establish the central limit theorem (CLT), weak invariance principle (WIP) and law
of the iterated logarithm (LIL) [4, 5]. It follows from the results in this paper that
these properties are inherited by the partial sums sampled from €2 for each fixed go.

Central limit theorem The CLT on  is immediate for L? observations ¢ by
taking p=2 and ay =1/ VN in Theorem 1.1. We record this result as a corollary:

Corollary 2.1 (To Theorem 1.1) Suppose that T : Q x G — Q x G is ergodic and
that ¢ : Q — R? is of the form ¢(z,g) = gv(zx) where v € L?(Q, R?).

If the sequence {ﬁqﬁN} defined on the probability space (2 x G, m) converges in
distribution to a d-dimensional normal distribution with mean zero and covariance
matriz X2, then for any go € G, the sequence {TIN¢N( -, 90)} defined on the probability
space (2, ) converges in distribution to the same d-dimensional normal distribution
with mean zero and covariance matriz 2.

Weak invariance principle Set Wy (0) = 0, and Wi(t) = ﬁqs[m], for t =
~,2Z,... Linearly interpolating on each interval [(r — 1)/N,r/N], r > 1, we obtain
a sequence of random elements Wy € C([0,00), R?) on the probability space Q x G.
In other words, Wy should be viewed as a measurable function Wy : Q@ x G —
C([0,00),R?). The weak invariance principle (which is a refinement of the CLT) is

the property that the sequence {Wx} converges weakly to Brownian motion.

Corollary 2.2 (To Theorem 1.3) Suppose that T : Q x G — Q x G is ergodic and
that ¢ : Q — R? is of the form ¢(x,g) = gv(z) where v € L?(2,R?).

If the sequence {Wx(t)} defined on the probability space (2 x G,m) converges
weakly to a d-dimensional Brownian motion W (t) with covariance matriz X, then for
all go € G the sequence {Wy(t)(-,g0)} defined on the probability space (2, ) also
converges weakly to W (t).

Proof Weak convergence is equivalent [2] to weak convergence of the finite dimen-
sional distributions coupled with a tightness condition. By considering G-invariant
subsets of R?, it is immediate that tightness for m is equivalent to tightness for p. It
remains to discuss the convergence of the finite-dimensional distributions

(WN(tl), Wi (ts) — Wa(t), ..., Wa(ty) — WN(tk_l))



where 0 < t; <--- <ty and k£ > 1is fixed. Let ¢1,...,c; € R. By the Cramer-Wold
technique (cf. [3, Theorem 29.4]), it equivalent to consider whether sequences of the
form

Zy = aWn(t) + co(Wn(ts) = Wa(t1)) + -+ ce (W () — Wi (te—1))

converge in distribution to the appropriate d-dimensional normal distribution. Hence
it suffices to show that if Zy —4 Z on Q x G, then Zy(-, go) —4 Z on .
To apply Theorem 1.3, it remains to verify the condition (1.2). By definition,

1
Zn = —\/N (01¢[Nt1] +co (¢[Nt2] - ¢[Nt1]) S ¢ (¢[Ntk] - ¢[Ntk_1}))-
All but finitely many of the terms in Zy o 77 — Zy cancel, and the 2kj terms that
remain are of the form ﬁcpqﬁ oT% where 1 < p < kand 0 < g < Nt; +j. Since
¢ € L2, each of these remaining terms converges to zero almost everywhere by the
pointwise ergodic theorem. |

Law of iterated logarithm A version of the LIL is proved in [4, 5], whereby for
each ¢ € R?, there exists o, > 0 such that

limsup c- ¢n(x,9)/+/2N loglog N = o,

N—oo

for almost every (z,g) € Q x G. (In the situation of [4, 5], the covariance matrix ¥ =
My o0 % [ o @nOR dm exists and o, is given by o, = (¢"Ec)!/2) The analogous
result holds when sampling from the measure space ). Theorem 1.1 is not required
here, so this is a more elementary result.

We require a preliminary lemma.

Lemma 2.3 Let wy : Q — R¢ be a sequence of random variables. Suppose that for
each c € R, there exists o, > 0 such that

limsup ¢-wy(z) = o, (2.1)
N—oo

Jor almost every x € (2. Then o. depends continuously on c, and there is a full
measure subset Q0 C Q such that (2.1) holds for all c € R? and x € Q.

Proof Let C be a countable dense subset of R%. Then we can choose a single full
measure subset 2 C Q such that (2.1) holds for all ¢ € C and z € Q.

Fix an z € Q. Then limsupy_,., ¢ - wy(x) = o, for all ¢ € C. In particular,
¢ - wy(z) is bounded and since C spans R, wy(x) is bounded. Hence there exists a
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constant M (depending only on z) and an integer Ny such that |wy(x)| < M for all
N > N,.

Next, we show that o. depends continuously on c. Suppose that ¢y € R? and
choose ¢; € C such that ¢; — ¢o. There is a full measure set €y C 2 such that (2.1)
holds for all z € Q and all ¢ € {c1,¢2 ...} U{c}. In particular, |wy(x)| is bounded
for fixed z € . Hence limsupy_, . (co—¢;)-wn(r) = 0as j — oo, and s0 o¢; — 0.

Now we restrict attention again to z € Q. Suppose that ¢ € R? and € > 0. Choose
¢ € C such that |c — /| < ¢/3M and |0, — 0| < €/3. Increasing N if necessary, we

have ¢ - wy(z) < 0y +€/3 < 0.+ 2¢/3 for all N > Ny and hence
c-wy(z)=(c—=C) wy(z)+ wn(x) <e/3+ 0.+ 2€¢/3=0,+¢.

It follows that limsupy_, . ¢- wy(z) < 0.
To obtain the reverse inequality, observe that since ¢’ wy(x) > 0w —€/3 > 0.—2¢/3
infinitely often, it follows that ¢ - wy(z) > o, — € infinitely often. |

Theorem 2.4 Suppose that T : Q x G — Q x G is ergodic and that ¢ : ) x G — R?
is of the form ¢(z,g) = gv(z) where v : Q — R% is measurable. If

limsupc- ¢n(x,9)/+/2N loglog N = o, (2.2)
N—oo

holds for all c € R%, for almost all (z,g) € Q x G, then (2.2) holds for all c € R¢ and
all go € G, for almost all x € Q. Moreover, 4. = 0. for allc € R* and g € G.

Proof By Lemma 2.3, there is a full measure set ¥ C Q x G such that (2.2) holds
for all (z,g) € Y and ¢ € R¢. By Fubini’s theorem, there exists € C © of full measure
and g; € G such that (2.2) holds for ¢ = ¢g; and all z € Q. Now, compute that for
each gp € G and all x € Q,

¢ dn(x,90) = (9190 '¢) - (9190 "dn (2, 90)) = ¢ - dn(, 91),

where ¢ = g1g; 'c. Hence limsupy_,o, ¢ - dn(z, 90)/vV2NloglogN = 0. If 040 = 0
for all g € G and ¢ € R? then o, = o.. Hence we need only prove the last statement

of Theorem 2.4, that oy, = o, for all g € G and all ¢ € R%.

Let o(c, g) denote the lim sup, which is independent of z € Q and almost inde-
pendent of g (constant on a full measure subset of G). Furthermore o(c, g1) = o,
depends continuously on c¢. Since

c-on(z,9) = (019 '¢) - (919 'dn(z,9)) = (919 '¢) - dn(z, 1),

it follows that o(c, g) = o(g197 "¢, g1) = 04,4-1.. Hence o(c, g) depends continuously
also on g and so o(c,g) = o, for all g. But now we have o, = oy, 4-1, for all g as
required. |



Remark 2.5 The dynamical setting under which our hypotheses hold is not lim-
ited to uniformly hyperbolic systems. The conditions on hyperbolicity are relaxed
substantially in [5], so that statistical properties on 2 x G are obtained in many situ-
ations when € is nonuniformly hyperbolic, including Young towers [8]. In particular,
the CLT and WIP on €2 x GG are proved for certain nonuniformly hyperbolic systems
n [5] and again these restrict to 2 by the results in this paper. In general, additional
hypotheses are required for the LIL to be valid, though in [5] the upper LIL (where
= is replaced by < in (2.1)) is obtained under certain assumptions on ¢. Again, the
LIL or upper LIL, whenever valid on €2 x G, is valid on €2 also.

3 Proof of Theorem 1.3

It simplifies our argument considerably to assume from the start that f and hence 7’
are invertible measure-preserving transformations. This assumption is with no loss
of generality as we could always form the natural extension of f [7]. By Remark 1.2
it suffices to prove the result for gy = e.

Throughout, we write Yy(z) = Zn(z,e). Also, we write pu(Yy € FE) instead of
p{z € Q : Yy(z) € E} and we write m(Zy € E) instead of m{(z,g9) € Q@ x G :
ZN (.T, g) S E}

(a) Sketch of the proof

Let C, C R? be a ball of radius p.
Our proof is based upon the observation that for any set B C G, for y a.e y € {2
the sequence {h;(f7y)} is ‘well-distributed’ in G in the sense that

for v a.e. g € G. This is a consequence of the ergodicity of 7. Choose gy from this
set, of full measure in G.

Let {B;}), be a cover of G by sets of small diameter and equal Haar measure ;.
We may choose J large enough that for most points in €2, for 1 < wu,v < M

<
—
<
—

1

= Iy, 0 hi(f7y),

&Ir—‘

T4y, 0 h; (f” i y) =~

<=

<.
I
)

<.
Il
=)

where hj(z) = h(z)h(fz)---h(f’~'z). Translating the cover {B;} by g;* and rela-



belling, we may assume without loss that

J— - 1 J—1 '
Z uOhj(f*]y)’ijZvaohj(fﬁy)
=0

3=0

&I'—‘

for most y € Q. Define ; = T7(Q x {e}). Then the set U/Z3T7(Q x {e}) = U/ZQ;
is ‘well-distributed’ in 2 x G.

Next, we show that for large N and most points in Q, Zy oT?(x,e) — Zy(z,¢e) = 0
for 0 < j < J — 1. Hence, if we define

J-1
o(Zy € E) = Z,u{x Zy oT%(z,e) € E}
] 0
then O'(ZN € E) ~ /j,(YN € E)

Since points in U‘;:_(}Qj are well-distributed, and the measure o averages over this
set, we have 0(Zy € B;C,) ~ 0(Zn € B;C,) . But since 0(Zy € E) ~ u(Yy € E)
we also have u(Yy € B;C,) ~ u(Yn € B;C,). This shows that the equivariance
of Zx is inherited by Yy in the limit as N — oo. The remainder of the proof is
straightforward.

(b) Details of the proof

We break the proof of Theorem 1.3 into 6 steps.
Step 1: Main steps of proof.

Let C, be a closed ball of radius p > 0 such that P(Z € 0C,) = 0. Let € > 0, and
choose 0 < p/4 sufficiently small, so that

0<P(Z€eCpras) —P(Z€eChus) <e

Since Zy converges in distribution to Z (on Q x G), we may choose N (d) sufficiently
large that for all N > N(J)

0 <m(Zy € Cpras) —m(Zy € Cpyp) < 2. (3.1)

If B C G define B(a) = {g € G : d(g, B) < a}. We claim that for all sufficiently
small » > 0 there exists a independent of r and a collection of compact connected
sets {B;}M, in G, such that for all 1 <4,75,k,l < M,

(a) diam(B;) <r and U, B; = G.
(b) v(B;) = 57 and v(B; N B;) = 0 unless i = j.
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(C]_ If Z/(B N B; BkBl) ?é 0 then B; C B; ((XT')B]CB[
(c2) If v(B; N B;B, ' B)) # 0 then B; B, 'B; C B;(ar).

dl) B;(« ) gCBZ'Cp.

)
)
(d1)
(d2) Bj(ar)C, C B;(r )Cp+%'

In other words {B;}¥, form a cover of G, and a measurable partition of G,
satisfying certain additional properties. Clearly these properties are shared by any
translated collection {¢gB;}. Without loss we assume e € Bj.

Furthermore, we claim that this collection of sets {B;} has the property that

M

(ZN € Cp+45 > Z YN € B; Cp+35) (32)

1 M
M Z’U(YN € BiCp,;:,J) > m(ZN € Cp,45) (33)

=1

and that there exists N(e) such that

ﬂ(YN € B; Cp 35) < ,U,(YN € Ble) + 5¢ (34)
,LL(YN € BlC ) < ,LL(YN € BZ'C,;_|_35) + 5e (35)

forall N > N(e) and 1 < < M.
Suppose that the claim is valid. Then by (3.4) and (3.5),

1
M ZM(YN € BiCp_g(s) S /,L(YN € Ble) + Se (36)
1
,LL(YN € BlC,,) S M Z/,L(YN € BiCp+35) + Be. (37)
Hence,
M
1
m(ZN € Cp+45) > M ZM(YN € BiCp+35) from (32)

=1

> u(Yy € B1C,) — 5e from (3.7)

v

M

1

% Z“(YN € B;C,_35) — 10¢ from (3.6)
i=1

v

m(Zy € Cy_ss) — 10€ from (3.3).



In particular,
m(Zy € Chias) +5€ > u(Yn € B1C,) > m(Zy € Cy_ss) — Be.
Combining this with (3.1), since € and ¢ are arbitrarily small,

J\}I—I;Iéo ,U,(YN € Cp) = J\P—I)I;o m(ZN € Cp)

proving the theorem.

The remainder of the proof is structured as follows. In Step 2, we prove (3.2)
and (3.3). The sets {B;} are constructed in Step 3. Steps 4—6 contain the proof
of (3.4) and (3.5).

Step 2: Proof of (3.2) and (3.3).
For sufficiently small » > 0 if B C G is a set of diameter less than r then

ng+45 D BCP+35 D BCp_35 D ng_45 (38)

for all g € B.
If ACRY, then m(Zy € A) = [, u(Yn € gA)dv(g) = ;2 1fB (Yy € gA)dv(g).
It follows from the inequalitles (3.8) that

M M

m(Zy € Cpras) = Y- [ nl¥x € 9Cypris)dv(a) > > HBIu(Ys € BCpis)
i=1 v Bi i=1
M

v

v(B)p(Yn € BiC,_35) >

'Mi

/B w(Yn € gC,p_s5)dv(g)

=1 i

=1
= (ZN € Cp 45)

This proves (3.2) and (3.3).
Step 3: Construction of the sets B;.

Lemma 3.1 For all sufficiently small r > 0 there exists «, independent
of v, and a collection {B;}M, of compact connected subsets of G satisfying

(a), (b), (c1)(c2), (d1), (d2) of Step 1.

Proof Since G is a compact Riemannian manifold G' has a triangulation into sets
{A;}, with diam(A4;) < r for all . By perturbing the boundaries of the triangula-
tion we may assume that the numbers {v(A4;)} are rational, and hence have a greatest
common denominator ¢q. Express the numbers v(A;) with respect to the common de-
nominator so that v(A;) = £. Then subdivide each set A; into p; compact connected

subsets A;;,7 =1,...,p(7) of equal measure. Finally relabel the sets {4;,} as sets

.59
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Bi,...,By. Given a set B; we let A,; denote the unique triangle which contains
B;. Since G is compact and acts smoothly on itself there exists a o/ such that for
all 7 > 0 if diam(4;) < r, i = 1,..., M then diam(4;A4;"'4;) < o'r. Suppose that
v(Bi N B;B;'By) # 0. Then B; N B;B;'B; # 0. Since BB "By C Avjy Ay Ar)
and diam(AT(j)A;(}c)Ar(l)) < o/r we have A, ;) AT(,c Ay C Bi(2a/r). Thus B,;B;'B, C
B;(2a'r). We now define o = 2a/. This proves (c1), and (c2) is proved similarly.
For fixed p,d we may choose 0 < r < e sufficiently small such that if B C G is a
set of diameter less than r then B;(ar)C,_ s C B C, and B;(ar)C, C B;,C p2s- This

proves (d1) and (d2). |

Step 4: Ergodicity.
Let B; be a cover element, so v(B;) = --. Since T~ is ergodic,

for a.e. (z,9) € Q x G. By Fubini’s theorem, there exists gy € G such that the
limit holds with ¢ = go for p a.e. z € Q. By equivariance, I g1 0 T (2, go) =

Ioygrrpr 017 J(z,e). It is no loss of generality and also notationally simpler to

Q2xg,
redefine B; as B;g;'. Then we have limJ_)oo%Z‘jlzl Igip-1 o T i(z,e) = 57 for
a.e. r €L

Next recall that T7(z,e) = (fiz, h;j(z)) where hj(z) = h(z)h(fz)---h(f/'z).
Similarly, T~/ (z,e) = (f ™z, [h;(f2)]™"), and so we have limJ_mo%Z‘j]:l Ip, o

hi(f7z) = 4; for a.e. z € Q. Hence, there exists an integer J and a subset Q' C €
with p(€') > 1 —€/2 such that

J
1 - 1
‘— E IBiohj(f_Jx)——‘Se
szl M
forallz € Y andi=1,..., M.

Step 5: A new measure on {2 x (.
Let J be the integer fixed in Step 4. Define the measure o on €2 X G' by

Again, if C C R?, we write o(Zy € C) instead of o{(z,9) € Q x G : Zy(x,9) € C}.
Let €)' be the subset of € defined in Step 4. By condition (1.2), there exists N (d)
and a subset  C ' with p(2) > 1 — e such that for all N > N(), forall 0 < j < J,
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and for all z € Q, _
|Zy 0T (z,€) — Zy(z,€)| < 6.

As subsets of Q x {e},
{Zn € BiC, 35} C{ZnoT? € B,C, 25} C{ZnoT’ € B,C, 5} C{Zy € B,C,},
so by definition of o,

,U'(YN € BZ-C',,_P,(;) < O'(ZN € BZ-C',,_Q(;) +e< O'(ZN c B,‘Cp_(s)

+e < pu(Yny € B,C,) + 2e. (3.9)
We claim that for all N > N(0) and 1 <14 < M,
O'(ZN € Bicpfg(s) < O'(ZN € Ble,(s) + 3e. (310)

By (3.9) and (3.10),

,U(YN S B,-C,,_g(s) < O'(ZN S BiCp_Q(S) +e< O'(ZN S BICP_(;) + 4e
< u(Yn € B1C,) + 5¢
for all i proving (3.4). The proof of (3.5) is similar, and we omit the details. It now
remains to prove (3.10).

Step 6: Proof of (3.10).
Since f is invertible and measure preserving,

p{z € Q: T (z,e) € B} = p{y € Q= (y,h;(fy)) € E}.

Hence,
J—1
o(B)= 33" ply € O (5, hy(f 7)) € B).
j=0

The group elements h;(f~’y) induce a coding of the point y in the symbol space
{1,..._,M}" by w(y) = (wo(y), w1(y),...,ws(y)) where w;(y) = s € {1,..., M} if
h;i(f7y) € Bs. We define cylinder sets {S;}, i = 1,...,r, say, where each cylinder
set consists of points in ) with the same coding, i.e. the cylinder sets are elements
of the partition of € induced by the equivalence relation y ~ z if and only if w(y) =
w(z). Each cylinder set is defined by a word in {1,..., M}’ and Q is partitioned by
{Si}i_;. Note that to each letter w;(y) of the word w(y) there corresponds the point
(y, hi(f~7y)) € Q; where h;(f~7y) € By if and only if w;(y) = s. Furthermore by
assumption, for all p,qg € {1,..., M},y € Q

I i) =P}~ #0 wi) = g} <«

Our key observation is that by G-equivariance for any set U, Z ~n(y, hi(fIy)) €U
implies Zy (y, hi(f *y)) € hx(f *y)h; " (f 7y)U.
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Lemma 3.2 Fiz B,. We claim that there is a permutation {t(1),...,t(M)} of
{1,..., M} such that for each s € {1,..., M}, ByyB,'B, C Bi(ar).

Proof Let g, € B, and consider the cover of G given by the sets
{9,'B1,9,'Ba,...,9, ' By} = {Ci,...,Cy}. We say a collection of sets
{Bi,,...,B;} is path connected if any sets B;, , B;, may be connected by a path
contained in U;ZlBij.

Our proof is by induction and starts at & = 2. Choose B;, and B;, which have
a common boundary and hence are path connected. Now v(B;, N C;) # 0 for some
j. Choose such a j and define ¢(iy) = j. Similarly v(B;, N C,) # 0 for some r. We
may choose r # (i) since otherwise B;, C By;,) and because v(B;,) = v(By;,)) this
implies v(Bys,)) N B;,) = v(B;, N B;;) = 0, a contradiction.

Suppose we have chosen a path connected set {B;,,..., B;, } with corresponding
permutation ¢ defining a set {Cyg,), ..., Cys,)}, such that v(B;, N Cyy;)) # 0. We
say B;; is labelled by Cy;;). Now we choose B;, ., path connected to {B;,,..., By }.
If By, ¢ U;?:lC’t(,-j) then there exists C, such that v(C; N B;,,,) # 0 and we may
choose t(ix11) = s to extend the set to k + 1 members. A problem arises only if
By, C U;?:lct(ij)'

So suppose Bj,,, C US_,Cys,). We define Sy = UY_,Cy;,). Although we will
redefine the map ¢ later we keep Sy fixed.

Choose Cy, ) such that Cy;, yNB;,, # 0 and label B;, , with this set by defining
t(irs1) = t(is,) and keeping t(i;) fixed for j & {k +1,s:}. Now B;, is unlabelled. If
B;,, ¢ Sk then there exists C; C Si such that v(C; N B;,) # 0 and we may define
t(is) = t to extend the number of labelled sets to k + 1. If however B;, C Si we
choose Cyg,,) such that Cyq,,) N By, # 0 and relabel #(iy,) = t(i5,). We continue
this process of relabelling along all possible paths, hoping to find a set B;, ¢ Sk, in
which case we may extend the number of labelled sets to £ 4+ 1. A possible problem
is that the set of all such paths formed in this way starting at B;  , does not include

Tk+1
a set B;, ¢ Si. To see that this is not the case suppose we encountered only sets
{Bi.,,---,Bi,} covered wholly by Sj. Then in fact

Zsl’

By, UU;_1Bi,, C Uj_Cii, )
since otherwise we could form a path including another set B;, ¢ {B, ,...,B;,}.
However B;,,, UUj_;B;, C Uj_ Cy,,) leads to a contradiction as B, ,, UUj_; B;,,
has strictly greater measure than U?:1Ct(isj)- Thus we may find a set B;, ¢ Si and
extend the number of labelled sets to & + 1.

Thus we have inductively defined the bijection ¢ such that v(g, 'B, N Byy)) # 0.
Recall that the cover {B,..., By} has the property that if v(B; N B;B; ' B;) # 0

then B;B;'B, C Bj(ar). Since u(g;lBs N Bys)) # 0, g;l € By, B, ! and hence
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e € ByyB,'B,. Thus By N ByyB,'B, # 0 and hence By, B, 'B, C Bi(ar) as
required. |

To sum up: for all j such that w; = ¢(s), for all y € S; we have h;(f7y) € Bys).
Thus if Zn(y, hj(f7y)) € ByCp_9s and w; = s then if wy = t(s) it follows that
ZN(y, hk(f_’“y)) € Bl(OJT')Cp_Q(s C Ble_(;. Hence

J—
LS bl € Si: Zulunhylf 4) € B,Cyas)
7=0
1 M
=52 > My €Si: Zn(y, hi(f7y)) € B,Cpons}
s=1 w;=s
1 M .
<SS ST wly €S Zuly, (S ) € Biar)Cpas} + en(S)
=1 wj=1(s)
1 J—1 .
=521y €Si: Zn(y, hi(f7y)) € Bi(ar)Cyas} + ep(Si)
j=0

u{y € Sz : ZN(y, h,j(f*jy)) € Blcpﬂ;} + G/L(SZ)

IN
<l
'M“‘

7j=1

This holds for all cylinder sets S; so by summing over cylinder sets in Q we have

J—
1 »
qu{y €Q: Zn(y, hi(fy)) € ByCps}
7=0
1 J—1
S j ,U,{y € Q ZN(ya (f_]y)) € Blcp—(S} + €.
7=0

Finally including the error from the set Q we have
0(Zy € ByC,_95) < 0(Zn € B1C,_s) + 3e.
Since B, is arbitrary, we have proved (3.10) as required. This completes the proof of

Theorem 1.3.
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