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Abstract

We consider nonresonant and weakly resonant Hopf bifurcation from periodic so-
lutions and relative periodic solutions in dynamical systems with symmetry. In par-
ticular, we analyse phase-locking and irrational torus flows on the bifurcating relative
tori.

Results are obtained for systems with compact and noncompact symmetry group.
In the noncompact case, we distinguish between bounded and unbounded dynamics.
Applications of our results include secondary Hopf bifurcation from meandering multi-
armed spirals.

1 Introduction

In recent work [17, 18, 23], we have developed a systematic theory for the study of local
bifurcations from periodic solutions and relative periodic solutions in dynamical systems
with symmetry. The theory proceeds by relating the problem to a simpler problem studied
previously [12]; namely local bifurcation from a fully symmetric equilibrium.

The aim of the paper is twofold. On the one hand, we discuss an important example
— spiral wave dynamics in excitable media, building upon previous work of Sandstede et
al. [22] in the case of one-armed spirals, and extending the results to multi-armed spirals.
This can be seen as both an illustration and an application of the methods in [17, 18, 23].
On the other hand, the treatment of this example requires several new techniques, specific to
Hopf bifurcation from relative periodic solutions in systems with symmetry, to understand
the effects of phaselocking, resonance tongues, and quasiperiodic flows. We consider these
issues for both compact symmetry groups and certain noncompact symmetry groups such
as the Euclidean group.

Suppose that Γ is a compact Lie group acting orthogonally on Rn and F : Rn → Rn

is a smooth vector field satisfying the Γ-equivariance condition F (γx) = γF (x) for γ ∈ Γ
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and x ∈ Rn. A solution x(t) for the corresponding flow is called a relative equilibrium if
x(t) ∈ Γx(0) for all t ∈ R. A solution x(t) is called a relative periodic solution if x(t) is not a
relative equilibrium but there exists a T > 0 such that x(T ) ∈ Γx(0). The least such number
T is called the relative period.

Let P = {x(t)} be a relative periodic solution. Define

∆ = {γ ∈ Γ : γx(0) = x(0)}, Σ = {γ ∈ Γ : γP̄ = P̄}.

We call ∆ the spatial symmetry group and Σ the spatiotemporal symmetry group. These are
closed subgroups of Γ and ∆ is a normal subgroup of Σ. We say that the (relative) periodic
solution is (∆,Σ)-symmetric.

An alternative definition of Σ is that it is the closed subgroup of Γ generated by ∆ and
σ ∈ Γ, where x(T ) = σx(0) and T is the relative period. Such an element σ is called a
spatiotemporal generator.

If dim ∆ = dim Γ, then the dynamics in a vicinity of the periodic solution depends
only on Σ, so we may suppose without loss that Γ = Σ in such situations. Hence, there
is the following hierarchy of situations of increasing complexity in which to consider Hopf
bifurcation:

(0) ∆0-symmetric equilibrium for a ∆0-equivariant vector field.

(1) (∆,∆)-symmetric periodic solution (purely spatial symmetry) for a ∆-equivariant vec-
tor field.

(2) (∆,Σ)-symmetric periodic solution (spatial and spatiotemporal symmetry) for a Σ-
equivariant vector field where Σ/∆ ∼= Zm with m ≥ 2.

(3) (∆,Σ)-symmetric relative periodic solution for a Γ-equivariant vector field where
dim Γ > dim ∆.

There is a well-developed theory for case (0): Hopf bifurcation from a fully symmetric
equilibrium [12]. The aim of this paper is to show how all the remaining cases reduce to case
(0) so that bifurcation-theoretic phenomena in cases (1)–(3) can to a large extent be “read
off” from the known results for case (0).

Remark 1.1 In reducing from case (1) to case (0), it turns out that ∆0 = ∆. However, in
reducing from cases (2) and (3), ∆0 is a cyclic extension of ∆.

We focus on three main issues: branching patterns of (relative) invariant tori, phaselock-
ing, and conjugation to a linear torus flow. In case (3), we allow that Γ is not necessarily
compact (it is required that ∆ is compact). Moreover, in the case of Euclidean symmetry
in the plane, Γ = SE(2), we consider the question of compactness of solutions on relative
invariant tori. This is especially important for the application to spirals, where ∆ = Z`

(` = 1 for one-armed spirals and ` ≥ 2 for multi-armed spirals).
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It turns out that such issues have been only partially studied even in case (1). Hence
Sections 2 and 3 are devoted to understanding this “simplest case”. Section 2 contains
some basic facts about equivariant circle diffeomorphisms, such as rotation numbers and the
equivariant Denjoy theorem. In Section 3, we consider the reduction of case (1) to case (0).
In the process, we recover and substantially extend results of Chossat & Golubitsky [6] on
Hopf bifurcation from a periodic solution with purely spatial symmetry.

In Section 4, we turn to Hopf bifurcation from periodic solutions with spatial and spa-
tiotemporal symmetry (also known as discrete rotating waves). Here, we apply the ideas
in [17, 18] to reduce from case (2) to case (0), but elaborating on the issues of phaselocking
and linearisation.

In Section 5, we briefly consider Hopf bifurcation from general relative periodic solutions
with compact spatial symmetry ∆. Finally, in Section 6, we consider the application to
bifurcations from one-armed and multi-armed spirals. Here, Γ = SE(2) is noncompact, and
we address also the issue of determining whether the dynamics on the bifurcating phaselocked
relative periodic solutions and relative invariant tori is bounded or unbounded.

2 Equivariant circle diffeomorphisms

In this section, we collect together some elementary results about equivariant circle diffeo-
morphisms. We do not claim that these results are new, but explicit statements are hard to
find in the literature. (In particular, we have not seen elsewhere the equivariant Denjoy the-
orem, Proposition 2.3 and Corollary 2.4 below.) A general reference for the nonequivariant
statements below is [13, Section 6.2].

Let C be an oriented circle, and suppose that f : C → C is an orientation preserving
homeomorphism. We assume that f is Zr-equivariant with respect to a free action of Zr on
C. As usual, we define the rotation number ρ(f) = limn→∞ F

n(t0)/n where F : R → R is a
lift of f , and ρ(f) is independent of choice of F and t0.

Suppose that f has rotation number p/q (written in its lowest terms). Then (i) there
exists a periodic orbit for f , (ii) all periodic orbits on C have period q, and (iii) all other
trajectories on C are asymptotic to the periodic orbits. Generically, the periodic orbits
are hyperbolic and hence the asymptotic dynamics consist of a finite number of periodic
sink/source pairs of period q.

Our first result is implicit in a more general result of Krupa & Roberts [16, Lemma 3.8]
on (noninvertible) equivariant circle maps.

Proposition 2.1 Suppose that Zr acts freely on the circle C and that f : C → C is a Zr-
equivariant homeomorphism with rotation number p/q. Then the periodic orbits on C have
spatiotemporal symmetry Zs where s = gcd(q, r).

Proof Let C̃ = C/Zr. An easy argument [16, Lemma 3.1] shows that the quotient map

f̃ : C̃ → C̃ has rotation number rp/q. This reduces to r′p/q′ in its lowest terms, where
r′ = r/s, q′ = q/s.
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Let x ∈ C be a periodic point for f , so x has period q. At the quotient level, x has
period q′ for f̃ . Hence f q(x) = x and f q′

(x) ∈ Zr · x, with q, q′ least. It follows that the
corresponding periodic orbit has symmetry Zq/q′ = Zs as required.

In the obvious terminology, p/q-phaselocked periodic points on C have absolute period
q and relative period q/s.

This result can be strengthened slightly. If y ∈ C, then the group orbit Zr · y ⊂ C has
an ordering y = y1 < y2 < · · · < yr−1 with respect to the orientation on C. We distinguish
the element σ ∈ Zr such that y2 = σy1. (It follows that σyj = yj+1 where j + 1 is computed
mod r.) This definition of σ does not depend on y. If C is the unit circle in R2 ∼= C and Zr

acts linearly, then σ is the element of Zr that acts as z 7→ e2πi/rz.
We already have that f q/s(x) ∈ Zr ·x for all periodic points x ∈ C but this is strengthened

to:

Proposition 2.2 Under the hypotheses of Proposition 2.1, f q/s(x) = σpr/sx for all x ∈ C
periodic.

Proof Observe that ρ(f q/s) = (q/s)ρ(f) = p/s. The periodic point x has period s for f q/s

and consists of a single Zs group orbit. Hence f q/s(x) = σdx for some d ≥ 1. After s iterates,
we obtain f q(x) = σsdx = x. Since the rotation number is p/s, this corresponds to winding
p times around the circle, so sd/r = p. Hence, d = pr/s as required.

In the terminology of the introduction, Propositions 2.1 and 2.2 state that the periodic
points on C are (1,Zs)-symmetric with spatiotemporal generator σpr/s.

Next, we consider the case when the rotation number ρ(f) = ω is irrational. If f is
sufficiently smooth (C2 suffices) then by Denjoy’s Theorem, f is topologically conjugate to
the rigid irrational rotation x 7→ x+ω. We prove an equivariant version of Denjoy’s Theorem.

Proposition 2.3 Let f : C → C be a Zr-equivariant homeomorphism of the circle with
irrational rotation number. Suppose that φ : C → C is a topological conjugacy between f
and a rigid irrational rotation. Then φ is Zr-equivariant.

Proof Let ω be the rotation number of f . It is well-known (see for example [13, p. 302])

that the conjugacy φ from f to Rω is unique up to a rigid rotation. Set φ̃ = R−1
2π/rφR2π/r.

By Zr-equivariance of f ,

φ̃f = R−1
2π/rφR2π/rf = R−1

2π/rφfR2π/r = R−1
2π/rRωφR2π/r = Rωφ̃.

Hence, φ̃ is also a topological conjugacy and so it follows from uniqueness that φ̃φ−1 = Rβ

for some β ∈ [0, 2π). Moreover,

φR2π/rφ
−1 = R2π/r(R

−1
2π/rφR2π/r)φ

−1 = R2π/rφ̃φ
−1 = R2π/rRβ = R2π/r+β.

This means that φ defines a topological conjugacy between the rigid rotations with rotation
numbers 2π/r and 2π/r+β. Since rotation number is an invariant of topological conjugacy,

it follows that β = 0 and so φ = φ̃ = R−1
2π/rφR2π/r. Hence φ is Zr-equivariant.
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Corollary 2.4 Suppose that f : C → C is a Zr-equivariant C2-diffeomorphism with irra-
tional rotation number. Then there exists a Zr-equivariant homeomorphism φ : C → C that
topological conjugates f to a rigid irrational rotation.

Proof This is immediate from Denjoy’s Theorem and Proposition 2.3.

If the rotation number is Diophantine, as is the case for a set of irrational numbers of
full measure, and f is smooth enough, then Arnold’s Theorem [1] implies that f is smoothly
conjugate to a rigid rotation. By Proposition 2.3, this smooth conjugacy is Zr-equivariant.

The following result is required in Section 4.

Proposition 2.5 Let ∆ = Zr be a finite cyclic group acting freely on the circle C and
let φ ∈ Aut(∆) be an automorphism. Let f : C → C be an orientation preserving circle
diffeomorphism and suppose that f is twisted equivariant: fδ = φ(δ)f for all δ ∈ ∆ ⊂ S1.
Then φ is the trivial automorphism (and so f is ∆-equivariant).

Proof The condition for twisted equivariance can be rewritten as φ(δ) = fδf−1. Thus φ(δ)
is topologically conjugate to δ by an orientation-preserving conjugacy (namely f) and hence
φ(δ) has the same rotation number as δ. But ∆ acts freely and so distinct elements of ∆
have distinct rotation numbers. Hence φ(δ) = δ.

3 Hopf bifurcation from periodic solutions with purely

spatial symmetry

In this section, we describe how Hopf bifurcation from a (∆,∆)-symmetric periodic solution
P for a ∆-equivariant flow reduces to Hopf bifurcation from a ∆0-symmetric equilibrium (in
the notation from the introduction). Since ∆ = ∆0, we write ∆ throughout this section.

Let X be a ∆-invariant local cross-section intersecting P in a single point x0. Relabel
x0 = 0. The Poincaré map f : X → X is ∆-equivariant, and f(0) = 0. Hopf bifurcation
from P for the underlying flow is equivalent to Hopf bifurcation from the fixed point 0 for
the Poincaré map f .

In Subsection 3.1, we recall results of [6] on Hopf bifurcation for equivariant diffeomor-
phisms. These results are substantially improved upon in Subsection 3.2 using the approx-
imation f ∼ exph where exph is the time-one map for a ∆-equivariant vector field h. In
Subsection 3.3, we relate symmetry properties of periodic solutions for h to those of invari-
ant circles of f . In Subsection 3.4, we consider the dynamics of f on an invariant circle
(phase-locking/irrational rotation). In Subsection 3.5, we relate these issues back to the
Hopf bifurcation from the periodic solution P .
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3.1 Hopf bifurcation for equivariant diffeomorphisms

Introducing a bifurcation parameter λ ∈ R, we suppose that the ∆-equivariant diffeomor-
phism f : X×R → X satisfies f(0, λ) ≡ 0 and that (df)0,0 has complex conjugate eigenvalues
on the unit circle (so there is a Hopf bifurcation at λ = 0). In particular, we suppose that
(df)0,0 has eigenvalues e±2πiω where ω ∈ (0, 1

2
). Generically, (df)0,0 is semisimple and there

are no further eigenvalues on the unit circle, but the eigenvalues e±2πiω may be multiple due
to symmetry. After centre manifold reduction, we may suppose without loss that (df)0,0 is
semisimple with spectrum consisting entirely of the (multiple) eigenvalues e±2πiω.

Write (df)0,0 = eA where A has purely imaginary eigenvalues ±2πiω. Then etA generates
a free action of S1 on Rn. Altogether, there is an action of ∆× S1 on Rn.

Chossat & Golubitsky [6] proved the existence of certain classes of invariant circles for
the diffeomorphism f . Let J ⊂ ∆ × S1 be an isotropy subgroup with fixed-point subspace
Fix J ⊂ Rn. The isotropy subgroup is C-axial if dim Fix J = 2.

Theorem 3.1 ( [6, Theorem 3.1] ) If J is a C-axial isotropy subgroup of ∆ × S1, then
generically there exists a unique branch of circles Cλ ⊂ Rn bifurcating from 0 such that

(i) f(x, λ) ∈ Cλ for all x ∈ Cλ,

(ii) δCλ = Cλ for all (δ, θ) ∈ J , and

(iii) The branch Cλ is tangent to Fix J at 0.

Proof (Sketch) First suppose that f is ∆× S1-equivariant. Then Fix J is invariant under
f and the result follows from the standard Hopf Theorem (see for example [21]) for maps
applied to f |Fix J×R. Note that if g = (δ, θ) ∈ J , then gx = x for all x ∈ Cλ. Moreover, it
is easy to verify that Fix J is invariant under S1 so in particular θCλ = Cλ for all θ ∈ S1.
Hence δCλ = Cλ.

If ω is irrational, then by Birkhoff normal form theory, f may be assumed to be ∆ ×
S1-equivariant through arbitrarily high (but finite) order. Moreover to obtain ∆ × S1-
equivariance through any specified finite order, it suffices to exclude finitely many rational
values of ω. Hence, it remains to show that the invariant circles persist under high enough
order S1-symmetry breaking perturbations.

When Fix(J ∩ ∆) is two-dimensional, such perturbation results were addressed in Ru-
elle [21]. In general, we require finite determinacy results of Field [8]. First, there exists an
integer d such that the branch Cλ consists of normally hyperbolic invariant circles provided
that the Taylor coefficients of f through order d satisfy finitely many polynomial inequali-
ties. Moreover, there exists a larger integer D such that the branch Cλ persists if there are
higher order terms that break the S1 symmetry provided ∆×S1-equivariance is maintained
through order D. In general, such a perturbation will destroy S1-invariance of Cλ, but by
uniqueness δ-invariance is preserved for all (δ, θ) ∈ J .
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Remark 3.2 If ω is irrational, then the Hopf bifurcation is called nonresonant. If ω is
rational, the bifurcation is resonant. As seen in the last proof, for certain purposes it is
sufficient to exclude ω = p/q for finitely many choices of p and q. Such bifurcations are
weakly resonant and the remaining finitely many cases are called strongly resonant.

3.2 An alternative proof of Theorem 3.1

An alternative approach is to approximate the ∆-equivariant diffeomorphism f by the time-
one map of a vector field (see for example [18]). Suppose first that ω is irrational. Then
through arbitrarily high order f = exph is the time-one map of a ∆-equivariant vector field
h with h(0, λ) ≡ 0 and (dh)0,0 = 2πiω. Transforming f into Birkhoff normal form, we may
suppose that h is ∆ × S1-equivariant. The equivariant Hopf theorem [11] guarantees the
existence of periodic solutions corresponding to any C-axial isotropy subgroup J ⊂ ∆× S1.

When ω = p/q is rational, through arbitrarily high order f = e2πip/q exph = exph e2πi/q

where h is a ∆ × Zq-equivariant vector field satisfying h(0, λ) ≡ 0 and (dh)0,0 = 0. As
q increases, h is S1-equivariant through higher and higher order. For sufficiently large q
(the weakly resonant case) it follows from Field & Richardson [9] that the equivariant Hopf
theorem still yields periodic solutions for any C-axial isotropy subgroup J .

Remark 3.3 In the analysis of Hopf bifurcation from a fully symmetric equilibrium with
symmetry ∆ (case (0) in the introduction), passing to Birkhoff normal form leads to an
S1 symmetry to arbitrarily high order. Hence both case (0) and case (1) with ω irrational
are governed to arbitrarily high order by a ∆× S1-equivariant vector field h, achieving our
aim of reducing from case (1) to case (0). For weakly resonant ω, case (1) is governed to
“sufficiently high order” by such a vector field h.

A major advantage of this approach is that the entire bifurcation analysis for the dif-
feomorphism f is identical (subject to one caveat) to the bifurcation analysis for the vector
field h. The caveat is that exph approximates f only through finite order. Certain aspects
of the dynamics, such as phaselocking, may depend delicately on terms in the tail.

Fiedler’s theorem and branching patterns For Hopf bifurcation of equivariant vec-
tor fields h, it is often possible to prove existence of periodic solutions other than those
guaranteed by the equivariant Hopf theorem. For example, Fiedler’s Theorem [7] guaran-
tees that h has branches of periodic solutions with isotropy J ⊂ ∆ × S1 for any maximal
isotropy subgroup J (regardless of the dimension of Fix J). The determinacy theorem of
Field & Richardson [9] applies equally well to all isotropy subgroups (C-axial and non-C-
axial, maximal and nonmaximal). Hence, generically such periodic solutions correspond also
to invariant circles for the diffeomorphism f . The determinacy theory also applies to relative
periodic solutions for h and hence to relative invariant circles for the diffeomorphism f .

Field & Richardson [9] speak of branching patterns for equivariant bifurcations. Adopting
their terminology, we speak of branching patterns for ∆-equivariant vector fields, meaning the
existence and stability of branches of (relative) periodic solutions in generic Hopf bifurcation,

7



taking into account the dependence on Taylor coefficients of the vector field. Similarly, we
speak of branching patterns of (relative) invariant circles for ∆-equivariant diffeomorphisms.

Theorem 3.4 The branching patterns of (relative) invariant circles for nonresonant (or
weakly resonant) Hopf bifurcations from a ∆-symmetric fixed point for ∆-equivariant maps
are identical to the branching patterns of (relative) periodic solutions for Hopf bifurcations
from a ∆-symmetric equilibrium for ∆-equivariant vector fields.

3.3 Interpretation of symmetries

Let C = Cλ be a bifurcating invariant circle for the diffeomorphism f . Alternatively, we can
view C as a periodic solution for the vector field h. We have already introduced the isotropy
subgroup J ⊂ ∆ × S1 which fixes C pointwise. Since S1 lies in the centre of ∆ × S1, it
follows that S1 lies in the normaliser N(J) of J . Hence Fix J is S1-invariant.

Proposition 3.5 Suppose that C is an invariant circle with isotropy subgroup J ⊂ ∆× S1

with dimN(J) = dim J + 1. Then generically the subgroup of ∆× S1 that fixes C setwise is
the group generated by J and S1.

Proof It follows from general theory that C is generically an isolated dynamically-invariant
set in Fix J . Hence S1 must fix C setwise.

On the other hand, S1 acts freely and therefore transitively on C. So if g ∈ ∆× S1 and
gx ∈ C for some x ∈ C, then gx = θx. Therefore θ−1g ∈ J and so g ∈ 〈J, S1〉.

Remark 3.6 The condition dimN(J) = dim J + 1 is not restrictive and is immediate for
C-axial isotropy subgroups. Otherwise, rankN(J)/J = d ≥ 2, where rankG of a compact
Lie group G is the dimension of the maximal torus in G. The invariant circle is then replaced
by an invariant torus Td (actually a relative invariant circle) for the diffeomorphism f , and
the setwise symmetry group of Td is of dimension strictly larger than dim J + 1.

Define ∆C = J ∩ ∆ and ΣC = π(J) where π : ∆ × S1 → ∆ is projection. Note that
∆C ⊂ ΣC ⊂ ∆, and that ∆C is the largest subgroup of ∆ that fixes C pointwise whereas ΣC

is the largest subgroup of ∆ that fixes C setwise.
We distinguish the cases ΣC/∆C

∼= S1 and ΣC/∆C
∼= Zr. In the former case, C is

a relative equilibrium for the vector field h and f : C → C is a rigid rotation (typically
irrational). The continuous S1 symmetry prohibits phaselocking, and the rotation number
of f varies smoothly on parameters.

In the case ΣC/∆C
∼= Zr, we have a (∆C ,ΣC)-symmetric periodic solution C for the vector

field h. The dynamics on C for the diffeomorphism f is discussed in detail in Subsection 3.4.

3.4 Dynamics on the invariant circles

Another advantage of the approach in Subsection 3.2 is that (even when ∆ = 1), approx-
imation by an equivariant vector field h is the natural way of studying the dynamics on
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the invariant circles Cλ. The relevant results for the case ∆ = 1 can be found for example
in [2, 3]. We assume some familiarity with the case ∆ = 1 (referring to [2, 3] for details),
and concentrate instead on the differences that arise for general ∆.

Let C = Cλ be an invariant circle for the ∆-equivariant diffeomorphism f and define
∆C ⊂ ΣC ⊂ ∆ as in Subsection 3.3. We assume that ΣC/∆C

∼= Zr. Generically, the
dynamics is Morse-Smale and consists of periodic sinks, periodic sources, and trajectories
connecting these periodic solutions. However, the open and dense set of Morse-Smale dy-
namics on such invariant circles turns out to be small in the measure-theoretic sense near to
the bifurcation, and the full picture is rather delicate.

Two parameters are required to describe the bifurcation: the bifurcation parameter λ
and the frequency ω appearing in (df)0,0 = e2πiω. For each rational p/q (written in its
lowest terms), there is an Arnold tongue Ap/q in parameter space emanating from the point
(λ, ω) = (0, p/q). This is the region of parameter space in which f has rational rotation
number p/q.

Phaselocking For (λ, ω) ∈ Ap/q, the asymptotic dynamics is generically phaselocked and
consists of periodic sink/source pairs of period q (see Section 2). Obviously, they have spatial
symmetry ∆per = ∆C . By Proposition 2.1, the spatiotemporal symmetry Σper satisfies

Σper/∆per
∼= Zs where s = gcd(q, r). (3.1)

The phaselocked periodic points x have absolute period q and relative period q/s. By

Proposition 2.2, f q/s(x) = σ
pr/s
C x where σC ∈ ΣC is chosen (uniquely mod∆C) so that

σCx = e2πi/rx for all x ∈ C.

Proposition 3.7 Let Cλ be a branch of invariant circles and suppose that ΣC/∆C
∼= Zr.

Suppose that (λ, ω) ∈ Ap/q (λ small). Let s = gcd(q, r). Then generically, there are Dr/s
periodic sinks and Dr/s periodic sources, for some positive integer D ≥ 1.

Proof The linearisation (dh)0 = e2πip/q gives rise to Zq Birkhoff normal form symmetry
(for any r). We claim that this symmetry, when coupled with Zr-equivariance, leads to ZQ

Birkhoff normal form symmetry where Q = qr/s.
To prove the claim, observe that the combined effect of the Zq Birkhoff normal form

symmetry together with Zr-equivariance yields symmetries of the form

z 7→ e2πi{a
q
+ b

r
}z = e2πi(ar+bq)/qrz

where a, b ∈ Z. But ar+bq is a general multiple of s = gcd(q, r). Hence, we have symmetries
of the form

z 7→ e2πics/qrz = e2πic/Qz,

where c ∈ Z, proving the claim.
It follows that the number of points that lie on periodic sinks (or sources) is given by

DQ for some D ≥ 1. Since each periodic orbit contains precisely q points, we obtain DQ/q
periodic sinks (or sources) as required.
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We note that there is a single ΣC-group orbit of sink/source pairs of periodic solutions
on the invariant circle if and only if D = 1.

Remark 3.8 In the nonequivariant context, ∆ = 1, stronger results are known. Consider
an Arnold tongue Ap/q, where q ≥ 5. (We do not consider the strongly resonant cases
q ≤ 4 here.) Generically, it is the case that for each (λ, ω) ∈ Ap/q (with λ close enough
to 0), there is a single sink-source pair of periodic solutions on the invariant circle (see [3,
Theorem 5.4.1]). In other words, D = 1 in Proposition 3.7.

There are a number of problems in formulating the corresponding result for equivariant
systems. First of all, the proof in the nonequivariant case relies strongly on the fact that the
centre manifold is two-dimensional. In the presence of symmetry, the centre manifold may
be higher-dimensional, so it is necessary to immediately restrict attention to invariant circles
corresponding to C-axial isotropy subgroups J ⊂ ∆×S1. But since we are in a p/q-resonant
tongue, the symmetry is immediately broken to Jq ⊂ ∆ × Zq where Jq = J ∩ (∆ × Zq).
Hence, we require the stronger assumption that Jq is a C-axial subgroup of ∆ × Zq (so
dim Fix Jq = 2).

Even under the assumption that Jq is C-axial, we cannot always conclude that D = 1
due to the possibility of hidden symmetries [10]. As in the proof of Proposition 3.7, we can
write f (in Birkhoff normal form) as f(z) = e2πip/q exph(z), where h is a ZQ-equivariant
vector field [2, 3]. This has the form h(z) = α(|z|2, zQ, z̄Q)z + β(|z|2, zQ, z̄Q)z̄Q−1, Q = r/s,
where α and β are C-valued. To avoid strong resonances, assume that Q ≥ 5. Suppose that

(i) The real and imaginary parts of the coefficients of |z|2 in α are nonzero.

(ii) β(0) 6= 0.

Then it can be shown (just as in the case r = 1, q ≥ 5, see [3, pages 282–286]) that in
the Arnold tongue Ap/q the vector field has precisely Q sink-source pairs of equilibria and
so D = 1. Condition (i) is satisfied generically, since |z|2z is the restriction of the ‘trivial’
∆-equivariant cubic nonlinearity. (Recall that ∆ ⊂ O(n).) However, condition (ii) may fail:
it is possible that there are no ∆-equivariant nonlinearities of order Q−1 that restrict to the
map z̄Q−1 on Fix Jq. For this reason it is possible that generically D ≥ 2 even when Q ≥ 5
and Jq is C-axial. The integer D depends only on the representation of ∆ on X.

If the action of ∆ is two-dimensional, then the difficulties described in Remark 3.8 do not
arise. The action of ∆ effectively reduces to a Zr action and we have the following result:

Proposition 3.9 Suppose that ∆ = Zr acts faithfully on R2 and that the fixed point at 0
undergoes Hopf bifurcation to an invariant circle C. Let q ≥ 1 and s = gcd(q, r). If qr/s ≥ 5,
then in the Arnold tongue Ap/q, generically there are precisely r/s periodic sink/source pairs
on C.

Remark 3.10 In the nonequivariant setting, the boundaries of the Arnold tongues Ap/q

with q ≥ 5 are generically cuspoidal of order (q − 2)/2. This is shown by studying the
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Zq-equivariant vector field h, see for example [2, p. 311] or [3, Theorem 5.4.1]. These com-
putations carry over to the equivariant context, subject to caveats similar to those in Re-
mark 3.8. Provided the subgroup Jq = J ∩ (∆ × Zq) is C-axial, the computation reduces
to the two-dimensional fixed point space Fix J and the vector field h|Fix J is ZQ-equivariant
where Q = qr/s. Hence we expect that the boundaries of the tongues are cuspoidal of
order (Q − 2)/2. However, just as in Remark 3.8, it is necessary to pay attention to hid-
den symmetries. Certain degeneracies due to hidden symmetries may be tractable using
singularity-theoretical ideas such as in [5].

Irrational rotations The union of Arnold tongues ∪Ap/q forms an open and dense subset
of parameter space. However, Herman [14] has shown that the complement of the union of
Arnold tongues ∪Ap/q has positive measure, converging to full measure as λ→ 0. Moreover,
almost everywhere within this complement, the rotation numbers are Diophantine and the
dynamics is smoothly conjugate to a rigid irrational rotation. The smooth conjugacy on
Cλ is ΣC-equivariant by Proposition 2.3 and (being isotopic to the identity) extends to a
∆-equivariant diffeomorphism on Rn.

3.5 Hopf bifurcation from periodic solutions

We return to Hopf bifurcation from the (∆,∆)-symmetric periodic solution P . By the results
of this section

Theorem 3.11 The following branching patterns are identical:

• (relative) periodic solutions for Hopf bifurcations from a ∆-symmetric equilibrium for
∆-equivariant vector fields,

• (relative) invariant circles for nonresonant (or weakly resonant) Hopf bifurcations from
a ∆-symmetric fixed point for ∆-equivariant maps,

• (relative) two-tori for nonresonant (or weakly resonant) Hopf bifurcations from a
(∆,∆)-symmetric periodic solution for ∆-equivariant vector fields.

Let C = Cλ be a bifurcating periodic solution for the vector field h (equivalently, an
invariant circle for the Poincaré map f) corresponding to an invariant two-torus T for the
underlying flow. Then ∆C is the largest subgroup of ∆ that fixes T pointwise, whereas ΣC

is the largest subgroup of ∆ that fixes T setwise. If ΣC/∆C
∼= S1, then T is a relative

periodic solution (modulated rotating wave) for the underlying flow, and the dynamics on T
is generically a two frequency quasiperiodic flow. In particular, there is no phaselocking.

When ΣC/∆C
∼= Zr we apply the results of Subsection 3.4. Let T0 denote the period of

the underlying periodic solution P at λ = 0. The generic flow on T is phaselocked so that the
asymptotic dynamics consists of periodic sink/source pairs, but irrational torus flows occur
with arbitrarily high probability near λ = 0. The latter are ΣC-equivariantly topologically
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equivalent (topologically conjugate up to a time change) to a rigid irrational flow, and the
equivalences are almost always smooth.

The Arnold tongue Ap/q for f corresponds to torus flows with rational rotation number
p/q. Let s = gcd(q, r). Provided qr/s ≥ 5, the asymptotic dynamics consists of Dr/s
periodic sink/source pairs where D ≥ 1. In the simplest cases, D = 1. The absolute and
relative periods are

T abs(λ) ∼ qT0, T rel(λ) = 1
s
T abs(λ) ∼ q

s
T0.

The periodic solutions y(t, λ) are (∆per,Σper)-symmetric where ∆per = ∆C and Σper/∆per
∼=

Zs. Moreover, a spatiotemporal generator is given by σ
pr/s
C where σC ∈ ΣC is chosen (uniquely

mod ∆C) so that σCx = e2πi/rx for all x ∈ C. Hence,

y
(
t+ 1

s
T abs(λ), λ

)
= σ

pr/s
C y(t, λ).

4 Hopf bifurcation from discrete rotating waves

In this section, we consider Hopf bifurcation from a (∆,Σ)-symmetric periodic solution for
a Σ-equivariant flow, where Σ/∆ is finite.

It follows from [17, 18] that the Hopf bifurcation reduces to the situation described in
Section 3. We sketch the approach in [18] omitting the proofs. (Unfortunately, the notation
is somewhat different from that in [18] but this inconvenience seems unavoidable.)

Let σ ∈ Σ be a spatiotemporal generator. We can choose σ such that σk commutes with
the elements of ∆ for some finite k ≥ 1. Form the abstract group ∆0 = ∆ o Zk by adjoining
to ∆ an element τ of order k such that τδτ−1 = σδσ−1 for δ ∈ ∆.

Suppose that the periodic solution undergoes a nonresonant Hopf bifurcation (so the
eigenvalues of the Poincaré map are irrational). Through arbitrarily high order, the entire
bifurcation analysis reduces as in Section 3 to Hopf bifurcation from an equilibrium for a ∆0-
equivariant vector field h. This is a special case of [18, Theorem 2.1] (using the simplification
in [18, Remark 2.2(b)]). Once again, there is a notion of weak resonance which enables such
a reduction through “sufficiently high order”.

For aspects of the bifurcation that are determined at finite order, the results of Sec-
tions 3.1–3.3 apply directly (subject to interpretations). For example, we can apply Theo-
rem 3.1 by considering C-axial isotropy subgroups J of the group ∆0 × S1. This was done
in [18, Section 3.2]. More generally, we obtain the following analogue to Theorem 3.11:

Theorem 4.1 Define ∆0 = ∆oZk as above. The following branching patterns are identical:

• (relative) periodic solutions for Hopf bifurcations from a ∆0-symmetric equilibrium for
∆0-equivariant vector fields,

• (relative) two-tori for nonresonant (or weakly resonant) Hopf bifurcations from a
(∆,Σ)-symmetric periodic solution for Σ-equivariant vector fields.
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As in Section 3, we can relate the symmetry properties of relative periodic solutions for
the ∆0-equivariant vector fields to the symmetry properties of the corresponding invariant
two-tori for the Σ-equivariant vector fields. Here, we follow [18, Section 2.4] but with slight
modifications in the notation to conform with Section 3.

Let C = Cλ be a bifurcating periodic solution for the vector field h corresponding to
an invariant two-torus T for the underlying flow. We define the spatial and spatiotemporal
symmetry groups ∆C ⊂ ΣC ⊂ ∆0 just as in Section 3. Let ∆T = ∆C ∩∆ and define ΣT to
be the group generated by ΣC ∩ ∆ and σdδ. Here, d ≥ 1 least and δ ∈ ∆ are chosen such
that τ dδ ∈ ΣC . Then ∆T is the largest subgroup of ∆ that fixes T pointwise and ΣT is the
largest subgroup of ∆ that fixes T setwise. If ΣC/∆C

∼= S1, then T is a relative periodic
solution. As usual, we focus on the case ΣC/∆C

∼= Zr, r ≥ 1.

Irrational rotations To discuss the dynamics on the invariant tori, it is necessary to
introduce the first hit pull-back map f = σ−1g(1) defined on a ∆-invariant cross-section to
P . We refer to [18] for details, but note the relation f = τ−1 exph through arbitrarily high
order. Also, note that f is ∆-twisted equivariant in the sense that fδ = φ(δ)f where φ is
the automorphism φ(δ) = σ−1δσ for δ ∈ ∆.

Since C is an invariant circle for h, and f = τ−1 exph where τ has order k and commutes
with h, it follows that C is an invariant circle for fk. However f need not preserve C. Let
N ≥ 1 be least such that fN(C) ⊂ C. Then fN is Zr-twisted equivariant, and hence Zr-
equivariant by Proposition 2.5. When fN : C → C has irrational rotation number ω (i.e. the
underlying flow on the corresponding two-torus has irrational rotation number), it follows
from Corollary 2.4 that fN is Zr-equivariantly topologically conjugate to a rigid rotation.
Again, it is almost always the case that the conjugacy is smooth. For each Cj = f j(C),
j = 0, . . . , N − 1, we can choose a (typically smooth) conjugacy ψj : Cj → Cj such that
ψj(f

N)|Cj
ψ−1

j = Rω. Altogether, we obtain a conjugacy ψ defined on C0∪· · ·∪CN−1 with the
property that ψfNψ−1 = Rω. We can modify the choices of ψj so that ψ is ΣT-equivariant.
Finally, ψ is typically smooth and extends to a Σ-equivariant diffeomorphism on Rn.

Phaselocking Again, the generic flow on T has rational rotation number and phaselocked
periodic solutions as in Section 3. Following [18], we associate the rotation number p/q to
Lk

0 where L0 is the linearisation of the map first-hit pull-back map f mentioned above. So
Lk

0 = e2πip/q. The number ` in [18] corresponds to the denominator q. Thus we form the
abstract group ∆ o Zkq by adjoining an element τ of order kq to ∆, where τ induces the
same automorphism as before: τ−1δτ = φ(δ) = σ−1δσ.

The representation of the abstract group ∆ o Zkq is generated by the actions of ∆ and
L0 where τ is identified with L−1

0 . In Birkhoff normal form, f can be written as f = L0 exph
where h is a ∆ o Zkq-equivariant vector field satisfying h(0) = 0 and (dh)0 = 0.

In the weakly resonant case, the dynamics in the Arnold tongue Ap/q consists generically
of phaselocked solutions. Note that phaselocked periodic solutions on T (or C) correspond
to equilibria for the ∆ o Zkq-equivariant vector field h : C → C and such equilibria have
isotropy Jq ⊂ ∆ o Zkq. By [18, Proposition 2.8], the phaselocked solutions have spatial
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symmetry ∆per = Jq ∩ ∆ and spatiotemporal symmetry Σper generated by ∆per and σbδ
where τ bδ ∈ Jq for some b ≥ 1 and δ ∈ ∆ with b least. Write Σper/∆per

∼= Zs where s ≥ 1.
By [18, Proposition 2.10], the phaselocked solutions y(t) have absolute and relative peri-

ods
T abs(λ) ∼ bsT rel

0 , T rel(λ) = 1
s
T abs(λ) ∼ bT rel

0 ,

where T rel
0 is the relative period of the underlying periodic solution. Moreover

y
(
t+ 1

s
T abs(λ), λ

)
= σbδy(t, λ).

Remark 4.2 When k = 1, it can be verified directly that b = q/s, s = gcd(q, r) and

σbδ = σ
pr/s
C . Hence these calculations are consistent with the results in Section 3.

Remark 4.3 As in Remarks 3.8 and 3.10, it is often possible to obtain results on the number
of phaselocked periodic solutions and the structure of the Arnold tongues by studying the
vector field h. Again, it is necessary to assume C-axiality and to pay attention to hidden
symmetries.

5 Hopf bifurcation from relative periodic solutions

In this section, we briefly consider Hopf bifurcation from a (∆,Σ)-symmetric relative periodic
solution P for a Γ-equivariant flow. It is assumed that ∆ is compact and that Γ is an algebraic
group acting properly on a compact manifold. (The condition that Γ is algebraic is satisfied
by compact Lie groups and Euclidean groups.) It follows from [23, 18] that certain aspects of
the Hopf bifurcation reduce to the situation described in Section 3. We sketch this approach
omitting the proofs. (Again, the notation is unavoidably different from that in [23, 18].)

Let σ ∈ Σ be a spatiotemporal generator. We can again choose σ so that σk commutes
with elements of ∆ for some finite k ≥ 1. Form the abstract group ∆0 = ∆oZk by adjoining
to ∆ an element τ of order k such that τδτ−1 = σδσ−1 for all δ ∈ ∆.

Suppose that the relative periodic solution undergoes a nonresonant (or weakly reso-
nant) Hopf bifurcation. Through arbitrarily high (or sufficiently high) order and modulo
drifts along the Γ group orbit, the entire bifurcation analysis reduces to Hopf bifurcation
from an equilibrium for a ∆0-equivariant vector field h. This is a special case of [23, 18].
Combining [18, Theorem 8.1] and the methods of Sections 3.1–3.3 we obtain (subject to
interpretations)

Theorem 5.1 Let Γ be an algebraic group and ∆ a compact subgroup. Define ∆0 = ∆ o Zk

as above. Modulo drifts along the Γ group orbit the following branching patterns are identical:

• (relative) periodic solutions for Hopf bifurcations from a ∆0-symmetric equilibrium for
∆0-equivariant vector fields,

• relative two-tori for nonresonant (or weakly resonant) Hopf bifurcations from a (∆,Σ)-
symmetric relative periodic solution for Γ-equivariant vector fields.
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In contrast to previous sections of this paper, Theorem 5.1 is not sufficient for issues such
as phaselocking and irrational rotations. It is necessary to first reduce as in [23] to a skew
product system as follows.

By [23, Proposition 1.2], the spatiotemporal generator σ ∈ Σ can be chosen so that
σ = α exp η = (exp η)α, where α ∈ Γ has finite order n ≥ k and η ∈ LZ(Σ) lies in the Lie
algebra of the centraliser of Σ. Define Σ′ = ∆ o Zn by adjoining to ∆ an element Q of order
n. Let V be a ∆-invariant cross-section to ΓP and let S1 = R/nZ. Define X = V × S1 and
denote the Lie algebra of Γ by LΓ. Then we obtain a skew product on Γ×X

γ̇ = γFΓ(x), ẋ = FX(x) (5.1)

where FΓ : X → LΓ, FX : X → TX are smooth vector fields. The construction can be done
so that V is Σ′-invariant and FΓ, FX are Σ′-equivariant with respect to the action

δ · (γ, v, θ) = (γδ−1, δv, θ), δ ∈ ∆, Q · (γ, v, θ) = (γα−1, Qv, θ + 1).

The underlying relative periodic solution reduces to a (∆,Σ′)-symmetric periodic solution for
FX . In particular, the Σ′-equivariant vector field FX : X → TX can now be studied exactly
as in Section 4. A complete characterisation of the symmetry properties of phaselocked
solutions can be obtained in this way. However, in general the irrational rotation case is
more difficult.

Remark 5.2 In Section 6, we study the irrational rotation case in a simple situation with
Γ = SE(2). (Many of the technicalities in [23] are not present for this example.) The reader
can easily see from the analysis presented there that the case of trivial spatial symmetry
∆ = 1 “reduces” to the question of transforming an LΓ-valued map (cocycle) over an
irrational torus flow to a constant, which is a difficult open problem (see [15] for the case
Γ = SU(2)).

6 Application to `-armed spirals

In this section, we consider Hopf bifurcation from a relative periodic solution with Γ = SE(2),
Σ = SO(2) and ∆ = Z`, ` ≥ 1. This situation arises in the context of spiral waves
in planar excitable media. In the first instance, spiral waves are rigidly rotating relative
equilibria (rotating waves) and an initial Hopf bifurcation leads to relative periodic solutions
(modulated rotating waves). We are interested in secondary Hopf bifurcations from such
relative periodic solutions.

The case of single-armed spirals (` = 1) was partially analysed previously by Sandstede
et al. [22]. We complete their analysis and extend the results to the case of multi-armed
spirals (` > 1).

Let T0 denote the relative period of the underlying relative periodic solution. We write
the spatiotemporal generator σ ∈ SO(2) as σ = exp η where η = 2πiωrotT0 ∈ LSO(2), (so
ωrot ∈ R). In particular, k = n = 1, α = id and Q = id in Section 5. By Theorem 5.1,
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we reduce (modulo drifts in SE(2)) to Z`-equivariant Hopf bifurcation from a Z`-symmetric
equilibrium. By [12], generically there is a two-dimensional centre manifold V ∼= C and
either Z` acts trivially on V (the non-symmetry-breaking case) or V is a nontrivial irreducible
representation of Z`. We focus on the latter, so Z` acts on V ∼= C by

R2π/` · v = e2πim/`v,

for some m = 1, . . . , [`/2]. The kernel of the action is Zd where d = gcd(`,m). Effectively,
we obtain an action of Zr on V where r = `/d.

Since V is two dimensional, there is a unique C-axial isotropy subgroup J ⊂ Z` × S1

given by J = Z` generated by (R2π/`,−2πm/`). As in previous sections, generically there
is a unique branch of periodic solutions/invariant circles C for the Z`-equivariant vector
field/diffeomorphism. Here, C is fixed pointwise by ∆C = J ∩ Z` = Zd and setwise by
ΣC = Z`. In the SE(2)-equivariant equations, we obtain a unique branch of relative invariant
two-tori T that are fixed pointwise by Zd. (We caution that T is not itself necessarily a torus,
but T/SE(2) is a two-torus.)

In Sections 3.4 and 3.5, we identified an element σC ∈ ΣC that acts as z 7→ e2πi/rz on
C. It is easily verified that the abstract symmetry σC corresponds to the physical symmetry
(R2π/`)

a where a is the least positive integer such that am ≡ d mod ` or equivalently am/d ≡
1 mod r.

Dynamics on the invariant relative two-torus T By [23, Theorem 1.3(b)], the SE(2)-
equivariant dynamics are governed by skew-product equations (5.1) with Σ′ = ∆ = Z`.
Write SE(2) = SO(2)nC, γ = (ϕ, p), where ϕ ∈ SO(2) is rotation and p ∈ C is translation.
We obtain the skew-product system on SE(2)×X, where X = V × S1, given by

ṗ = eiϕFp(x), ϕ̇ = Fϕ(x), ẋ = FX(x), (6.1)

subject to the Z`-equivariance conditions

Fp(R2π/` · x) = R2π/`Fp(x), Fϕ(R2π/` · x) = Fϕ(x), FX(R2π/` · x) = R2π/` · FX(x).

The underlying rotating wave reduces to a (Z`,Z`)-symmetric periodic solution for FX with
relative and absolute period T0.

After centre manifold reduction, the Z` representation V ∼= C can be taken to be a
cross-section to the periodic solution for FX . Introducing the bifurcation parameter λ, let
f : V ×R → V be the Poincaré map so f is Z`-equivariant with fixed point 0. The eigenvalues
of (df)0,0 are complex conjugate eigenvalues on the unit circle, denoted e±2πiωT0 .

By Sections 3.4 and 3.5, we have the following result on phaselocking for FX . Recall that
Ap/q is the Arnold tongue emanating from (0, p/q) in (λ, ω) parameter space.

Proposition 6.1 Suppose that (λ, ω) ∈ Ap/q (λ small). Let s = gcd(q, r) and suppose (to
avoid strong resonance) that qr/s ≥ 5. Then generically there are precisely r/s sink-source
pairs of periodic solutions for FX (of absolute period T abs(λ) ∼ qT0 and relative period
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T rel(λ) ∼ q
s
T0) on the invariant torus. Moreover, each periodic solution y(t, λ) has spatial

symmetry ∆per = Zd and spatiotemporal symmetry Σper = Zsd, and satisfies

y
(
t+ 1

s
T abs(λ), λ

)
= [R2π/`]

apr/s · y(t, λ).

Noncompact drift on the phaselocked relative periodic solutions Next, we consider
the dynamics on the relative periodic solutions u(t, λ) for the underlying SE(2)-equivariant
flow corresponding to the phaselocked periodic solutions y(t, λ) in Proposition 6.1. We expect
either bounded or linear drift along SE(2) group orbits [4] depending on the spatiotemporal
symmetry of the bifurcating relative periodic solutions.

When d ≥ 2, we have Z(∆per) = SO(2) and the drift is compact.
We now concentrate on the case d = 1 so that Z(∆per) = SE(2), and there is the

possibility of noncompact drift. We have r = `, s = gcd(`, q), and am ≡ 1 mod `.

Proposition 6.2 Suppose that d = 1 and let (λ, ω) ∈ Ap/q. A necessary condition for
noncompact drift on the corresponding phaselocked relative periodic solutions near λ = 0 is
that

qωrotT0 + ap ≡ 0 mod s.

Proof By [23],

u
(

1
s
T abs(λ), λ

)
= γ(λ)[R2π/`]

ap`/s · u(0, λ),

where γ(λ) is a general element of Z(∆per) close to the rotation R 2πq
s

ωrotT0
. In particular,

γ(λ)[R2π/`]
ap`/s ∼ R 2πq

s
ωrotT0+2πap/s. Noncompact drift occurs only when this group element

is a translation, necessarily the identity. The result follows.

We end the discussion of phaselocking by stating the precise condition for noncompact
drift at a given value of the bifurcation parameter λ. Express the ϕ̇ equation (which is
1
s
T abs(λ)-periodic) as a Fourier series and define 2πωrot(λ) to be the constant term. Then

noncompact drift occurs generically if and only if

ωrot(λ)T abs(λ) + ap ≡ 0 mod s. (6.2)

Noncompact drift on irrational torus flows Finally, we consider the possibility of
noncompact drift in regions of parameter space corresponding to irrational rotation numbers.
As described earlier, this region has measure converging to full measure as λ → 0. From
now on, we denote the invariant two-torus for FX by T2 and we use angular coordinates
(θ1, θ2) ∈ T2.

Proposition 6.3 Within the region of irrational rotation number, near λ = 0, there is a
Z`-equivariant change of coordinates after which the skew product (6.1) becomes

ṗ = eiϕFp(θ1, θ2), ϕ̇ = ω0 + Fϕ(θ1), θ̇1 = ω1, θ̇2 = ω2, (6.3)

where Fϕ : T1 → R, Fp : T2 → C are continuous functions with
∫

T1 Fϕ dθ1 = 0.
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Proof At λ = 0, we have ϕ̇ ≡ ωrot 6= 0, so for λ close to zero we can smoothly reparameterise
time so that ϕ̇ ≡ ω0. The flow on the invariant torus T2 for FX possesses a Z`-invariant
cross-section T1 (coordinatised by θ1) such that the Poincaré map f : T1 → T1 has irrational
rotation number. By a Z`-equivariant change of coordinates (Corollary 2.4) we can arrange
that f is a rigid rotation. The return time τ = τ(θ1) is Z`-invariant. Reparametrising time
once again so that τ is constant, we obtain equations (6.3).

Note that (ω0, ω1, ω2) ∼ (ωrot, ω, 2π/T0). The Z`-equivariance conditions for Fϕ and Fp

take the form

Fϕ(θ1 + 2πm/`) = Fϕ(θ1), Fp(θ1 + 2πm/`, θ2) = e2πi/`Fp(θ1, θ2). (6.4)

We emphasise three possibilities for the drift on the relative invariant torus:

• Linear drift: p(t) = ct+ o(t) as t→∞, where c 6= 0.

• Sublinear drift: p(t) = o(t) as t→∞. That is, p(t)/t→ 0 as t→∞.

• Bounded drift: p(t) is bounded.

In particular, we give necessary and sufficient conditions for linear and sublinear drift (gen-
eralising [22]) and sufficient conditions for bounded drift (following [20]).

As in the case of phaselocked flows, the drift is automatically bounded if d ≥ 2 since the
equivariance restrictions imply that Fp ≡ 0. Hence, we suppose from now on that d = 1.

Proposition 6.4 Suppose that ` ≥ 1 and that d = 1. Let a ≥ 1 be least such that am ≡
1 mod `. If there are integers k1, k2 such that

ω0 + (a+ k1`)ω1 + k2ω2 = 0, (6.5)

is satisfied then generically (provided a certain Fourier coefficient is nonzero) there is linear
drift on the relative torus. Otherwise, the drift is sublinear.

Proof Without loss, we consider the initial condition (p, ϕ, θ1, θ2)0 = (0, 0, 0, 0). Define
F (ϕ, θ1, θ2) = eiϕFp(θ1, θ2). We are interested in the growth of the expression

p(t) =
∫ t

0
F (ϕ(s), ω1s, ω2s))ds.

Note that ϕ(t) = ω0t+G(ω1t) where G : T1 → R is given by G(θ1) = ω−1
1

∫ θ1

0
Fϕ(θ′1)dθ

′
1.

First suppose that ω0 is rationally independent of ω1 and ω2. We introduce a new variable
θ0 and consider the uniquely ergodic flow on T3 given by

θ̇0 = ω0, θ̇1 = ω1, θ̇2 = ω2.

Define H(θ0, θ1, θ2) = eiθ0eiG(θ1)Fp(θ1, θ2) and note that F (ϕ(t), ω1t, ω2t) = H(ω0t, ω1t, ω2t).
Since H : T3 → C is continuous it follows by unique ergodicity that p(t)/t →
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∫
T3 H(θ0, θ1, θ2)dθ0dθ1dθ2. This is simply the zero’th Fourier coefficient of H which vanishes.

Hence p(t)/t→ 0 and we have sublinear drift.
It remains to consider the case n0ω0 + n1ω1 + n2ω2 = 0 where n0 ≥ 1, n1, n2 are integers

(written in lowest terms). Define the continuous function J : T2 → C

J(θ1, θ2) = e−in1θ1e−in2θ2eiG(n0θ1)Fp(n0θ1, n0θ2).

Then F (ϕ(t), ω1t, ω2t) = J(ω̃1t, ω̃2t) where ω̃1 = ω1/n0, ω̃2 = ω2/n0. Since ω̃1/ω̃2 is ir-
rational, it follows from unique ergodicity on T2 that p(t)/t →

∫
T2 J(θ1, θ2)dθ1θ2. We

obtain linear drift if and only if the zero’th Fourier coefficient of J is nonzero; otherwise
the drift is sublinear. It follows from condition (6.4) that eiGFp consists only of Fourier
modes of the form ei(a+k1`)θ1eik2θ2 , k1, k2 ∈ Z. Hence J has Fourier modes of the form
ei(n0(a+k1`)−n1)θ1ei(n0k2−n2)θ2 , and the result follows.

Proposition 6.5 Suppose that the underlying SE(2)-equivariant vector field is C5. For
almost every ω0, ω1, ω2 ∈ R, the drift on the relative torus is bounded.

Proof By Herman’s Theorem, we may suppose that the changes of coordinates in Propo-
sition 6.3 are C5 so that Fϕ and Fp are C5 in equations (6.3). The remainder of the proof
is similar to the one in [20] (but requires less differentiability for Fϕ due to the dependence
only on θ1). As in the proof of Proposition 6.4, we can write

p(t) =

∫ t

0

eiω0seiG(ω1s)Fp(ω1s, ω2s)ds

where eiGFp : T2 → C is C5. The resulting decay of the Fourier coefficients of eiGFp together
with the appropriate Diophantine condition on the frequencies ω0, ω1, ω2 guarantees as in [20]
that p(t) can be expressed as a uniformly convergent series.

Remark 6.6 In the context of forced symmetry breaking, LeBlanc [19] proves results on
linear drift/boundedness in relation to phaselocking/irrational torus flows similar to Propo-
sitions 6.1, 6.2 and 6.5. The analogue to Proposition 6.4 (which relies on the equivariant
Denjoy theorem, Corollary 2.4) is not discussed in [19].
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