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Abstract

We consider mathematical issues concerning Ginzburg-Landau theory, by
which we mean the validity, universality and structure of reduced equations
near criticality in spatially extended systems. The extraction of Ginzburg-
Landau equations (variously known as amplitude, modulation and envelope
equations) is part of this theory. We pay particular attention to the Euc-
lidean symmetries present in such systems.

1 Introduction

Patterns that appear in physical, chemical and biological systems are
both striking and reproducible. One approach to studying patterns
is through bifurcation and symmetry. This approach leads to a des-
cription of those aspects of pattern formation that are universal —
depending only on the symmetries of the underlying problem and the
bifurcation that is taking place.

Universal theories of this type go back to Landau [1] in the
context of second order phase transitions in crystals. Here, the sym-



metries are taken to be given and form a finite group I'. For each finite
group I', Landau theory leads to low-dimensional universal equations
known as Landau equations that govern the transitions near critica-
lity. The Landau equations are equivariant with respect to the group
I', and the resulting structure enables the explicit calculation of many
branches of solutions bifurcating from an underlying fully symmetric
solution. Typically, the bifurcating solutions are not fully symmetric;
this phenomenon is known as spontaneous symmetry breaking [2].

Landau theory is not restricted to transitions in crystals, and
applies more generally to problems with finite symmetry group I
For example, transitions of barium titanate crystals (which have a
cubic structure) are governed by the same Landau equations as hy-
drodynamic instabilities in a cubic domain. We note that the details
of the transitions may be different because there are certain Taylor
coefficients in the Landau equations that depend on the details of
the physics. However, the structure of the equations is identical and
there are only a finite number of possibilities for the details to dis-
tinguish between.

Landau theory also applies to problems where there are infinitely
many symmetries, provided these symmetries form a compact Lie
group. This is typically the case for problems in bounded domains.
For example, astrophysical and geophysical problems in spherical do-
mains can be studied using Landau theory.

For problems with compact symmetry group, Landau theory
provides a fairly complete description of universal phenomena. More-
over, equivariant bifurcation theory [3, 4, 5, 6] places Landau theory
in a mathematically rigorous setting. See also [7].

In contrast, transitions in spatially extended systems, with un-
bounded domains, are relatively poorly understood. Such systems
arise when the domains are so large that boundaries are deemed
unimportant for certain purposes. The modeling equations are then
posed on infinite domains and may have a noncompact symmetry
group (typically Euclidean symmetry). Examples of spatially ex-
tended systems include hydrodynamic systems (Rayleigh-Bénard con-
vection modeled by the Boussinesq equations), chemical systems



(modeled by reaction-diffusion equations), and biological systems
(spots and stripes on animals). The counterpart of Landau equa-
tions are the Ginzburg-Landau equations [8, 9]. For an overview, see
Cross & Hohenberg [10], or Newell [11]. These are lower-dimensional
universal equations, but they are still infinite-dimensional and hard
to study. Moreover, their validity is problematic and their universal-
ity has only recently been understood [12].

In this article, we discuss various aspects of bifurcations in spa-
tially extended systems, including the validity and universality of
reduced equations and the extraction where possible of Ginzburg-
Landau equations.

We now describe some of our main results. Consider systems of
Euclidean equivariant PDEs with n > 1 unbounded domain variables
(and any number of bounded domain variables). For ease of exposi-
tion, we restrict ourselves to the so-called ‘type I’ transition, where a
fully-symmetric trivial solution undergoes a steady-state bifurcation
with nonzero critical wavenumber. (The analogous results for the
remaining cases [Hopf bifurcation and/or zero critical wavenumber|
can be found in sections 4 and 5.)

e If n = 1, then the bifurcation is governed by a single univer-
sality class of reduced equations. In particular, the standard
Ginzburg-Landau equation on the line is valid and universal.

e If the system of PDEs is a reaction-diffusion equation (any
n > 1), then generically it is possible to reduce from a system
of PDEs to a single equation, and for each n this equation is
universal.

e If n = 2, it is possible generically to reduce from a system of
PDEs to a single equation. However, there are precisely two
universality classes, scalar and pseudoscalar, and these lead to
quite different phenomena.

e If n = 3, then there are infinitely many (but only countably
many) universality classes. It is possible generically to reduce
the system of PDEs to a smaller system of equations of minimal



size. However, this minimal size depends on the universality
class and is arbitrarily large.

e The situation for each n > 4 is analogous to the case n = 3.

e For all n > 1, the reduced equations have no bounded domain
variables, and incorporate only the unbounded domain variables
of the original system of PDEs.

We emphasize that these results have precise mathematical state-
ments and proofs [12]. The first two results listed above might be
construed as ‘obvious’ or ‘well-known’, but the next three results
demonstrate the need for caution. The final result recovers a result
of Mielke [13].

The results described so far do not say much directly about
the Ginzburg-Landau equations themselves. There are a number of
reasons for focusing attention on reduced equations as an intermedi-
ate stage: (i) The validity of the reduced equations is rigorous with
no approximations, applies to all nondegenerate bifurcations, and is
universal. (ii) The derivation of Ginzburg-Landau equations is prob-
lematic even formally, and it is not always clear what form the correct
equations should take, or even if useful equations exist.

One instance where there is little argument about the form of the
Ginzburg-Landau equations is steady-state bifurcation with nonzero
wavenumber when n = 1. Here, we have the standard Ginzburg-
Landau equation on the line

0A; = A+ D*A+ |APA, (1)

where A : R — C is a complex amplitude. There at least two ap-
proaches to justifying this equation rigorously. One approach due to
Schneider [14], van Harten [15], Mielke & Schneider [16], shows that
solutions to eqn (1) approximate solutions to the underlying system
of PDEs over finite but arbitrarily long time-scales near criticality.
A second approach due to Melbourne [17] shows that there is a re-
duction with no approximations to a complex amplitude equation
in A : R — C whose lowest order truncation is eqn (1). More-
over, ‘nondegenerate’ solutions to eqn (1) correspond (for all time) to
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branches of solutions to the underlying systems of PDEs. This justifi-
cation of the one-dimensional Ginzburg-Landau equation is identical
in spirit to the justification in equivariant bifurcation theory of Lan-
dau equations, see section 2. See also Iooss et al. [18] who give a
similar justification of the steady Ginzburg-Landau equation (with
time-derivatives set to zero).

Even though the Ginzburg-Landau equation (1) is well estab-
lished, we wish to draw attention to some anomalous properties of
this equation. Eqn (1) is constant coefficient signifying translation
symmetry. However, the derivation of eqn (1) revolves around the
substitution u(z) = A(z)e” + A(z)e™*. Hence, translation sym-
metry accounts for constant coefficients only in the underlying PDE
satisfied by u, and does not explain the constant coefficient structure
in eqn (1). This anomaly was pointed out by Pomeau [19] and is
discussed further in section 7.

The remainder of this paper is organized as follows. In section 2,
we review some of the ideas from Landau theory and equivariant bi-
furcation theory, treating first the case when the symmetry group I'
is finite, and second the case when I' is a compact Lie group. Also, we
introduce the Swift-Hohenberg equation to illustrate the difficulties
that arise when I' is noncompact. In section 3, we concentrate on
the Euclidean group I' = E(n). We describe the actions of E(n) that
arise in applications, paying special attention to the scalar and pseu-
doscalar actions mentioned above. In particular, we demonstrate that
at least two universality classes are required when considering steady-
state bifurcation with nonzero critical wavenumber with n = 2. In
sections 4 and 5, we sketch the formal arguments that lead to the
above results on universality and reduction respectively. (The mathe-
matical details can be found in [12].) In section 6, we consider the
problem of extracting Ginzburg-Landau equations, and the structure
of these equations is described in section 7.



2 Landau theory

Landau theory originated in the context of second order phase tran-
sitions in crystals, but applies generally to transitions in physical
problems with a given (compact Lie group) of symmetries I'. We
illustrate the theory in the cases of octahedral symmetry and spher-
ical symmetry.

2.1 Finite groups: Octahedral symmetry

The same symmetry group may occur in several quite diverse con-
texts, such as in phase transitions of crystals, fluid dynamics, and
problems in chemical engineering and biology. It turns out that these
seemingly unrelated situations may exhibit similar phenomena. Such
‘universal’ phenomena that depend on the symmetry rather than the
physical details are studied in Landau theory.

For example, the finite (48 element) group I' = O®Z$, generated
by rotations and reflections of the cube, occurs in phase transitions
of crystals with cubic symmetry, such as barium titanate crystals, see
Devonshire [20], and also in fluid problems in cubic domains. Note
that there may be no underlying equations to work with (as is the case
in the barium titanate example) or that the model equations may be
of high or infinite-dimension (as is the case in fluid problems). Never-
theless, whatever form the governing laws of nature may take, these
laws should respect the symmetries of the problem.

Suppose that I' is a finite group and that a fully symmetric
‘trivial solution’ loses stability as a bifurcation parameter is varied.
In variational problems such as the barium titanate example, such a
transition will be a steady-state bifurcation where eigenvalues of the
linearized equations pass through zero. More generally, as in fluid
problems, there is also the possibility of Hopf bifurcation where com-
plex conjugate eigenvalues pass through the imaginary axis. In this
section, we concentrate on steady-state bifurcations.

The main idea in Landau theory is that near criticality, the
underlying laws should reduce to the eigenspace of the critical eigen-
values and that this eigenspace F is typically as small as possible. It



can then be argued that the action of I on F is absolutely irreducible.
That is, the only linear maps L : E — E that commute with the ac-
tion of T on F are the real scalar multiplies of the identity L = cI
where ¢ € R.

The next step in Landau theory is to write down the simplest
polynomial equations f : F — F that are equivariant with respect to
the action of the symmetry group I'. So f(yz) = vf(z) for all y € T,
z € E. Such equations are known as Landau equations.

For example, the standard action of @ ® Z§ on R?, given by
rotations and reflections of the cube, is easily seen to be absolutely
irreducible. The general third order equivariant polynomial is
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where A € R is the bifurcation parameter and a,b € R are constants.

The Landau equation, eqn (2), is supposed to be universal for
problems with octahedral symmetry. The word universal has a pre-
cise meaning here. It is easier to explain where universality breaks
down. First, there are several (but finitely many) different absolutely
irreducible representations of O @ Z§. We have considered only one
here. Second, the constants a,b € R are unknown. If the underlying
equations are given, then a and b can be computed via asymptotic
expansions. In any case, it turns out that there are only finitely many
regions in (a, b)-space that give qualitatively different dynamics for
eqn (2). So the correct interpretation of the universality of Landau
theory is that, given a finite symmetry group I', the totality of pos-
sible steady-state bifurcations with symmetry I' can be reduced to
finitely many universality classes enumerated by the absolutely ir-
reducible representations of I'. Moreover, within each universality
class, the dynamics is governed by a vector field with finitely many
arbitrary Taylor coeflicients. The choice of universality class and the
values of the Taylor coefficients are determined by the details of the
physical problem.

A precise mathematical version of these ideas is formulated in



equivariant bifurcation theory [3]. Suppose that there is an underly-
ing model in the form of a I'-equivariant partial differential equation
(PDE). Suppose that there is a steady-state bifurcation from a fully
symmetric equilibrium. Then

(i) Generically the critical eigenspace E of the linearized PDE is
an absolutely irreducible representation of IT.

(ii) Center manifold reduction leads to an ordinary differential equa-
tion (ODE) # = f(z) where f : F — E is a smooth I'-
equivariant vector field.

(iii) The reduced vector field f is not a polynomial, but the lowest
order nonlinear truncation of f is precisely the Landau equation
corresponding to the absolutely irreducible representation FE.

(iv) Any ‘nondegenerate’ solution to the Landau equation corre-
sponds to a branch of solutions to the underlying PDE. In the
case of an equilibrium z; for f, nondegenerate means that (df)y,
is nonsingular.

2.2 Compact groups: Spherical symmetry

Landau theory and equivariant bifurcation theory apply also to prob-
lems whose symmetries form a compact Lie group. For example, the
three-dimensional compact Lie group I' = O(3) consisting of 3 x 3
orthogonal matrices occurs in physical problems with spherical sym-
metry, such as in geophysics, and PDE models inherit this symmetry.

In some instances, it is possible to reduce a system of O(3)-
equivariant PDEs (near a steady-state bifurcation) to a system of
ODEs on R? that is equivariant under the standard action of O(3)
by rotations and reflections on R3. The resulting equations are fully
justified by center manifold reduction and, when truncated, are pre-
cisely the Landau equations. In general, however, it is necessary to
consider all absolutely irreducible representations of O(3). Thus re-
duction leads to a (2£+ 1)-dimensional ODE on the space of spherical
harmonics of order £ where £ is any nonnegative integer. (The action



of O(3) that we considered on R? is just the case £ = 1.) Hence, there
is a countable infinity of universality classes: namely these (2£ + 1)-
dimensional systems of ODEs. Again, it follows from [3] that PDEs
with O(3)-symmetry undergoing steady-state bifurcation generically
reduce to one of these universality classes. As before, the Landau
equations are universal only up to the value of the integer ¢ and the
various real Taylor coefficients.

In general, the Landau equation (which is the reduced equation
truncated at leading order) is insufficient to determine the local dy-
namics associated with the bifurcation. A specific example of this is
the £ = 5 representation of I' = O(3) where the reduced equation is
an 11-dimensional system of ODEs. The Landau equation is third
order, whereas generically at least fifth order terms are required to
determine the local bifurcation; see Chossat et al. [21]. In this re-
gard, it is worth noting a result of Field [22] which guarantees that,
for any compact Lie group I', there is a finite order at which the re-
duced equations may be truncated such that the truncated equations
determine many important features of the local bifurcation (including
the branching and stability of equilibria).

2.3 Noncompact groups: Euclidean symmetry

There are many difficulties that arise in the attempt to generalize
Landau theory from compact groups to noncompact groups. Con-
sider, for example, the generalized n-dimensional Swift-Hohenberg
equation [23]

Opu = —(A +1)%u + I + bu? + cu?, (3)

where v : R" - R and A = 8‘9—;2 4+ -+ % is the Laplacian.
Here, A € R is the bifurcation pararlneter and b,c € R are constants.
Since this equation is constant coeflicient, equivariance with respect
to translations u(z) — u(z + a), a € R", is immediate. Equivariance
with respect to rotations and reflections, u(z) — u(Az), A € O(n),
follows from standard properties of the Laplacian. Hence, eqn (3) is
an example of an E(n)-equivariant PDE.



The Swift-Hohenberg equation has a fully-symmetric trivial so-
lution u(x) = 0. The Fourier ansatz u(z) = e, k € R", leads to
eigenvalues —(|k|? — 1)2 + X for the linearized PDE. It follows from
the principle of linear stability that the trivial solution is asymptoti-
cally stable for A < 0 and unstable for A > 0 so that there is a
bifurcation at A = 0. Moreover, the critical eigenvalues pass through
zero so that this is a steady-state bifurcation. The critical eigenfunc-
tions have wavenumbers k with |k| close to the critical wavenumber
ke = 1. In contrast to the situation in the previous subsections, the
eigenvalue passing through zero is not isolated in the spectrum of the
linearized operator and a continuum of wavenumbers is excited for
A > 0 small. This is the ‘continuous spectrum’ difficulty. In addition,
when n > 2, there is the ‘rotational degeneracy’ whereby the critical
eigenfunctions with |k| = k. = 1 span an infinite-dimensional space.

This example serves to illustrate two difficulties that are well-
recognized in the fluid dynamics literature:

(a) The presence of continuous spectrum obstructs reduction to the
critical eigenspace — noncritical eigenvalues that are close to
critical must be retained in the reduced equations.

(b) The critical eigenspaces themselves may be of infinite-dimension
(as occurs for n > 2 above due to the rotational degeneracy).

Hence, in general the reduced equations will be PDEs instead of
ODEs. The continuous spectrum also means that center manifold
reduction is highly problematic, if not impossible. There are many
other difficulties. For example:

(c) The representation theory of noncompact Lie groups is not com-
pletely understood. Moreover, noncompact Lie groups such as
E(n) have uncountably many distinct irreducible representa-
tions whereas compact Lie groups have at most countably many
distinct irreducible representations.

(d) The determinacy result of Field [22] relies on compactness of the
symmetry group and does not extend to the case of Euclidean
symietry.
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The methods in Melbourne [17, 12] provide a solution to difficulties
(a) and (c), as described in this article. The approximation results
of [14, 15, 16] provide an alternative solution to (a). However, diffi-
culties (b) and (d) remain unresolved.

3 Actions of E(n); scalar and pseudoscalar
PDEs

The simplest classes of E(n)-equivariant PDEs are the scalar and
pseudoscalar PDEs mentioned in the introduction. In particular, the
Swift-Hohenberg equation, eqn (3), is an example of a scalar PDE.
Scalar and pseudoscalar PDEs are defined in subsection 3.1, where we
also contrast certain aspects of the local bifurcations, following [24].

In subsection 3.2, we consider systems and describe a general
class of E(n)-equivariant systems of PDEs to which the results in
this paper apply.

3.1 Scalar and pseudoscalar PDEs

The Euclidean group E(n) consists of isometries of R". These include
orthogonal transformations A € O(n) (such as rotations and reflec-
tions) and translations a € R". Every element v € E(n) can be writ-
ten uniquely as the combination of an orthogonal transformation A
and a translation a. The standard (affine) action of v = (A, a) € E(n)
on R" is given by vz = Az + a.

The standard action of E(n) on R™ induces a linear action on
functions u : R® — R given by u(z) — u(y~'z). (We have y 'z
instead of yz for purely technical reasons.) For example, the Swift-
Hohenberg equation (3), is equivariant under this action of E(n).
More generally, we denote bounded domain variables in the problem
by z € Q and consider domains of the form R" x 2. Then the scalar
action of E(n) on functions u : R" x Q — R is given by

u(z, z) = u(y 'z, 2). (4)
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Note that the action transforms the unbounded domain variables
z € R™ of the function u in the standard way, leaving the bounded
domain variables z € €2 untouched. Also, there is no action on the
range R of w.

There is a second action of E(n) on functions u : R” x Q — R,
called the pseudoscalar action, see Bosch Vivancos et al. [24],

u(z, z) — (det A)u(y~ 'z, 2). (5)

The only difference from the scalar action is that the action of reflec-
tions in the domain is coupled with the range transformation u — —u.
When n = 2, an example of a pseudoscalar equation is the PDE

O = —(A 4+ 1)%u + Mu + bQ(u) + cu®, (6)
where
Q(u) = 0z, (Audg,u) — O, (Audy, u) = curl[AuVul. (7)

The linear and cubic order terms are unchanged from eqn (3) and
(being odd) are equivariant with respect to both the scalar and pseu-
doscalar actions. Evidently, the new quadratic term is equivariant
with respect to translations. The reflection (z1,x2) — (—z1,22) leads
to a minus sign (since there is an odd number of z; partial deriva-
tives throughout Q(u)). Equivariance with respect to rotations is less
obvious, but this is an elementary calculation.

The trivial solution for eqn (6) undergoes a steady-state bi-
furcation at A = 0 with critical wavenumber k. = 1 identical at
linear order to the bifurcation for eqn (3). However, the nonlinear
PDEs exhibit quite different dynamics, as is shown in Bosch Vivan-
cos et al. [24]. For example, even the simplest solutions such as
equilibrium rolls in eqn (3) are replaced by antirolls in eqn (6). It
is well-known that rolls arise in planar convection problems for a
three-dimensional incompressible fluid. However, transitions in two-
dimensional incompressible fluids (Kolmogorov flow in the Navier-
Stokes equations on R?) lead to antirolls. Both of these fluid problems
are E(2)-equivariant, but the solutions have different symmetries, as
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shown in Figure 1. Note that rolls and antirolls have identical trans-
lation symmetry: all translations in one horizontal direction and dis-
crete translations in the other (that is, the solutions are homogeneous
in one direction and spatially periodic in the other). Also, both solu-
tion are preserved by 180° rotation in the plane. However, reflections
in the horizontal coordinate axes preserve rolls but reverse the orien-
tation of antirolls. Instead, antirolls have glide-reflection symmetry
(reflection combined with a half-period translation parallel to the axis
of reflection).

Figure 1: Rolls and antirolls for a three-dimensional and a two-
dimensional incompressible fluid in E(2)-equivariant fluid
problems. The planar rotation and translation symmetries
are identical. Rolls are invariant also under reflections in
the horizontal coordinate axes, whereas antirolls are invari-
ant under glide-reflections

Similarly, hexagons in eqn (3) are replaced by oriented hexagons
in eqn (6), the latter having no reflection (or even glide-reflection)
symmetry. Moreover, whereas hexagons typically bifurcate trans-
critically (with amplitude proportional to A) in eqn (3), oriented
hexagons bifurcate sub- or supercritically (with amplitude propor-
tional to v/A) in eqn (6). More comprehensive details on the bifur-
cation of doubly spatially periodic solutions can be found for scalar
equations in Dionne & Golubitsky [25] and for pseudoscalar equations
in Bosch Vivancos et al. [24].

This discussion indicates the need for at least two universality
classes for steady-state bifurcation with E(2) symmetry. In fact, if we
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restrict ourselves to the case of nonzero critical wavenumber, then it
turns out that there are precisely two universality classes, namely the
scalar class and the pseudoscalar class! In particular, taken together,
the classifications of doubly spatially periodic solutions in [25, 24] are
universal, in the sense that precisely one of the classifications is valid
in a given bifurcation.

3.2 E(n)-equivariant systems of PDEs

Next, we consider systems of PDEs involving vector-valued functions
u: R"” x Q — R° Here, s > 1 represents the size of the system
of PDEs. The most common actions of the Euclidean group that
arise in practice are the reaction-diffusion action and the vector field
action. As the name suggests, reaction-diffusion equations transform
under the reaction diffusion action which is given by

u(z, z) — u(y "tz 2). (8)

This is the obvious generalization to systems of the scalar action.
Recall that reaction-diffusion equations are of the form

owu = DAu+ f(u), (9)

where u = (ug, -+ ,us) : R” x Q@ = R®, D is a constant s X s matrix
and f : R® — R’ is a nonlinear function. It is not difficult to verify
that eqn (9) transforms under the action (8).

On the other hand, fluid equations such as the Navier-Stokes
equations transform under the vector field action

u(z, z) — Au(y 1z, 2). (10)
Here, the domain action is the standard one, but every orthogonal
transformation in the domain is coupled with the identical transfor-

mation in the range variables.
The Boussinesq equations are the result of coupling the Navier-
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Stokes equation and the heat equation, and are given by
V)t = —(V - V)V — Vp + AV + V ROk,

80/0t = —(V - V)0 +Pr (A0 + VRV - k), (11)
divV =0,

where V. = (V1,V5,V3) is the velocity field of the fluid, € is tem-
perature, and p is pressure. Here, R and Pr are parameters and
k = (0,0,1). We suppose that the equations are posed on R? x [0, 1]
with suitable boundary conditions. Eqns (11) model convection in a
planar layer, and transform under a combination of the vector field
and scalar actions; the velocity field of the fluid transforms under the
vector field action of E(2) (the action of E(3) restricted to the planar
layer) and the temperature and pressure transform under the scalar
actions. Write u = (Vi, Vs, V3,60, p) : R? x [0,1] — R°. Then, we have
the action

u(z, z) — pAu(’y_lw,z), (12)

. A . . .
with pg = ( 0 103 ) , where A is a 2 x 2 orthogonal matrix (rotation

or reflection) and I3 is the 3 x 3 identity matrix.

In this article, we consider systems of PDEs equivariant with
respect to the above actions of E(n). More generally, we consider all
actions of E(n) on functions u : R” x Q@ — R® of the form

u(z, z) — pau(y 'z, 2), (13)
where p4 is any action of O(n) on the range R®. This class of actions
appears to include those actions that occur in applications. Note
that elements of E(n) are required to act in the standard way on the
unbounded domain variables R" and that translations act trivially
on the range R®.

4 Universality

In this section, we give a complete description of universality for
bifurcations with Euclidean symmetry, following [12]. We consider

15



systems of PDEs that are equivariant with respect to an action of
E(n) of the form (13). Suppose that such a system of PDEs under-
goes steady-state bifurcation from a fully symmetric equilibrium, so
that real eigenvalues pass through zero. Then it is shown in Mel-
bourne [12] that generically the kernel of the linearized PDE is an
absolutely irreducible representation of E(n).

Although the technical details of this result are beyond the scope
of this article, we now give a concrete description of the structure of
the critical eigenspaces that arise in E(n)-equivariant steady-state
bifurcation.

Suppose that ug is a critical eigenfunction in the form of a single
Fourier mode so that ug(z) = be?** where k € R" and b is a (com-
plexified) vector in C°. By symmetry, yug is a critical eigenfunction
for each v = (A4,a) € E(n). We compute that

(vuo) () = pauo(y™'z) = pauo(A™ (z — a))

ik-A7Y( iAk-(z—a)

= pabe 2=a) — pabe

— e—iAk-apAbeiAk-z. (14)
Hence, the net effect is that the wave vector k is rotated/reflected
onto Ak while b — e #4%9p ,b. The group orbit of the critical eigen-
function ug leads to a space spanned by eigenfunctions with constant
wavenumber |k| = k.. Moreover, every such k € R” occurs.

If k. = 0, then the action of E(n) on uy reduces to b — p4b, and
we obtain a representation of O(n). It follows that the irreducible
actions of E(n) that arise in steady-state bifurcations with zero crit-
ical wavenumber are precisely the irreducible actions of O(n).

If k. # 0, then there is a copy of O(n — 1) that fixes k while
b ek ap b for A € O(n—1). The remainder of O(n) smears the
wavevectors around the sphere |k| = k.. When n > 2, the subspace
spanned by this group orbit is infinite-dimensional. Actions of E(n)
that are obtained in this way are irreducible if and only if the vec-
tor b € C° is restricted to an irreducible representation of O(n — 1).
Moreover, we obtain a distinct irreducible representation of E(n) for
each irreducible representation of O(n — 1) and each choice of k. > 0.

Since the exact value of k. > 0 is unimportant, we see that the
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irreducible actions of E(n) that arise in steady-state bifurcations with
nonzero critical wavenumber are in one-to-one correspondence with
the irreducible actions of O(n — 1).

Theorem 4.1 (Melbourne [12]) Suppose that an E(n)-equivariant
system of PDEs undergoes steady-state bifurcation with critical wave
number k. > 0. Generically, the critical eigenspace is an absolutely
irreducible representation of B(n). If k. = 0, then the universality
classes are enumerated by the irreducible representations of O(n). If
k. > 0, then the universality classes are enumerated by the irreducible
representations of O(n — 1).

Remark 4.2 There is a classification of the irreducible representa-
tions of E(n) (in a somewhat different context) due to Ito [26] and
Mackey [27]. The above description of the action of E(n) on the
critical eigenfunctions provides a concrete realization of their classi-
fication.

Specializing to the case of nonzero wavenumbers, we see that the
results on universality listed in the introduction follow immediately
from theorem 4.1. For instance, if n = 1, then O(n — 1) collapses to
the trivial group and has a single irreducible representation, whereas
if n = 2, then O(n — 1) is the two-element group {£1} which has two
one-dimensional irreducible representations (the nontrivial element
—1 acting trivially or nontrivially).

The representation p4 of O(n — 1) on the critical eigenfunctions
is a restriction of the original action p4 of O(n — 1) in eqn (13). If
we begin with the reaction-diffusion action (8), then the action of
O(n — 1) on the critical eigenfunctions can only be the trivial action.
Hence there is a unique universality class for reaction-diffusion equa-
tions, for each n > 1.

In this section, we have focused on steady-state bifurcation, but
the results for Hopf bifurcation are entirely analogous and can be
proved using the same methods.

Theorem 4.3 Suppose that an E(n)-equivariant system of PDEs un-
dergoes Hopf bifurcation with critical wavenumber k. > 0. Generi-
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cally, the critical eigenspace is the direct sum of two absolutely ir-
reducible representations of E(n). If k. = 0, then the universality
classes are enumerated by the irreducible representations of O(n). If
ke > 0, then the universality classes are enumerated by the irreducible
representations of O(n — 1).

As is the case for compact Lie groups [3], the critical eigenspace at
Hopf bifurcation is generically an irreducible representation of E(n) x
S where the copy of S! arises from phase-shift symmetry.

5 Reduced systems of minimal size

In section 4, we investigated the universality properties of steady-
state bifurcations in systems with Euclidean symmetry and we enu-
merated the universality classes in terms of the irreducible represen-
tations of E(n). In this section, we analyze the structure of reduced
universal equations corresponding to these bifurcations.

For the moment, we are not concerned with extracting Ginzburg-
Landau equations. Rather, we are concerned with deriving minimal
systems of equations involving functions v : R" — ]Rs’, reducing from
the original system of PDEs involving functions u : R™ x Q — R®.
The aim of the reduction is threefold:

1. To factor out the bounded domain variables 2.
2. To reduce the size s of the system to a minimal size s'.
3. To determine the action of E(n) on the reduced equations.

It is not always possible to reduce to a single equation, with s’ = 1.
The reason for this is purely algebraic: s’ must be large enough to
permit an action (13) of E(n) on the reduced system that restricts
to the required action (14) on the critical eigenfunctions. For exam-
ple, consider E(3)-equivariant steady-state bifurcation with nonzero
wavenumber. Then the action of E(3) on the critical eigenfunctions
corresponds to an action of O(n — 1) = O(2). Suppose that this is
the standard two-dimensional action of O(2). The smallest action
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of O(n) = O(3) that contains this action of O(2) is the standard
action on R3. Hence, even formally, the smallest possible value of s’
is s’ = 3.

In the remainder of this section, we recall the results in [12] for
steady-state bifurcation with nonzero wavenumber, and then we state
the analogous results for the other bifurcations.

5.1 Reduction for steady-state bifurcation, nonzero
wavenumber

Suppose that an E(n)-equivariant system of PDEs undergoes steady-
state bifurcation with nonzero wavenumber. As shown in section 4,
the action (14) of E(n) on the critical eigenfunctions is determined
by a representation of O(n —1). Choose s’ and an action p'; of O(n)
on R* such that the action p/, restricted to the subgroup O(n — 1)
contains the aforementioned representation of O(n — 1). Moreover,
choose s’ as small as possible. Then s’ and p'; are said to be minimal
with respect to the representation of O(n — 1).

Theorem 5.1 (Melbourne [12]) Suppose that an E(n)-equivariant
system of PDEs involving functions u : R™ x @ — R® undergoes
steady-state bifurcation with nonzero critical wavenumber k. > 0.
Choose s' > 1 and an action p'y of O(n) on R* such that s' and
p'y are minimal with respect to the action of O(n — 1) on the critical
etgenfunctions. Then generically there is a reduction to a system of
equations involving functions v : R® — R* that is equivariant with
respect to the E(n) action v(z) — pyv(y~'z).

The reduction preserves essential solutions near criticality (essential
solutions are those that remain bounded and small in space and time).
Naturally, s’ < s.

In certain cases, we can obtain s’ = 1. Again, a heuristic argu-
ment is possible. If we start off with the reaction-diffusion action (8),
then the action of O(n — 1) on critical eigenfunctions is necessarily
trivial and can be realized by the scalar action. Also, if n = 1, then
O(n — 1) is trivial; so the action is trivial and can be realized by the
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scalar action. Hence, we may reduce to a scalar equation for reaction-
diffusion equations and when n = 1. If n > 2 and we do not have the
reaction-diffusion action, then there is no guarantee that reduction
to a scalar equation is possible, only when the action of O(n — 1) at
the critical eigenfunction level happens to be trivial.

When n =2, O(n —1) = {£1} may act trivially or nontrivially.
If O(n—1) acts trivially, we choose the scalar action. If O(n—1) acts
nontrivially, we choose the pseudoscalar action. Thus, generically we
achieve s’ = 1 when n = 2, but there are two distinct universality
classes.

Many important examples, such as the Boussinesq equations,
are E(2)-equivariant and reduce to a scalar equation. We would like
to stress that this behavior is not universal — there are the two pos-
sibilities, scalar and pseudoscalar, that are equally likely from the
mathematical point of view. Moreover, there is no obvious physical
reason for distinguishing between the two, and it is necessary just as
in Landau theory to see how the critical eigenfunctions transform un-
der the action of E(2). This point appears to have been first observed
by Sattinger [28] and is still often overlooked.

5.2 Reduction for the other bifurcations

We now generalize the results of the previous subsection to steady-
state bifurcation with zero wavenumber and to Hopf bifurcation.

In the case of steady-state bifurcation with zero wavenumber,
the critical eigenspace is generically an irreducible representation of
O(n). Let s’ be the dimension of this representation, and let py be
the representation. Generically, there is a reduction to a system of
equations involving functions v : R" — R* that is equivariant with
respect to the E(n) action v(z) — pyv(y 1z).

The corresponding results for Hopf bifurcation are exactly as
would be expected from theorem 4.3 on universality. In the case
of zero wavenumber, the critical eigenspace is generically the direct
sum of two irreducible representations p/y of O(n) of dimension s'.
Generically, there is a reduction to a system of equations involving
functions v : R” — R?* that is equivariant with respect to the E(n)
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action v(z) — (py ® p'y)v(y 'x).

Finally, the critical eigenspace for Hopf bifurcation with nonzero
wavenumber generically transforms according to the direct sum of
two isomorphic irreducible representations of O(n — 1). Choose s’
and a representation p/; of O(n) of dimension s’ as small as possible
that restricts to the desired irreducible representation of O(n — 1).
Generically, there is a reduction to a system of equations involving
functions v : R” — R?* that is equivariant with respect to the E(n)
action v(z) — (p'y ® p'y)v(y71x).

6 Ginzburg-Landau equations

In this section, we consider the derivation of Ginzburg-Landau equa-
tions near criticality for bifurcations with Euclidean symmetry. We
consider the four cases corresponding to steady-state or Hopf bifur-
cation with zero or nonzero wavenumber. In the physics nomencla-
ture [10], steady-state and Hopf are denoted by subscripts s and o
respectively (o for oscillatory) and zero or nonzero wavenumber is de-
noted by I1I or I. (There is also type II which corresponds to zero
wavenumber in a conservative system [10], but we do not consider
such systems here.)

The main obstruction to deriving useful Ginzburg-Landau equa-
tions is the rotational degeneracy in the nonzero wavenumber cases
(steady-state and Hopf) for n > 2.

6.1 Steady-state bifurcation, zero wavenumber (type
I11,)

This case is often ignored (see for example [10]) but is instructive in
the matter of universality.

First, we consider the case of the reaction-diffusion action (8).
By the results in section 5, we may perform a preliminary reduction
to a scalar equation involving functions u : R® — R. The critical
Fourier modes have the form bpe**, where k ~ 0. The linear terms
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of the reduced equation have the form
b = (X — k*q(k*))br, (15)

where A € R is the bifurcation parameter, ¢(k) is real and smooth,
and generically ¢(0) > 0. Write

A=¢ u(r)=€A(X), X =+lexr, T =c¢t. (16)

Note that the amplitude function A : R” — R is real valued. At
linear level, A satisfies A7 = A+ q(0)AA+ O(e). Generically, there
is a quadratic term cA2, ¢ € R. Rescaling the coefficients ¢(0) and ¢
yields the Ginzburg-Landau equation

OrA=A+AA+ A% (17)

There are technical issues which we have passed over here concer-
ning the mathematical treatment of higher derivatives as higher order
terms. For details, see [17, 12]. It follows from the implicit function
theorem that nondegenerate solutions to this equation correspond to
transcritical branches (amplitude proportional to A) for the original
system of PDEs.

Now, we consider the complications that set in when we do not
have the reaction-diffusion action. The case n = 1 is straightfor-
ward. There are two universality classes leading to the following two
possibilities for the Ginzburg-Landau equation:

OrA= A+ D*A+ A% or OpA=A+D?A+ A% (18)

These two possibilities are distinguished by the action of reflections on
the critical eigenfunctions (either u(z) — u(—x) or u(x) — —u(—x)).

The case n = 2 is not straightforward! If rotations in E(2)
happen to act trivially on the critical eigenfunctions, then we obtain
the two possibilities (18) with D? replaced by A. In addition, there
are the (countably many) two-dimensional representations of O(2).
The minimal reduced equations involve functions u : R> — R? and
lead to a system of two coupled Ginzburg-Landau equations. For the
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standard two-dimensional representation, a tedious calculation shows
that the linear terms have the form

0% A, 0%A, 8% A,
A=A —— +d —d
Or A 1te 856% + 830% (e )Bxlawg’

0%A, 0% A, 9% A,
Ay =A —d d
Ords 2+ (e )85618.’E2 + 8.77% ¢ 326% ’

(19)

where ¢,d € R. The remaining two-dimensional representations force
¢ = d, but the terms involving higher order derivatives are compli-
cated.

6.2 Steady-state bifurcation, nonzero wavenumber
(type )

Suppose that an E(1)-equivariant system of PDEs undergoes steady-
state bifurcation with nonzero wavenumber k.. For definiteness, we
suppose that k. = 1. By the results of section 5, we may perform
a preliminary reduction to a scalar equation involving functions w :
R — R. We then make the ansatz (change of coordinates)

A=¢ ux) =e(AX)e® +A(X)e ™), X =er, T =¢t,
(20)

where A : R — C is a slowly varying complex amplitude function.
(Note that A has too many degrees of freedom since w is real-valued.
Again, we refer to [17] for a mathematical justification that this is a
well-defined change of coordinates.) This change of coordinates leads
to the standard Ginzburg-Landau equation on the line; see eqn (1).
As mentioned in the introduction, it follows from [12] that eqn (1) is
universal and that ‘nondegenerate’ solutions correspond to branches
of solutions to the underlying equations. There are also the approxi-
mate determinacy results of [14, 15, 16].

When n = 2, we can reduce to a single equation in u : R? - R
transforming under either the scalar action or pseudoscalar action.
The next step of extracting amplitude equations is highly nontri-
vial. There are various amplitude equations in the literature, none of
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which is completely satisfactory; see the survey [10]. (This is in con-
trast to the zero wavenumber case, where satisfactory, though some-
times complicated, amplitude equations can be found for all n.) The
problem here is the rotational degeneracy mentioned in section 2.3.
Approaches to this problem can be found in [29, 30, 31, 32]. We
are presently working on extending the methods in [17, 12] to this
situation.

6.3 Hopf bifurcation, zero wavenumber (type I11,)

This is similar to steady-state bifurcation with zero wavenumber; see
also Schneider [33]. Universal Ginzburg-Landau equations can be
written down for all n and are determined by the irreducible repre-
sentations of O(n). For n = 1, and for reaction-diffusion equations
(all n) we can apply the results of section 5 and reduce first to a scalar
equation involving functions u : R®™ — R. Suppose that the critical
eigenvalues are given by +iw where w > 0. We make the standard
substitution

A=¢€, uz) = e(AX)et + A(X)e ™), X =ex, T =€,
(21)

where A : R® — C is a complex amplitude function. This ansatz
leads to the complex Ginzburg-Landau equation

OrA = A+ cAA +d|APA, (22)

where ¢,d € C.

When the action of E(n) on the critical eigenfunctions corre-
sponds to a higher-dimensional representation of O(n), we may ob-
tain systems of coupled Ginzburg-Landau equations but the couplings
are highly nontrivial as in eqn (19).

6.4 Hopf bifurcation, nonzero wavenumber (type I,)

As in the case of steady-state bifurcation with nonzero wavenumber,
there is a rotational degeneracy that sets in when n > 2. However,
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a new difficulty arises even when n = 1. Knobloch and De Luca [34]
argue in favor of nonlocal mean field Ginzburg-Landau equations and
these equations have been justified (approximately over large time
intervals) by Pierce and Wayne [35] and Schneider [36]. So far, we
have not attempted to apply the methods in [17, 12] to this situation.

7 Normal form symmetry of amplitude equa-
tions

In this section, we investigate the structure, particularly the sym-
metry, of Ginzburg-Landau equations such as the Ginzburg-Landau
equation on the line (1) which we restate for convenience:

0A; = A+ D*A £ |APA. (23)

Recall, from section 6.2, that this equation is derived via an ansatz
u(z) = A(z)e™ 4+ A(z)e™™ from a scalar equation in u. (The €’s
do not affect our analysis of symmetries and are suppressed in this
section.) The scalar action of E(1) on u induces on A the action

A(z) = A(z + a)é'?, (24)
A(z) — A(—2z). (25)

However, inspection of eqn (23) reveals the additional nonphysical
‘symmetries’
A Aet (26)
A A (27)
It turns out that the symmetry (27) is a consequence of the low
order truncation — higher order terms include i|A|?DA, and iA?DA
which break the symmetry (27). It is commonplace for physicists to
incorporate such terms.
We are more interested in the circle symmetry (26) which is

retained by higher order truncations. A calculation shows that terms
of the form

AP AT ilr-a-1)e (28)
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break the circle symmetry (26) if p — ¢ # 1 whilst preserving the
physical symmetries (24, 25). Melbourne [17] proves that such terms
can be removed to arbitrarily high order. That is, exact amplitude
equations include such terms, but such terms can be neglected in any
finite order truncation. Thus, the circle symmetry (26) is a normal
form symmetry that can be justified to arbitrarily high order.

7.1 Implications for solutions

From the point of view of dynamical systems and bifurcation the-
ory, it is evident that nonconstant coefficient terms such as (28) are
unavoidable in the tail (this is particularly easy to see if the underly-
ing scalar PDE is not odd in © — an easy argument [17] shows that
the amplitude equation is not odd in A, whereas the constant coeffi-
cient terms are odd) and have significant consequences for solutions
of the Ginzburg-Landau equation.

Normal form symmetry occurs in steady-state/Hopf mode inter-
action in systems without symmetry. The equations in normal form
can be solved fairly completely [37], but the full equations have deli-
cate chaotic dynamics. Although the normal form equations control
many of the details of the bifurcation, this is only a first step to un-
derstanding the full equations. Dynamical systems theorists do not
advocate ignoring the effects of the tail altogether; neither should
Ginzburg-Landau theorists.

Coullet et al. [38] used these ideas from dynamical systems to
obtain time-independent spatially chaotic solutions in the Ginzburg-
Landau equation. They did this by adding an external ‘periodic
forcing’ term to the standard truncation of the Ginzburg-Landau
equation, so as to break the translation invariance of the underlying
problem. It follows from our results that such terms already occur
internally and it is not necessary to break the underlying translation
invariance. (This example demonstrates that the effects that we are
talking about are of interest to physicists.)

There is one class of solutions that is particularly sensitive to
terms that break the normal form symmetry. Suppose that the non-
truncated amplitude equation in A has the normal form symmetry to
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all orders and hence is constant coefficient. It follows from standard
implicit function theorem arguments that for each w > 0, there is a
branch of spatially periodic equilibria with period 27/w bifurcating
from the trivial solution A = 0 at A = A\, > 0. Moreover, A\, — 0
as w — 0. Provided w is small, these spatially periodic solutions
correspond to branches of solutions for the underlying PDE. But if
w is irrational, we have obtained branches of spatially quasiperiodic
solutions with independent frequencies 1 and w. This is absurd, since
we have somehow bypassed the problem of small divisors. Of course,
this argument breaks down precisely because of the presence of terms
in the tail of the amplitude equation that are not constant coefficient.
Tooss & Los [39] show that those quasiperiodic solutions with w Dio-
phantine exist for the underlying PDE and therefore survive the terms
in the tail.

We have made the comparison with low-codimension bifurca-
tion theory. In fact, the tail is likely to be of even more importance
for the Ginzburg-Landau equations than in bifurcation theory. (i) In
the bifurcation theory, the exotic behavior often occurs in thin cus-
poidal wedges in parameter space. In the Ginzburg-Landau equation,
there is only one parameter so that the thin wedges are everything.
(ii) Normal form symmetry leads to group orbits of solutions. Of-
ten these group orbits are normally hyperbolic so that breaking the
symmetry in the tail picks out some of these solutions. Solutions
A on a group orbit are essentially the same, but as pointed out in
Pomeau [19] the corresponding solutions u = Ae*® + Ae~** need not
be physically identical. Hence, with probability one, simulation of the
truncated Ginzburg-Landau equation yields spurious nonphysical so-
lutions. The situation is worse if there is nontrivial dynamics in the
truncated equation. Breaking the normal form symmetry constitutes
‘forced symmetry breaking’ which is a poorly understood and highly
complicated subject.
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7.2 Normal form symmetry in the complex Ginzburg-
Landau equation

Analogous questions arise for the complex Ginzburg-Landau equa-
tion (22) in E(n)-equivariant Hopf bifurcation with zero wavenum-
ber. We consider mainly the case of reaction-diffusion equations,
and so we first reduce to a scalar equation in u : R® — R. Nor-
mal form symmetries arise again, and for similar reasons, but take a
rather different form. Since the ansatz u(z) = A(z)e™! + A(z)e™!
is constant coefficient (in z!), the complex amplitude A transforms
under the action of E(n) in the same way as the scalar equation
did. In particular, the amplitude equations are constant coefficient
to all orders. However, the scalar equation for v has a symmetry
that is usually taken for granted — translations in time. (The equa-
tions are autonomous.) Once again, we obtain the normal form sym-
metry A — Ae” in the complex Ginzburg-Landau equation. Further,
the time-dependence in the ansatz means that the amplitude equa-
tions are nonautonomous. The autonomous nature of the complex
Ginzburg-Landau equation is a normal form symmetry that can be
retained in truncations of arbitrarily high order, but which is broken
in the tail.

In the case n = 1, there are two universality classes and hence
two kinds of complex Ginzburg-Landau equation: scalar and pseu-
doscalar. The normal form symmetry means that the distinction
between the scalar and pseudoscalar equations is seen only at arbi-
trarily high order (since the actions are equivalent for odd terms).
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