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Abstract

We consider deterministic homogenization for discrete-time fast-slow systems of the form

Xk+1 = Xk + n−1an(Xk, Yk) + n−1/2bn(Xk, Yk) , Yk+1 = TnYk

and give conditions under which the dynamics of the slow equations converge weakly to an
Itô diffusion X as n → ∞. The drift and diffusion coefficients of the limiting stochastic
differential equation satisfied by X are given explicitly. This extends the results of [Kelly–
Melbourne, J. Funct. Anal. 272 (2017) 4063–4102] from the continuous-time case to the
discrete-time case. Moreover, our methods (p-variation rough paths) work under optimal
moment assumptions.

Combined with parallel developments on martingale approximations for families of
nonuniformly expanding maps in Part 1 by Korepanov, Kosloff & Melbourne, we obtain
optimal homogenization results when Tn is such a family of maps.

1 Introduction

In this article, we are primarily concerned with homogenization of deterministic, discrete-time,
fast-slow systems of the form

X
(n)
k+1 = X

(n)
k + n−1an(X

(n)
k , Y

(n)
k ) + n−1/2bn(X

(n)
k , Y

(n)
k ) , Y

(n)
k+1 = TnY

(n)
k , (1.1)

where X
(n)
k takes values in Rd, Y (n)

k takes values in a metric space Λ, and an, bn : Rd × Λ → Rd

and Tn : Λ → Λ are suitable functions. The only source of randomness in the dynamics is the
initial condition Y

(n)
0 which we sample from a (not necessarily ergodic) probability measure λn

on Λ.
Our main result, Theorem 2.17, provides sufficient conditions for the dynamics xn(t) = X

(n)
⌊nt⌋

to converge in law (which we write in symbols as xn →λn X), with respect to the uniform
topology, to the solution of a stochastic differential equation (SDE)

dX = ã(X) dt+ σ(X) dB (1.2)
∗School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, UK.
†Institut für Mathematik, Technische Universität Berlin, and Weierstraß–Institut für Angewandte Analysis

und Stochastik, Berlin, Germany
‡Mathematics Department, University of Exeter, Exeter, EX4 4QF, UK
§Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
¶Institute of Mathematics, Fudan University, Shanghai, 200433, China

1



with explicit formulae for the coefficients ã and σ. Our assumptions on the system involve only
moment bounds and a suitable (iterated) weak invariance principle on the fast dynamics Tn.
In the companion paper, Part 1 [19], it is shown how these assumptions can be verified for a
large class of families Tn of nonuniformly hyperbolic dynamical systems. See Section 1.1 for an
illustrative example of a system to which our results apply.

The programme to study homogenization of deterministic systems of the form (1.1) was
initiated in [22], and has seen recent growth in a number of works, including [14, 16, 17]. See our
survey paper [6] for an overview. The contribution of this article is three-fold. The first two of
these contributions are novel even when we suppose that an ≡ a, bn ≡ b, Tn ≡ T are independent
of n. First, we are able to deal with discrete-time dynamics in the same way as continuous-time
dynamics. This should be compared to [16, 15] in which results for discrete-time dynamics are
only obtained in the special case a(x, y) = a(x), b(x, y) = b(x)v(y) and the case of general a, b
is only handled for continuous-time dynamics in [1, 17].

Second, we are able to work under optimal moment assumptions, and our results apply to
the full range of systems in which one expects a weak invariance principle to hold for the fast
dynamics. This extends (even for continuous-time dynamics) the results of [16, 17, 1] in which
only a subrange can be handled (specifically, in Assumptions 2.3(i) and 2.12(i) it now suffices
that q > 1 rather than q > 3 as was the case previously; in particular the required control on
ordinary moments is reduced from 6 + ε to 2 + ε). In [6] we indicate a simplified version of this
second contribution for the case a(x, y) = a(x), b(x, y) = b(x)v(y).

In particular, when Tn = T is independent of n, our results apply to uniformly hyperbolic
(Axiom A) systems [25], and to large classes of nonuniformly hyperbolic systems [27, 28]. A
detailed account of discrete-time dynamical systems T for which our assumptions are verified
can be found in [16, Sec. 10] and [17, Sec. 1]; our results on homogenization apply to all the
systems therein without restriction on the form of a and b and under optimal moment bounds.

Our third contribution is to incorporate families of fast dynamical systems Tn and measures
λn. Such fast-slow systems were studied in the situation of exact multiplicative noise (which
does not require rough path theory) in [18]. As mentioned above, in Part 1 [19], the assumptions
in the current paper are verified for a range of families Tn.

The main tool in showing convergence of the system (1.1) is rough path theory [21], which we
apply in the càdlàg setting in conjunction with the method in [17]. We note here that our second
contribution outlined above (optimal moment assumptions) is due to switching from α-Hölder to
p-variation rough path topologies (which is analogous to the mode of convergence in the classical
Donsker theorem, see e.g. [6, Sec. 3.2]). Our results employ the stability of “forward” (Itô) rough
differential equations (RDEs) with jumps recently studied in [13], which we extend herein to
the Banach space setting (though we restrict attention to the case of level-2 rough paths). The
works [10, 4, 5] also study RDEs in the presence of jumps, but primarily focus on “geometric”
(Marcus) notions of solution.

1.1 Illustrative example

Let Λ = [0, 1]. For γ ≥ 0, we consider the intermittent map T : Λ → Λ,

Ty =

{
y(1 + 2γyγ) , y ≤ 1/2 ,

2y − 1 , y > 1/2 .
(1.3)

This is a prototypical example of a slowly mixing dynamical system [23]; the specific example
is due to [20]. We describe in this subsection the homogenization results for the associated
fast-slow systems which follow from this paper together with Part 1 [19], and compare these
results with earlier works.
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For γ < 1, there exists a unique T -invariant ergodic absolutely continuous probability mea-
sure µ. We further restrict to γ < 1/2, where the central limit theorem holds: for v : Λ → Rm

Hölder continuous with
∫
Λ v dµ = 0, the random variables n−1/2

∑n−1
j=0 v ◦ T j defined on the

probability space (Λ, µ) converge in law to a (typically nondegenerate) normal distribution.
Consider a discrete-time fast-slow system of the form (1.1) with an ≡ a, bn ≡ b, Tn ≡ T

independent of n, and T such an intermittent map. Here a, b : Rd × Λ → Rd are suitably
regular functions such that

∫
b(x, y) dµ(y) = 0 for all x ∈ Rd. Define the càdlàg random process

xn(t) = X
(n)
[nt].

Prior results establish convergence xn →µ X, for X the solution of an SDE (1.2), provided
that b is a product b(x, y) = h(x)v(y) with h : Rd → Rd×m sufficiently smooth and v : Λ → Rm

as above. It was proved first for γ < 2
11 in [16] using a discrete-time version of Hölder rough

paths [15], and extended to the range γ < 2
5 in [6] using p-variation rough paths with jumps [13].

Part 1 by Korepanov et al. [19] develops the smooth ergodic theory side of things and together
with [6] covers the optimal range γ ∈ (0, 12) in the case when b(x, y) = h(x)v(y) is a product.
In the current paper, Theorem 2.10 enables two improvements to these prior results. First, the
restriction that b is a product is now redundant. Second, we show that xn →λ X for an enlarged
class of measures λ. In particular, the hypotheses of Theorem 2.10 are verified in [19] for the
most natural choice λ = Leb for all γ ∈ (0, 12).

In addition, we consider the general setting (1.1) where T , a, b and λ are allowed to depend
on n ∈ N ∪ {∞}. This requires our main result Theorem 2.17. For example, consider the case
where Tn is a family of intermittent maps with parameters γn limiting on γ∞ ∈ (0, 1/2). In [18],
convergence results of the form xn →µn X and xn →µ∞ X were obtained for the special case
bn(x, y) = hn(x)vn(y) with hn exact. Theorem 2.17 combined with results in [19] yields the same
convergence results without restrictions on bn, and also shows that xn →Leb X. The coefficients
ã and σ in (1.2) are given by

ã(x) =

∫
Λ
a∞(x, y) dµ∞(y) +

d∑
k=1

∞∑
ℓ=1

∫
Λ
bk∞(x, y)

∂b∞
∂xk

(x, T ℓ
∞y) dµ∞(y) , (1.4)

σ(x)2 =

∫
Λ
b∞(x, y)⊗ b∞(x, y) dµ∞(y)

+

∞∑
ℓ=1

∫
Λ

{
b∞(x, y)⊗ b∞(x, T ℓ

∞y) + b∞(x, T ℓ
∞y)⊗ b∞(x, y)

}
dµ∞(y) ,

(1.5)

where bk∞ is the kth column of b∞. The details of how to apply Theorem 2.17 and the results in
Part 1 [19] are given in Section 2.3.

The article is structured as follows. In Section 2 we state the main result of this article,
Theorem 2.17, which gives precise conditions for the dynamics (1.1) to converge to the solution
of an SDE. In Section 3 we collect the necessary material on càdlàg rough path theory in the
Banach space setting. In Section 4 we prove Theorem 2.17. In Section 5 we give the version
of Theorem 2.17 for the continuous-time dynamics. In Appendix A, we give a Banach-space
version of homogeneous Besov-variation and Besov–Hölder rough path embeddings.
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ford. P.K.F. acknowledges partial support from the ERC, CoG-683164, the Einstein Foundation
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European Advanced Grant StochExtHomog (ERC AdG 320977). A.K. is also supported by an
Engineering and Physical Sciences Research Council grant EP/P034489/1. H.Z. is supported
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2 Discrete-time fast-slow systems. Statement of the main result

In this section we state our main result, Theorem 2.17. In fact, we first state a simplified
version, Theorem 2.10, which applies to the case that an, bn, Tn and λn do not depend on
n. We state the results separately not only because it eases our presentation, but also because
Theorem 2.10 is slightly stronger than the naive restriction of Theorem 2.17 to the n-independent
case (namely Assumption 2.3 below is weaker than the naive restriction of Assumption 2.12). In
Subsection 2.3, we show that our assumptions are satisfied for the intermittent maps considered
in Section 1.1.

For the remainder of this section, we fix a metric space (Λ, ρ).

Definition 2.1. For κ ∈ [0, 1) and m ≥ 1, let Cκ(Λ,Rm) denote the space of continuous Rm-
valued functions on Λ such that

|v|Cκ := sup
y∈Λ

|v(y)|+ sup
y,y′∈Λ

|v(y)− v(y′)|
ρ(y, y′)κ

< ∞ .

We write Cκ(Λ) whenever m = 1. For α ≥ 0, define Cα,κ(Rd×Λ,Rd) to be the space of functions
a = a(x, y) : Rd × Λ → Rd such that

|a|Cα,κ :=
∑

|k|≤⌊α⌋

sup
x∈Rd

|Dka(x, ·)|Cκ +
∑

|k|=⌊α⌋

sup
x,x′∈Rd

|Dka(x, ·)−Dka(x′, ·)|Cκ

|x− x′|α−⌊α⌋ < ∞ ,

where Dk acts on the x component.

For the remainder of the section, we fix parameters q ∈ (1,∞], κ, κ̄ ∈ (0, 1), and α > 2 + d
q .

For T > 0, a metric space E, and a càdlàg function f : [0, 1] → E, we define f− : [0, 1] → E by
f−(t) = lims↑t f(s) for t ∈ (0, T ] and f−(0) = f(0).

2.1 n-independent case

We now describe the assumptions and preliminary results required to state Theorem 2.10. We
fix a ∈ C1+κ̄,0(Rd × Λ,Rd) and b ∈ Cα,κ(Rd × Λ,Rd), and consider for every integer n ≥ 1 the
discrete-time dynamical system posed on Rd × Λ

X
(n)
k+1 = X

(n)
k + n−1a(X

(n)
k , Yk) + n−1/2b(X

(n)
k , Yk) , Yk+1 = TYk , (2.1)

where T : Λ → Λ is a Borel measurable map, X(n)
0 = ξn ∈ Rd, and Y0 is drawn randomly from

a Borel probability measure λ on Λ. Our first assumption deals with the function a.

Assumption 2.2. There exists ā ∈ C1+κ̄(Rd,Rd) such that for all x ∈ Rd

∣∣∣n−1
n−1∑
k=0

a(x, Yk)− ā(x)
∣∣∣ →λ 0 as n → ∞ .

To state our assumption on b, we need to introduce further notation. For v, w ∈ Cκ(Λ,Rm)
and 0 ≤ s ≤ t ≤ 1, define Wv,n(t) ∈ Rm and Wv,w,n(s, t) ∈ Rm×m by

Wv,n(t) = n−1/2
∑

0≤k<⌊nt⌋

v(Yk) , Wv,w,n(s, t) =

∫ t

s
(W−

v,n(r)−Wv,n(s))⊗ dWw,n(r) , (2.2)
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where we recall that W−
v,n(r) = lims↑r Wv,n(s). Note in particular that

Wv,w,n(t) := Wv,w,n(0, t) = n−1
∑

0≤k<ℓ<⌊nt⌋

v(Yk)⊗ w(Yℓ) . (2.3)

Whenever v = w, we write simply Wv,n for Wv,v,n.
For a subspace Cκ

0 (Λ) of Cκ(Λ), we let Cκ
0 (Λ,Rm) denote the space of all v ∈ Cκ(Λ,Rm)

such that vi ∈ Cκ
0 (Λ) for all i = 1, . . . ,m, and we let Cα,κ

0 (Rd × Λ,Rd) denote the subspace of
all f ∈ Cα,κ(Rd × Λ,Rd) for which f(x, ·) ∈ Cκ

0 (Λ,Rd) for all x ∈ Rd.

Assumption 2.3. There exists a closed subspace Cκ
0 (Λ) of Cκ(Λ) such that b ∈ Cα,κ

0 (Rd×Λ,Rd)
and such that

(i) for all v, w ∈ Cκ
0 (Λ) there exists K = Kv,w,q > 0 such that for all n ≥ 1 and 0 ≤ k, ℓ ≤ n

|Wv,n(k/n)−Wv,n(ℓ/n)|L2q(λ) ≤ Kn−1/2|k − ℓ|1/2

and
|Wv,w,n(k/n, ℓ/n)|Lq(λ) ≤ Kn−1|k − ℓ| .

(ii) there exists a bilinear operator B0 : Cκ
0 (Λ) × Cκ

0 (Λ) → R such that for every m ≥ 1 and
every v ∈ Cκ

0 (Λ,Rm), it holds that (Wv,n,Wv,n) →λ (Wv,Wv) as n → ∞ in the sense of
finite-dimensional distributions, where Wv is an Rm-valued Brownian motion and

Wij
v (t) =

∫ t

0
W i

v dW
j
v +B0(v

i, vj)t .

Remark 2.4. One should compare Assumption 2.3(i) to [16, Thm. 9.1] and [17, Assump. 2.2]
in which one imposes the restriction q > 3. As mentioned in the introduction, we are able to
deal with the optimal moment condition q > 1 by working with p-variation rather than Hölder
rough path topologies.

Remark 2.5. Assumptions 2.2 and 2.3 are verified for a large class of dynamical systems in [16,
Sec. 10] and [17, Sec. 1]. In these references, as in Subsection 1.1, there is a T -invariant ergodic
Borel probability measure µ on Λ, and we choose Cκ

0 (Λ) = {v ∈ Cκ(Λ) :
∫
Λ v dµ = 0} and

ā =
∫
Λ a(·, y) dµ(y).

The measure µ plays no role in the proof of Theorem 2.10 and hence we do not mention it
in our assumptions.

Remark 2.6. Under the assumption that λ is T -stationary, the simpler bounds

|Wv,n(1)|L2q(λ) ≤ K and |Wv,w,n(1)|Lq(λ) ≤ K for all n ≥ 1

imply Assumption 2.3(i).

Proposition 2.7. Suppose Assumption 2.3(i) holds. Then there exists K > 0 such that for all
n ≥ 1, 0 ≤ k, ℓ ≤ n, and v, w ∈ Cκ

0 (Λ),∣∣∣Wv,n(k/n)−Wv,n(ℓ/n)
∣∣∣
L2q(λ)

≤ K|v|Cκn−1/2|k − ℓ|1/2 ,∣∣∣Wv,w,n(k/n, ℓ/n)
∣∣∣
Lq(λ)

≤ K|v|Cκ |w|Cκn−1|k − ℓ| . (2.4)

Proof. As in [17, Prop. 2.7], the constants in Assumption 2.3(i) have the required dependence
on |v|Cκ and |w|Cκ by the uniform boundedness principle.
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Proposition 2.8. Suppose Assumption 2.3 holds. Then

(a) for all v ∈ Cκ
0 (Λ,Rm), the limit limn→∞ n−1

∑n−1
k=0 Eλ(v

ivj)(Yk) exists and the covariance
of Wv is given by

EW i
v(1)W

j
v (1) = B(vi, vj) +B(vj , vi) ,

where

B(vi, vj) = B0(v
i, vj) +

1

2
lim
n→∞

n−1
n−1∑
k=0

Eλ(v
ivj)(Yk) ,

(b) the bilinear operators B, B0 : C
κ
0 (Λ)× Cκ

0 (Λ) → R are bounded.

Proof. (a) It follows from Assumption 2.3 that

EλW
i
v,n(1)W

j
v,n(1) → EW i

v(1)W
j
v (1) ,

and

EλWij
v,n(1) → EWij

v (1) = B0(v
i, vj) , (2.5)

where we have used the fact that Itô integrals have zero mean. By (2.3), we have

W i
v,n(1)W

j
v,n(1) = Wij

v,n(1) +Wji
v,n(1) + n−1

n−1∑
k=0

(vivj)(Yk) .

Taking expectations on both sides and letting n → ∞ yields the desired result.
(b) Boundedness of B0 follows from (2.5) and (2.4) with k = 0, ℓ = n. By definition of B, we
have |B(v, w)| ≤ |B0(v, w)|+ 1

2 |v|C0 |w|C0 , yielding boundedness of B.

Lemma 2.9. Suppose Assumption 2.3 holds. Then the quadratic form

Σij(x) = B(bi(x, ·), bj(x, ·)) +B(bj(x, ·), bi(x, ·)) , i, j = 1, . . . , d ,

is positive semi-definite and the unique positive semi-definite σ satisfying σ2 = Σ is Lipschitz.

Proof. Positive semi-definiteness of Σ follows from Proposition 2.8(a). Moreover, b lies in
Cα,κ(Rd × Λ,Rd) with α > 2 + d

q ≥ 2, so Σ is C2 with globally bounded derivatives to sec-
ond order. The conclusion now follows from [26, Thm. 5.2.3].

As a consequence of Lemma 2.9 and [26, Cor. 5.1.2], for a Brownian motion B on Rd and a
Lipschitz function ã : Rd → Rd, there is a unique strong solution to the SDE

dX = ã(X) dt+ σ(X) dB , X(0) = ξ . (2.6)

In particular, the SDE (2.9) has uniqueness in law.

Theorem 2.10. Suppose that Assumptions 2.2 and 2.3 hold and that limn→∞ ξn = ξ ∈ Rd.
Define the càdlàg path

xn : [0, 1] → Rd , xn(t) = X
(n)
⌊nt⌋ . (2.7)

Then xn →λ X in the uniform topology as n → ∞, where X is a weak solution of the SDE (2.6),
where B is a standard Brownian motion in Rd, σ is defined as in Lemma 2.9, and ã is the
Lipschitz function given by

ãi(x) = āi(x) +

d∑
k=1

B0(b
k(x, ·), ∂kbi(x, ·)) , i = 1, . . . , d .

We omit the proof of Theorem 2.10, which follows from trivial modifications to the proof in
Section 4 of Theorem 2.17.
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2.2 General case

We now state the assumptions and preliminary results required for our main result, Theo-
rem 2.17. We fix functions an ∈ C1+κ̄,0(Rd × Λ,Rd), and b∞, bn ∈ Cα,κ(Rd × Λ,Rd) satisfying

sup
n≥1

|an|C1+κ̄,0 + |bn|Cα,κ < ∞ , lim
n→∞

|bn − b∞|Cα,κ = 0 .

For n ≥ 1, we are interested in the discrete-time fast-slow system (1.1) where Tn : Λ → Λ is a
measurable map, X(n)

0 = ξn ∈ Rd, and Y
(n)
0 is drawn randomly from a Borel probability measure

λn on Λ.

Assumption 2.11. There exists ā ∈ C1+κ̄(Rd,Rd) such that, for all t ∈ [0, 1] and x ∈ Rd,

|Vn(t)(x)− tā(x)| →λn 0 as n → ∞ ,

where Vn(t) = n−1
∑⌊tn⌋−1

k=0 an(·, Y (n)
k ).

As in (2.2), for v, w ∈ Cκ(Λ,Rm) and 0 ≤ s ≤ t ≤ 1, define Wv,n(t) ∈ Rm, and Wv,w,n(s, t) ∈
Rm×m by

Wv,n(t) = n−1/2
∑

0≤k<⌊nt⌋

v(Y
(n)
k ) ,

Wv,w,n(s, t) =

∫ t

s
(W−

v,n(r)−Wv,n(s))⊗ dWw,n(r) ,

(2.8)

where we recall that W−
v,n(r) = lims↑r Wv,n(s). Whenever v = w, we again write Wv,n for Wv,v,n.

Recall our notational convention about subspaces Cκ
0 (Λ) of Cκ(Λ) introduced before As-

sumption 2.3.

Assumption 2.12. There exists a closed subspace Cκ
n(Λ) of Cκ(Λ) for each n ∈ N∪ {∞} such

that bn ∈ Cα,κ
n (Rd × Λ,Rd), and

(i) for all v = (v1, . . .), w = (w1, . . .) ∈
∏

n∈NCκ
n(Λ) with

sup
n

|vn|Cκ + |wn|Cκ < ∞ ,

there exists K = Kv,w,q > 0 such that for all n ∈ N and 0 ≤ k, ℓ ≤ n

|Wvn,n(k/n)−Wvn,n(ℓ/n)|L2q(λn) ≤ Kn−1/2|k − ℓ|1/2

and
|Wvn,wn,n(k/n, ℓ/n)|Lq(λn) ≤ Kn−1|k − ℓ| .

(ii) there exist bounded bilinear operators B1,B2 : Cκ
∞(Λ) × Cκ

∞(Λ) → R such that for every
m ≥ 1 and all v = (vn)n∈N∪{∞} with vn ∈ Cκ

n(Λ,Rm) and limn→∞ |vn − v∞|Cκ = 0,

(a) limn→∞ n−1
∑n−1

k=0 Eλn(v
i
nv

j
n)(Y

(n)
k ) = B1(v

i
∞, vj∞),

(b) (Wvn,n,Wvn,n) →λn (Wv,Wv) as n → ∞ in the sense of finite-dimensional distribu-
tions, where Wv is an Rm-valued Brownian motion and

Wij
v (t) =

∫ t

0
W i

v dW
j
v +B2(v

i
∞, vj∞)t .
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Remark 2.13. As in Remark 2.6, under the assumption that λn is Tn-stationary, the simpler
bounds

|Wvn,n(k/n)|L2q(λn) ≤ K(k/n)1/2 and |Wvn,wn,n(0, k/n)|Lq(λn) ≤ Kk/n

for all 0 ≤ k ≤ n, imply Assumption 2.12(i). Also, Assumption 2.12(ii)(a) reduces to
limn→∞ Eλn(v

i
nw

j
n) = B1(v

i
∞, wj

∞).

Proposition 2.14. Suppose that Assumption 2.12(i) holds. Then there exists K > 0 such that
for all n ∈ N, 0 ≤ k, ℓ ≤ n, and v, w ∈ Cκ

n(Λ),∣∣∣Wv,n(k/n)−Wv,n(ℓ/n)
∣∣∣
L2q(λn)

≤ K|v|Cκn−1/2|k − ℓ|1/2 ,∣∣∣Wv,w,n(k/n, ℓ/n)
∣∣∣
Lq(λn)

≤ K|v|Cκ |w|Cκn−1|k − ℓ| .

Proof. Identical to Proposition 2.7.

Proposition 2.15. Suppose that Assumption 2.12 holds. Let B = 1
2B1 + B2. Then, for all

v = (vn)n∈N∪{∞} with limn→∞ |vn − v∞|Cκ = 0, the covariance of Wv is given by

EW i
v(1)W

j
v(1) = B(vi∞, vj∞) +B(vj∞, vi∞) .

Proof. Exactly the same as Proposition 2.8(a) upon replacing Wv,n by Wvn,n and Wv by Wv,
and using Assumption 2.12(ii)(a).

Lemma 2.16. Suppose that Assumption 2.12 holds. Then the symmetric quadratic form

Σij(x) = B(bi∞(x, ·), bj∞(x, ·)) +B(bj∞(x, ·), bi∞(x, ·)) , i, j = 1, . . . , d ,

is positive semi-definite and the unique positive semi-definite σ satisfying σ2 = Σ is Lipschitz.

Proof. Identical to Lemma 2.9.

As before, by Lemma 2.16 and [26, Cor. 5.1.2], for a Brownian motion B on Rd and a
Lipschitz function ã : Rd → Rd, there is a unique strong solution to the SDE

dX = ã(X) dt+ σ(X) dB , X(0) = ξ . (2.9)

In particular, the SDE (2.9) has uniqueness in law.

Theorem 2.17. Suppose that Assumptions 2.11 and 2.12 hold, and that limn→∞ ξn = ξ ∈ Rd.
Define the càdlàg path

xn : [0, 1] → Rd , xn(t) = X
(n)
⌊nt⌋ . (2.10)

Then xn →λn X in the uniform topology as n → ∞, where X is a weak solution of the SDE (2.9),
where B is a standard Brownian motion in Rd, σ is defined as in Lemma 2.16, and ã is the
Lipschitz function given by

ãi(x) = āi(x) +

d∑
k=1

B2(b
k
∞(x, ·), ∂kbi∞(x, ·)) , i = 1, . . . , d .
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2.3 Homogenization for the illustrative example

In this subsection, we apply our main result, Theorem 2.17 in the case where the fast dynamics
Tn is a family of intermittent maps as in Section 1.1. Using the results from Part 1 [19], we
verify the hypotheses of Theorem 2.17 and deduce convergence to an SDE (1.2) with coefficients
ã and σ as given in (1.4) and (1.5).

Recall that Λ = [0, 1] and Tn : Λ → Λ, n ∈ N ∪ {∞}, is a family of intermittent maps as
in (1.3) with parameters γn ∈ (0, 12) such that limn→∞ γn = γ∞. Let µn be the corresponding
family of Tn-invariant ergodic absolutely continuous probability measures. Let Cκ

n(Λ) = {v ∈
Cκ(Λ) :

∫
Λ v dµn = 0} and fix q ∈ (1, γ−1

∞ −1). We consider fast-slow systems (1.1) where an, bn
satisfy the regularity conditions at the beginning of Subsection 2.2 and bn ∈ Cα,κ

n (Rd × Λ,Rd).
We require further that limn→∞ |an−a∞|∞ = 0 and that a∞(x, ·) : Λ → Rd is Hölder continuous
for each fixed x.

To apply Theorem 2.17, we verify Assumptions 2.11 and 2.12 for appropriate families of
probability measures λn. We do this for the case λn ≡ Leb using the results in [19, Sec. 4.1].
The case λn = µn works in the same way (indeed, this is the easier case in [19]).

Proposition 2.18. Assumption 2.11 holds with ā(x) =
∫
Λ a∞(x, ·) dµ∞.

Proof. Fix x ∈ Rd and define vn = an(x, ·). Then Vn(t)(x) = n−1
∑⌊nt⌋−1

j=0 vn ◦ T j
n and it follows

from [19, Prop. 4.3(a)] that Vn(t)(x) →Leb t
∫
Λ v∞ dµ∞ = t

∫
Λ a∞(x, ·) dµ∞.

Proposition 2.19. Assumption 2.12(i) holds.

Proof. Let p = q + 1 ∈ (2, γ−1
∞ ) and v = (v1, . . .), w = (w1, . . .) ∈

∏
n∈NCκ

n(Λ). By [19,
Prop. 4.1], there is a constant C > 0 such that for 0 ≤ ℓ < k ≤ n,

|Wvn,n(k/n)−Wvn,n(ℓ/n)|L2q(Leb) = n−1/2
∣∣∣ ∑
ℓ≤j<k

vn ◦ T j
n

∣∣∣
L2(p−1)(Leb)

≤ Cn−1/2(k − ℓ)1/2|vn|Cκ ,

|Wvn,wn,n(k/n, ℓ/n)|Lq(Leb) = n−1
∣∣∣ ∑
ℓ≤i<j<k

(vn ◦ T i
n)⊗ (wn ◦ T j

n)
∣∣∣
Lp−1(Leb)

≤ Cn−1(k − ℓ)|vn|Cκ |wn|Cκ .

These are the desired estimates.

Proposition 2.20. Assumption 2.12(ii) holds with

B1(v, w) =

∫
Λ
vw dµ∞ , B2(v, w) =

∞∑
ℓ=1

∫
Λ
v w ◦ T ℓ

∞ dµ∞ .

Proof. Assumption 2.12(ii)(a) is verified in [19, Prop. 4.3(b)]. By [19, Prop. 4.2] together
with [19, Rem. 2.9], (Wvn,n,Wvn,n) →Leb (Wv,Wv) where Wv is an Rm-valued Brownian motion
and

Wij
v (t) =

∫ t

0
W i

v dW
j
v + Eij

∞t , Eij
∞ =

∞∑
ℓ=1

∫
Λ
vi∞ vj∞ ◦ T ℓ

∞ dµ∞ .

This verifies Assumption 2.12(ii)(b).
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We can now apply Theorem 2.17. Define ã as in (1.4) and set

Σ(x) =

∫
Λ
b∞(x, y)⊗ b∞(x, y) dµ∞(y)

+
∞∑
ℓ=1

∫
Λ

{
b∞(x, y)⊗ b∞(x, T ℓ

∞y) + b∞(x, T ℓ
∞y)⊗ b∞(x, y)

}
dµ∞(y) .

Let σ be the unique positive semidefinite square root of Σ as in Lemma 2.16. By Theorem 2.17,
xn →Leb X where X is the unique solution to the SDE (1.2) with coefficients ã and σ.

3 Banach space valued càdlàg rough paths

In this section, we collect all the necessary results on càdlàg rough path theory in Banach spaces
which will be needed in the sequel.

For Banach spaces A,B, we denote their algebraic tensor product by

A⊗a B := span {a⊗ b|a ∈ A, b ∈ B} .

Given f ∈ A∗ (the dual space of A), g ∈ B∗, one may define an element on (A⊗a B)∗ by

(f ⊗ g)(

N∑
i=1

ai ⊗ bi) :=

N∑
i=1

f(ai)g(bi) .

As a result, we consider A∗ ⊗a B∗ as a subspace of (A ⊗a B)∗. Generally, there are different
(inequivalent) norms on A⊗a B. We call a norm | · |A⊗B on the vector space A⊗a B admissible
(or reasonable), if for any a ∈ A, b ∈ B, f ∈ A∗, g ∈ B∗,

|a⊗ b|A⊗B ≤ |a|A|b|B , |f ⊗ g|(A⊗B)∗ ≤ |f |A∗ |g|B∗ , (3.1)

where | · |(A⊗B)∗ is defined as the dual norm on (A⊗aB, | · |A⊗B)
∗. Examples of admissible norms

are the projective tensor norm and the injective tensor norm, see [24, Sec. 6.1]. One may then
complete A⊗a B under | · |A⊗B to obtain a Banach space. All the tensor product spaces A⊗B
we consider in the sequel will implicitly be assumed to be Banach spaces completed by such an
admissible norm.

Definition 3.1. A partition over an interval [s, t] is a set P of subintervals of [s, t] of the form
P = {[t0, t1], [t1, t2], . . . , [tk−1, tk]} with ti < ti+1 and t0 = s, tk = t. We define the mesh size of
the partition as |P| := max[u,v]∈P |u− v|.

For a Banach space B and p > 0, let Vp-var([s, t],B) denote the space of all functions Ξ :
{(u, v) ∈ [s, t]2 | u ≤ v} → B such that Ξ(u, u) = 0 and

∥Ξ∥p-var;[s,t] := sup
P

( ∑
[u,v]∈P

|Ξ(u, v)|p
)1/p

< ∞ ,

where the supremum is over all partitions of [s, t].

Note that if p ≥ 1, then Vp-var([s, t],B) is a Banach space with norm ∥ · ∥p-var;[s,t]. In the
sequel, we will drop the reference to the interval [s, t] whenever [s, t] = [0, T ]. We will also
occasionally refer to p-variation over not necessarily closed intervals, i.e., (s, t] or [s, t) instead
of [s, t], with the obvious interpretation.

For a Banach space B, we equip B ⊕ B⊗2 with the multiplication operation (a,M)(b,N) :=
(a + b,M + a ⊗ b + N). Note that the multiplicative identity in B ⊕ B⊗2 is (0, 0) and every
element posses an inverse given by (a,M)−1 = (−a,−M + a⊗ a). Hence B ⊕ B⊗2 is a group.
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Definition 3.2. Let B be a Banach space. For a path X : [s, t] → B ⊕ B⊗2 and s ≤ u ≤ v ≤ t,
define the increment X(u, v) := (X(u, v),X(u, v)) := X(u)−1X(v). For p ≥ 1, define the
(homogeneous) p-variation of X by

∥X∥p-var;[s,t] := ∥X∥p-var;[s,t] + ∥X∥1/2p/2-var;[s,t] .

For p ∈ [2, 3), a p-rough path over B is a càdlàg function X : [0, T ] → B ⊕ B⊗2 such that
X(0) = 0 and ∥X∥p-var < ∞. For p-rough paths X, X̃, we define the (inhomogeneous) rough
path metric by

∥X; X̃∥p-var := ∥X − X̃∥p-var + ∥X− X̃∥p/2-var , (3.2)

as well as the (Skorokhod-type) p-variation metric

σp-var(X, X̃) := inf
ω∈Ω

{
|ω|+ ∥X; X̃ ◦ ω∥p-var

}
, (3.3)

where Ω denotes the set of all continuous increasing bijections ω : [0, T ] → [0, T ], and

|ω| := sup
t∈[0,T ]

|t− ω(t)| .

Let Dp-var(B) denote the space of all p-rough paths equipped with the metric σp-var. For
p ∈ [1, 2) define the p-variation ∥ · ∥p-var of a path X : [0, T ] → B, as well as the metric σp-var
and space Dp-var(B) in the exact same way as above but without the component X.

The purpose of the metric σp-var is to provide convenient tightness results. In short, tightness
in the metric space (Dp-var, σp-var) is implied by tightness of p′-variation for p′ < p and tightness
in the (J1) Skorokhod space, with the latter two being simpler to check; see the proofs of
Lemmas 4.5 and 4.7. Likewise for Dp-var. The same is not true if we replace σp-var by ∥·; ·∥p-var.

We next state a basic interpolation estimate which will be helpful in the sequel. Define

∥X; X̃∥∞ = ∥X − X̃∥∞ + ∥X− X̃∥∞ ,

where ∥Ξ∥∞ := sups,t |Ξ(s, t)| (as usual, we treat X as a two parameter function by X(s, t) =
X(t)−X(s)).

Lemma 3.3. For p′ ≥ p ≥ 1 and X, X̃ : [0, T ] → B ⊕ B⊗2, it holds that

∥X; X̃∥p′-var ≤ ∥X; X̃∥1−p/p′
∞ ∥X; X̃∥p/p′p-var . (3.4)

Proof. We readily see that

∥X; X̃∥p′-var ≤ ∥X − X̃∥1−p/p′
∞ ∥X − X̃∥p/p′p-var + ∥X− X̃∥1−p/p′

∞ ∥X− X̃∥p/p
′

p/2-var ,

and the conclusion follows by Hölder’s inequality aθā1−θ+bθ b̄1−θ ≤ (a+b)θ(ā+b̄)1−θ for θ ∈ [0, 1]
and a, ā, b, b̄ ≥ 0.

We now introduce rough integration in the level-2 rough path case. Given Banach spaces
B, E , let L(B, E) denote the space of bounded linear operators from B to E . For p ∈ [2, 3) and
X ∈ Dp-var(B), we call (Y, Y ′) an E-valued X-controlled rough path if

Y ∈ Dp-var(E) , Y ′ ∈ Dp-var(L(B, E)) ,

and R ∈ Vp/2-var(E), where

R(s, t) := Y (s, t)− Y ′(s)X(s, t) . (3.5)
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We denote the space of X-controlled rough paths as Dp/2-var
X (E). In the following, we are

interested in Rd-valued RDEs, i.e. E = Rd. In this case, one has the following stability of rough
integration. Remark that, B∗⊗aB∗ is a subspace of (B⊗B)∗ by admissibility of norms (3.1) and
therefore f ⊗ g ∈ (B⊗B)∗ for every f, g ∈ B∗. In particular, Ξ in the statement of the following
lemma is well-defined.

Lemma 3.4. Let X ∈ Dp-var(B), (Y, Y ′) ∈ Dp/2-var
X (Rd), and H ∈ C2(Rd,L(B,Rd)). Then, for

every t ∈ [0, T ], the following integral (with values in Rd) is well-defined

IX(Y )(t) :=

∫ t

0
H(Y −(s)) dX(s) := lim

|P|→0

∑
[u,v]∈P

Ξ(u, v) , (3.6)

where P are partitions of [0, t] and, for i = 1, ..., d and 0 ≤ u ≤ v ≤ T ,

Ξ(u, v)i = H i(Y (u))X(u, v) +

d∑
k=1

(
∂kH

i(Y (u))⊗ (Y ′(u))k
)
X(u, v) .

Furthermore, (H(Y ), DH(Y )Y ′) and (IX(Y ), H(Y )) are X-controlled rough paths.

Proof. The claim that (H(Y ), DH(Y )Y ′) is an X-controlled rough path follows from Taylor
expansion. Indeed, defining

RH(Y )(s, t) := H(Y (t))−H(Y (s))−DH(Y (s))Y ′(s)X(s, t) ,

one can check that RH(Y ) ∈ V
p
2 (L(B,Rd)). Then one has the identity

Ξ(s, t)− Ξ(s, u)− Ξ(u, t) = −RH(Y )(s, u)X(u, t)−
(
DH(Y )Y ′) (s, u)X(u, t) .

According to the generalized sewing lemma [13, Thm. 2.5], the integral IX(Y ) is well-defined,
and furthermore one has the local estimate

|IX(Y )(s, t)− Ξ(s, t)| ≤ C
[
∥RH(Y )∥p/2-var;[s,t)∥X∥p-var;(s,t]

+ ∥DH(Y )Y ′∥p-var;(s,t]∥X∥p/2-var;[s,t)
]
,

which implies that (IX(Y ), H(Y )) is also an X-controlled rough path.

Remark 3.5. Generally, to integrate (Y, Y ′) against X, one needs Y (t) ∈ L(B, E) and Y ′(t) ∈
L(B,L(B, E)) to have the identity Y (s, t) = Y ′(s)X(s, t) + R(s, t). In this case, one further
needs the embedding L(B,L(B, E)) ↪→ L(B⊗B, E) to define Ξ(s, t) := Y (s)X(s, t)+Y ′(s)X(s, t).
Luckily, in the above case where E = Rd, the embedding assumption is replaced by the fact
DH(Y )Y ′ ∈ L(B ⊗ B,Rd) which follows by admissibility of norms.

The main convergence result for rough differential equations which we will require is the
following. The proof, which we omit, is essentially the same as the finite dimensional case,
i.e., [13, Thm. 3.8, 3.9], thanks to admissibility of norms.

Theorem 3.6. Let A,B be Banach spaces, p ∈ [2, 3), q ∈ [1, p/2], and F ∈
Cβ(Rd,L(A,Rd)), H ∈ Cγ(Rd,L(B,Rd)) for β > q, γ > p. Then, for any V ∈ Dq-var(A),
X ∈ Dp-var(B), and Y0 ∈ Rd, there exists a unique X-controlled rough path (Y, Y ′) ∈ Dp/2-var

X (Rd)
solving the equation

Y (t) = Y0 +

∫ t

0
F (Y −(s)) dV (s) +

∫ t

0
H(Y −(s)) dX(s) . (3.7)
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Moreover, the solution map is locally Lipschitz in the sense that

∥Y − Ỹ ∥p-var ≲ ∥X; X̃∥p-var + ∥V − Ṽ ∥q-var + |Y0 − Ỹ0| , (3.8)

where the proportionality constant is uniform over bounded sets of driving signals.

Recall that in (3.7),
∫ t
0 H(Y −(s)) dX(s) is defined by (3.6) and that

∫ t
0 F (Y −(s)) dV (s) is

the classical Young integral [13, Prop. 2.4]∫ t

0
F (Y −(s)) dV (s) = lim

|P|→0

∑
[u,v]∈P

F (Y (u))V (u, v) ,

where P are partitions of [0, t], which is well-defined since 1/q+1/p > 1. Note that the restriction
q ≤ p/2 arises from the Young estimate ∥

∫ ·
0(Z

−(s) − Z(0)) dV (s)∥q-var ≲ ∥Z∥p-var∥V ∥q-var and
the requirement that R ∈ Vp/2-var(Rd) in the definition (3.5).

For our purposes, it will be useful to record the following corollary stated in terms of the
metrics σp-var and σq-var.

Corollary 3.7. Let notation be as in Theorem 3.6. Consider the solution map to equation (3.7)

Φ : Dq-var(A)×Dp-var(B)× Rd → Dp-var(Rd) ,

Φ : (V,X, Y0) 7→ Y .

Let p′ > p and equip Dp-var(Rd) with the norm |Y (0)| + ∥Y ∥p′-var and Dq-var(A) × Dp-var(B) ×
Rd with the product metric (σq-var, σp-var, | · |). Then every point (V,X, Y0), where V,X are
continuous, is a continuity point of Φ.

Proof. It suffices to consider p′ ∈ (p, γ). Let X ∈ Dp-var(B) be continuous. We claim that
σp-var(Xn,X) → 0 implies ∥Xn;X∥p′-var → 0. Indeed, σp-var(Xn,X) → 0 implies the existence
of {ωn}n≥1 ⊂ Ω satisfying both |ωn| → 0 and ∥Xn;X ◦ ωn∥p-var → 0. Observe that ∥X;X ◦
ωn∥∞ → 0 by continuity of X, and therefore, combining with the interpolation estimate (3.4),
∥X;X ◦ ωn∥p′-var → 0. Since ∥Xn;X∥p′-var ≤ ∥Xn;X ◦ ωn∥p′-var + ∥X ◦ ωn;X∥p′-var, this proves
the claim. The same considerations apply to continuous V ∈ Dq-var(A) and q′ > q. The result
follows from Theorem 3.6 by taking q′ ∈ (q, β ∧ p′).

Remark 3.8. Recall that, for the classical (J1) Skorokhod space D, a pair (x, y) ∈ D2 is a
continuity point of the addition map D2 → D, (x, y) 7→ x + y, whenever one of x or y is
continuous. In a similar way, if one instead equips Dp-var(Rd) with the metric |Y (0)− Ȳ (0)|+
σp′-var(Y, Ȳ ), then one can show that (V,X, Y0) is a continuity point of Φ whenever one of X or
V is continuous.

We conclude this section with the following result which will be helpful in controlling the
p-variation and càdlàg modulus of continuity of paths.

Proposition 3.9. Let (O,F ,P) be a probability space and let {Xt}t∈[0,T ] = {(Xt,Xt)}t∈[0,T ]

be a B ⊕ B⊗2-valued stochastic process defined on (O,F ,P). Suppose further that, for P-a.e.
o ∈ O, t 7→ Xo

t is càdlàg, piecewise constant, and has jump times contained in a deterministic
set {tj}0≤j≤n ⊂ [0, T ] with 0 = t0 < t1 < . . . < tn = T , such that, for some C1, C2 > 0,
β ∈ (0, 12 ], and q ∈ [1,∞],

|X(ti, tj)|L2q(P) ≤ C1|tj − ti|β , |X(ti, tj)|Lq(P) ≤ C2|tj − ti|2β .
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If 2q > 1
β , then for any α ∈ ( 1

2q , β)

E[∥X∥2q1/α-var]
1
2q ≤ CT

α− 1
2q (C1 + C

1/2
2 ) (3.9)

and

E
[∣∣∣ sup

ti ̸=tj

|X(ti, tj)|+ |X(ti, tj)|1/2

|ti − tj |α−
1
2q

∣∣∣2q] 1
2q ≤ C(C1 + C

1/2
2 ) (3.10)

for a constant C > 0 depending only on α, β, q.

For the proof, we require the following lemma.

Lemma 3.10. Let X be as in Proposition 3.9. Then there exists a P-a.s. continuous B ⊕ B⊗2-
valued process {X̃t}t∈[0,T ] = {(X̃t, X̃t)}t∈[0,T ] such that X(ti) = X̃(ti) for all i = 0, . . . , n, and

|X̃(s, t)|L2q(P) ≤ 31−βC1|t− s|β , |X̃(s, t)|Lq(P) ≤ 32−2β(C2 + C2
1 )|t− s|2β . (3.11)

Proof. Let us define (X̃, X̃) for t ∈ [tj , tj+1) by

X̃(t) := X(tj) +
t− tj

tj+1 − tj
X(tj , tj+1) ,

X̃(0, t) := X(0, tj) +
t− tj

tj+1 − tj
(X(0, tj+1)− X(0, tj)) .

To prove (3.11), consider s < t with s ∈ [tj , tj+1), t ∈ [tk, tk+1). Further we suppose that j < k
(the case j = k is similar and simpler). Then

|X̃(s, t)|L2q(P) ≤ |X̃(s, tj+1)|L2q(P) + |X̃(tj+1, tk)|L2q(P) + |X̃(tk, t)|L2q(P)

≤ C1(|tj+1 − s|β + |tj+1 − tk|β + |t− tk|β)
≤ 31−βC1|t− s|β .

Furthermore, one can check that

X̃(s, tj+1) =
tj+1 − s

tj+1 − tj
X(tj , tj+1) +

(tj+1 − s)(s− tj)

(tj+1 − tj)2
X⊗2

tj ,tj+1
,

from which it follows that

|X̃(s, tj+1)|Lq(P) ≤ (C2 + C2
1 )|tj+1 − s|2β .

A similar estimate holds for X̃(tk, t). Hence

|X̃(s, t)|Lq(P) ≤ |X̃(s, tj+1)|Lq(P) + |X̃(tj+1, tk)|Lq(P) + |X̃(tk, t)|Lq(P)

+ |X̃(s, tj+1)⊗ X̃(tj+1, tk)|Lq(P) + |X̃(s, tk)⊗X(tk, t)|Lq(P)

≤ 31−2β(C2 + C2
1 )|t− s|2β + C2

1 |t− s|2β + 21−βC2
1 |t− s|2β

≤ 32−2β(C2 + C2
1 )|t− s|2β .
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Proof of Proposition 3.9. Let X̃ be as in Lemma 3.10 and suppose 2q > 1
β and α ∈ ( 1

2q , β).
Using the notation in Appendix A, we have by Corollary A.3

E[∥X̃∥2q1/α-var]
1
2q ≤ C(α, q)T

α− 1
2qE[∥X̃∥2q

Wα,2q ]
1
2q

= C(α, q)T
α− 1

2qE
[ ∫∫

[0,T ]2

|X̃(s, t)|2qB + |X̃(s, t)|qB⊗2

|t− s|2αq+1
dsdt

] 1
2q

.

Using the estimate (3.11) and the condition α < β, the final expectation is bounded by
λ(C1 + C

1/2
2 ), where λ depends only on β − α. In exactly the same way, using Corollary A.2,

E[∥X̃∥2q
(α− 1

2q
)-Höl

]
1
2q ≤ C(C1 + C

1/2
2 ). The conclusion follows since X̃(ti) = X(ti) and X is

constant on [ti, ti+1).

4 Proof of the main result

This section is devoted to the proof of Theorem 2.17. Throughout this section, we let notation
be as in Section 2.2.

The first step is to reformulate the system (1.1) as a càdlàg controlled ODE. Let us fix
κ′ ∈ (0, κ̄) and θ ∈ (2, α− d

q ), and introduce the Banach spaces

A = C1+κ′
(Rd,Rd) and B = Cθ(Rd,Rd) .

We furthermore equip B⊗2 with the admissible norm as specified in [17, Prop. 4.5].
For any η ≥ 0, it holds for the point evaluation map F : Rd → L(Cη(Rd,Rd),Rd), given

by F (x) : u 7→ u(x), that F ∈ Cη(Rd,L(Cη(Rd,Rd),Rd)). We let F : Rd → L(A,Rd) and
H : Rd → L(B,Rd) denote the corresponding point evaluation maps.

The following lemma is now immediate from Theorem 3.6.

Lemma 4.1. The càdlàg RDE

dx(t) = F (x−(t)) dV (t) +H(x−(t)) dW(t) , x(0) = ξ ∈ Rd (4.1)

is well-posed for any (V,W) ∈ Dβ-var([0, 1],A) × Dp-var(B) with β ∈ [1, 1 + κ′) and p ∈ [2, θ)
such that β ≤ p/2.

We introduce the A-valued and B-valued paths

Vn(t) = n−1

⌊tn⌋−1∑
k=0

an(·, Y (n)
k ) , Wn(t) = n−1/2

⌊tn⌋−1∑
k=0

bn(·, Y (n)
k ) ,

and let Wn = (Wn,Wn) be the canonical level-2 lift of Wn given by

Wn(t) =

∫ t

0
Wn(r)⊗ dWn(r) .

Remark that Wn is a p-rough path over B for any p ∈ [2, 3) in the sense of Definition 3.2.

Lemma 4.2. The path xn given by (2.10) is the unique solution of the càdlàg ODE

dxn = F (x−n ) dVn +H(x−n ) dWn , xn(0) = ξn ∈ Rd . (4.2)
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Proof. Observe that xn given by (2.10) satisfies for all 1 ≤ k ≤ n

xn(k/n)− xn((k − 1)/n) = n−1a(xn((k − 1)/n), Y
(n)
k−1)

+ n−1/2b(xn((k − 1)/n), Y
(n)
k−1)

=

∫ k/n

(k−1)/n
F (x−n (s)) dVn(s) +H(x−n (s)) dWn(s) .

Following Lemmas 4.1 and 4.2, we are reduced to showing convergence in law for Vn and Wn

in suitable rough path topologies and identifying the solution of the limiting RDE with an SDE.
We first establish this result for the case that the support of an and bn is uniformly bounded,
i.e., there exists a compact set K ⊂ Rd such that the support of an and bn is contained in K×Λ
for all n ∈ N ∪ {∞}.

Theorem 4.3. Suppose that Assumptions 2.11 and 2.12 hold and that the support of an and bn
is uniformly bounded. Then, for any p ∈ (2, 3) and β ∈ (1, 2), there exists a random variable
(V,W) in Dβ-var(A)×Dp-var(B) such that (Vn,Wn) →λn (V,W), and such that (V,W) is a.s.
continuous. Moreover, if β ∈ (1, 1 + κ′), p ∈ (2, θ), and β ≤ p/2, then the RDE (4.1) driven by
(V,W) along the vector fields (F,H) is a weak solution of the SDE (2.9).

Before proving Theorem 4.3, we first state an immediate consequence of Corollary 3.7,
Lemma 4.2, Theorem 4.3, and the continuous mapping theorem.

Corollary 4.4. Suppose we are in the setting of Theorem 2.17 and that the support of an and bn
is uniformly bounded. Then, for any p > 2, xn →λn X in the p-variation norm |x(0)|+∥x∥p-var,
where X is a weak solution of the SDE (2.9).

We break the proof of Theorem 4.3 into several lemmas.

Lemma 4.5. Suppose that Assumption 2.11 holds and that the support of an is uniformly
bounded. Then for every β > 1

∥Vn − V ∥β-var →λn 0 ,

where V : [0, 1] → A is the deterministic path V (t) = tā.

Proof. Let K ⊂ Rd be compact such that K×Λ contains the support of an. Then the embedding
C1+κ̄(K,Rd) ↪→ A is compact. Observe further that, for all s, t ∈ [0, 1] with |t− s| > n−1,

|Vn(t)− Vn(s)|C1+κ̄ ≤ 2|t− s||an|C1+κ̄,0 . (4.3)

It follows that (Vn)n≥1 satisfies the compact containment condition [7, Rem. 3.7.3] and condi-
tion [7, Thm. 3.7.2(b)]. Hence, by the tightness criterion [7, Thm. 3.7.6], (Vn)n≥1 is tight in the
(J1) Skorokhod space D([0, 1],A) (note that [7, Thm. 3.7.6] implies only relative compactness,
but tightness is a consequence of the proof).

Observe next that, for β > 1, the interpolation estimate (3.4) implies σβ-var(X,Y ) ≤
σ∞(X,Y )1−1/β(∥X∥1-var + ∥Y ∥1-var)

1/β , where σ∞ is the (J1) Skorokhod metric defined as
in (3.3) with ∥·; ·∥p-var replaced by ∥·; ·∥∞. Moreover, the map X 7→ ∥X∥1-var is invariant
under reparametrizations and is lower semi-continuous under the metric ∥·; ·∥∞ and thus under
the metric σ∞. It follows that, for every R ≥ 0 and every compact subset K of the classical (J1)
Skorokhod space D([0, 1],A), the set

{X ∈ K | ∥X∥1-var ≤ R}
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is compact in Dβ-var(A). Furthermore, (4.3) implies that, as a càdlàg path with values in
C1+κ̄(Rd,Rd), Vn has 1-variation uniformly bounded in n ≥ 1 and Y

(n)
0 ∈ Λ. It follows that

(Vn)n≥1 is tight in Dβ-var(A). Hence, by Prokhorov’s theorem [2, Thm. 5.1], (Vn)n≥1 is weakly
relatively compact in the space of probability measures on Dβ-var(A), and by Assumption 2.11,
the only possible limit point is V . Finally, since V is continuous and deterministic, the same
argument as in the proof of Corollary 3.7 implies that ∥Vn − V ∥β-var →λn 0 for all β > 1.

Showing convergence of Wn is more involved.

Lemma 4.6. Suppose that Assumption 2.12(i) holds and that the support of bn is uniformly
bounded. Then

Eλn

[
|Wn(k/n)−Wn(ℓ/n)|2qB

]1/(2q)
≲ n−1/2|k − ℓ|1/2 ,

Eλn

[
|Wn(k/n, ℓ/n)|qB⊗2

]1/q
≲ n−1|k − ℓ| ,

uniformly in n ≥ 1 and 0 ≤ k, ℓ ≤ n.

Proof. For a function u : Rd → R, let us introduce the notation

∆σu(x) = u(x+ σ)− u(x) , and ∆m+1
σ = ∆σ ◦∆m

σ .

For s > 0 and p ≥ 1, recall the Besov space Bs
p consisting of all Lp functions u : Rd → R such

that
|u|pBs

p
= |u|Lp +

∫
|σ|≤1

|σ|−sp−d|∆⌈s⌉+1
σ u|pLp dσ < ∞ .

Let us further introduce the notation

∆m
σ Wn(k/n, ℓ/n;x) = n−1/2

ℓ∑
r=k

∆m
σ bn(x, Y

(n)
r ) .

Denote in the sequel s = k/n and t = ℓ/n. Proposition 2.14 implies that for each m ≥ 1 (cf. [17,
p. 4088])

Eλn

[
|∆m

σ Wn(s, t;x)|2q
]1/(2q)

≲ |∆m
σ bn(x, ·)|Cκ |t− s|1/2 . (4.4)

Setting m = ⌈θ + d
2q ⌉+ 1, it follows that

Eλn

[
|Wn(s, t; ·)|2qB

]
≲ Eλn

[
|Wn(s, t; ·)|2q

B
θ+d/(2q)
2q

]
= Eλn

[ ∫
|Wn(s, t;x)|2q dx

+

∫
|σ≤1|

|σ|−2θq−2d

∫
|∆m

σ Wn(s, t;x)|2q dx dσ
]

≲
∫

|bn(x, ·)|2qCκ |t− s|q dx

+

∫
|σ|≤1

∫
|∆m

σ bn(x, ·)|2qCκ |t− s|q dx dσ

≲ |t− s|q|bn|2q
B

θ+d/(2q)
2q ;Cκ

≲ |t− s|q ,

17



where the first estimate follows from the embedding B
θ+d/(2q)
2q ↪→ Cθ, the second from (4.4), the

third from the definition of | · |
B

θ+d/(2q)
2q ;Cκ [17, p. 4086], and the fourth from [17, Lemma 5.5]

since bn has uniformly bounded support and supn≥1 |bn|Cα,κ < ∞ with α > θ + d/(2q).
The second estimate follows in a similar way from Proposition 2.14 upon using the bound

Eλn

[
|∆m

x,σ∆
m′
x′,σ′Wn(s, t;x, x

′)|q
]1/q

≲ |∆m
σ bn(x, ·)|Cκ |∆m′

σ′ bn(x
′, ·)|Cκ |t− s|

and the argument from [17, p. 4089-4090] (note that this is where we require supn≥1 |bn|Cα,κ < ∞
for α > θ + d/q, so that supn≥1 |bn|Bθ+d/q

q
< ∞).

Lemma 4.7 (Tightness). Suppose that Assumption 2.12(i) holds and that the support of bn is
uniformly bounded. Then, for any p > 2, it holds that

sup
n≥1

Eλn [∥Wn∥2qp-var] < ∞

and that (Wn)n≥1 is a family of tight random variables in Dp-var(B).

Proof. Consider θ′ ∈ (θ, α − d
q ) and the space B′ = Cθ′(K,Rd), where K × Λ contains the

support of all bn. We first show, using a similar argument as in the proof of Lemma 4.5, that
(Wn)n≥1 is tight in the (J1) Skorokhod space D([0, 1],B⊕B⊗2). Indeed, Lemma 4.6 and (3.10)
imply that (Wn)n≥1 satisfies condition [7, Thm. 3.7.2(b)], and, since the embedding B′ ↪→ B
is compact, that (Wn)n≥1 satisfies the compact containment condition [7, Rem. 3.7.3]. Hence,
by [7, Thm. 3.7.6], (Wn)n≥1 is tight in D([0, 1],B ⊕ B⊗2).

Consider now p′ ∈ (2, p). The interpolation estimate (3.4) implies σp-var(X,Y) ≤
σ∞(X,Y)1−p′/p(∥X∥p′-var + ∥Y∥p′-var)

p′/p with σ∞ defined as in the proof of Lemma 4.5. More-
over, the map X 7→ ∥X∥p′-var is invariant under reparametrizations and is lower semi-continuous
under ∥·; ·∥∞ and thus under σ∞. Hence, for R > 0 and a compact subset K of the (J1)
Skorokhod space D([0, 1],B ⊕ B⊗2), the set

{X ∈ K | ∥X∥p′-var ≤ R}

is compact in Dp-var(B). Considering Wn as an element of Dp′-var(B′), it follows from Lemma 4.6
and (3.9) (applied to these new parameters) that supn≥1 Eλn [∥Wn∥2qp′-var] < ∞. Consequently
(Wn)n≥1 is tight in Dp-var(B).

For an element π ∈ L(B,Rm) and b ∈ Cθ,κ(Rd×Λ,Rd), write πb : M → Rm for the function
y 7→ π(b(·, y)). A direct verification shows that |πb|Cκ ≤ |π|L(B,Rm)|b|Cθ,κ (see, e.g., the proof
of [17, Lem. 5.12]).

Consider the subspace of L(B,R)

L̃(B,R) = span
{
b 7→ Dkbj(x) | x ∈ Rd, k ∈ Nd, |k| ≤ 1, j ∈ {1, . . . , d}

}
.

For m ≥ 1, we denote by L̃(B,Rm) the subspace of π ∈ L(B,Rm) such that πi ∈ L̃(B,R) for
every i = 1, . . . ,m. We note that L̃(B,R) does not appear in the work [17], however, due to the
generality of our setting, we find it more convenient to work with than the full space L(B,R).

Observe that, for b ∈ Cθ,κ
n (Rd × Λ,Rd), the map x 7→ b(x, ·) is a Cθ map from Rd into the

closed subspace Cκ
n(Λ), and thus πb ∈ Cκ

n(Λ) for all π ∈ L̃(B,R).

Lemma 4.8 (Finite-dimensional projections). Let π ∈ L̃(B,Rm) for some m ≥ 1 and suppose
that Assumption 2.12 holds. Let B be defined as in Proposition 2.15, and let Wπ be an Rm-valued
Brownian motion with covariance

E[W i
π(1)W

j
π(1)] = B(πib∞, πjb∞) +B(πjb∞, πib∞) .
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Define further

Wi,j
π (t) =

∫ t

0
W i

π dW
j
π +B2(π

ib∞, πjb∞)t .

Then, as n → ∞,
(πWn, (π ⊗ π)Wn) →λn (Wπ,Wπ)

in the sense of finite-dimensional distributions.

Proof. By the preceding remarks, πbn ∈ Cκ
n(Λ,Rm) for n ∈ N∪{∞} and limn→∞ |πbn−πb∞|Cκ =

0, so the conclusion follows by Assumption 2.12 and Proposition 2.15.

The convergence of finite-dimensional distributions, together with tightness, allows us to
establish uniqueness of weak limit points (which we note settles a point of ambiguity in [17,
Rem. 5.14]).

Proposition 4.9. Suppose that Assumptions 2.11 and 2.12 hold and that the support of an and
bn is uniformly bounded. Let β > 1 and p > 2. Then there exists a random variable (V,W) in
Dβ-var(A)×Dp-var(B) such that (Vn,Wn) →λn (V,W). Furthermore, (V,W) is a.s. continuous.

Proof. By Lemma 4.5, ∥Vn−V ∥β-var →λn 0, where V is deterministic and continuous. It remains
to show that Wn converges weakly to a limit point W which is a.s. continuous. By Lemma 4.7,
(Wn)n≥1 is tight and thus weakly relatively compact by Prokhorov’s theorem [2, Thm. 5.1]. Let
W and W̃ be weak limit points of two subsequences of Wn. Since the largest jump of Wn is of
the order n−1/2 and the largest jump of t 7→ Wn(0, t) is of the order n−1/2 supt∈[0,1] |Wn(t)|B, it
follows that W is a.s continuous (and likewise for W̃).

We now show that W and W̃ have the same law. Consider the collection of R-valued
functions on Dp-var(B)

F :=
{
(X,X) 7→

k∑
j=1

τj(πjX(tj), (πj ⊗ πj)X(tj))
}
,

where the parameters range over all k ≥ 1, τj ∈ L(Rmj ⊕ (Rmj )⊗2,R), πj ∈ L̃(B,Rmj ), mj ≥ 1,
and tj ∈ [0, 1]. For any f ∈ F , it follows from Lemma 4.8 that f(W) and f(W̃) have the same
law. In particular, E[eif(W)] = E[eif(W̃)] for all f ∈ F . However, the collection of C-valued
functions F̃ := {w 7→ eif(w) | f ∈ F} is a unital algebra of bounded functions on Dp-var(B)
which separates points and is closed under conjugation. Moreover, every f ∈ F̃ is continuous
on the subspace of continuous paths in Dp-var(B), and in particular on the support of W and
W̃. The laws of W and W̃ are Radon measures since they are obtained as weak limit points
of tight sequences, hence, by the Stone–Weierstrass theorem and a compactification argument
(see, e.g., [3, Ex. 7.14.79]), W and W̃ have the same law.

It remains to characterize the RDE driven by (V,W) as the solution to an SDE. We flesh out
the abstract statement in the following lemma, which is a slight simplification of [17, Lem. 6.1].

Lemma 4.10. Let X be the solution to the RDE

dX = F (X)ādt+H(X) dW , X(0) = ξ ∈ Rd ,

where ā ∈ A is fixed and W = (W,W) is a random p-rough path over B, p < θ. Suppose that,
for all m ≥ 1 and π ∈ L̃(B,Rm),

(πW, (π ⊗ π)W) ∼ (Wπ,Wπ) (4.5)
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in the sense of finite dimensional distributions, where Wπ is an Rm-valued Brownian motion
with covariance

Σij
π := E[W i

π(1)W
j
π(1)]

and

Wij
π (t) =

∫ t

0
W i

π(s) dW
j
π(s) + Γij

π t .

For every x ∈ Rd, let us define Σ(x) := ΣH(x) and, for i = 1, . . . , d,

Γi(x) :=

d∑
k=1

Γ
k(ki)
H(x)⊕DH(x) ,

where we treat H(x)⊕DH(x) ∈ L̃(B,Rd ⊕ (Rd)∗ ⊗ Rd). Suppose further that

sup
x∈Rd

d∑
i=1

|Σii(x)|+ |Γi(x)| < ∞ . (4.6)

Then X solves the martingale problem associated with L = (ā+ Γ)D + 1
2ΣD

2.

Proof. Let {Ft}t∈[0,1] denote the filtration generated by the finite-dimensional projections of W.
We first show that M : [0, 1] → Rd is a martingale with respect to F , where

M(t) := X(t)−
∫ t

0
ā(X(s)) ds−

∫ t

0

d∑
k=1

Γ(X(s)) ds ,

with quadratic variation

[M i,M j ]t =

∫ t

0
Σij(X(s)) ds . (4.7)

Indeed, the definition of the rough integral readily implies that X and M are adapted to F
(cf. [17, Lem 6.3]). Furthermore, for fixed 0 ≤ s < t ≤ 1, we have

M(t)−M(s) =

∫ t

s
H(X(u)) dW(u)−

∫ t

s
Γ(X(u)) du

= lim
|P|→0

∑
[u,v]∈P

MP
[u,v] ,

where the limit is taken over partitions P of [s, t], and

MP
[u,v] := H(X(u))W (u, v) + (H ⊗DH)(X(u))W(u, v)− Γ(X(u))(v − u) .

Note that the same argument as in [17, Lem. 6.2] implies that πW (u, v) and (π⊗ π)W(u, v) are
independent of Fs for any π ∈ L̃(B,Rm). Taking π(x) = H(x)⊕DH(x) in (4.5), it follows that

E[MP
[u,v] | Fu] = 0 .

Furthermore, for i, j = 1, . . . , d,

E[H i(X(u))W (u, v)Hj(X(u))W (u, v) | Fu] = Σij(X(u))(v − u)

and, by Itô isometry,

E[|(H ⊗DH)(X(u))W(u, v)− Γ(X(u))(v − u)|2 | Fu] ≲ |v − u|2 ,
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where the proportionality constant depends only on Σ(X(u)). Using the bound (4.6), it follows
that M is a martingale with quadratic variation (4.7) as claimed.

Let φ : Rd → R be a smooth, compactly supported function. Since [X] = [M ], by Itô’s
formula,

φ(X(t)) = φ(X(s)) +

∫ t

s
Dφ(X(u)) dX(u) +

1

2

∫ t

s
D2φ(X(u)) d[M ](u) ,

from which it follows that

φ(X(t))− φ(X(s))−
∫ t

s

[
Dφ(ā+ Γ) +

1

2
D2φΣ

]
(X(u)) du

is a martingale.

Proof of Theorem 4.3. The fact that (Vn,Wn) →λn (V,W), where (V,W) is a.s. continuous,
follows from Proposition 4.9. By Lemma 4.8, W satisfies assumption (4.5) of Lemma 4.10
with Σij

π = B(πib, πjb) + B(πjb, πib) and Γij
π = B2(π

ib, πjb). In particular, Γ in Lemma 4.10
is given by Γi(x) =

∑d
k=1B2(b

k(x, ·), ∂kbi(x, ·)). Furthermore, B = 1
2B1 + B2 is bounded

by Assumption 2.12(ii), so Σii(x) ≲ |b(x, ·)|2Cκ ≤ |b|2C0,κ and Γi(x) ≲ |b(x, ·)|Cκ |∇b(x, ·)|Cκ ≤
|b|C0,κ |b|C1,κ . Hence all the assumptions of Lemma 4.10 are verified, and the conclusion follows
from [26, Thm. 4.5.2] by the equivalence of weak solutions to SDEs and the martingale problem.

Proof of Theorem 2.17. This follows from Corollary 4.4 and the exact same localization argu-
ment as in [17, Sec. 7].

5 Continuous-time dynamics revisited

In this section, we show how the results of the Section 2 extend to the case of continuous-time
dynamics. In particular, we extend the results of [17] to include optimal moment assumptions
and families of dynamical systems. Since the arguments are very similar to those of the discrete-
time case (and the setting is similar to that of [17]), we omit the proofs and only state the main
results.

Consider a compact Riemannian manifold M with Riemannian distance ρ. Recall the func-
tion spaces defined in Definition 2.1 and fix parameters q > 1, κ, κ̄ ∈ (0, 1), and α > 2 + d

q . Let
aε ∈ C1+κ̄,0(Rd ×M,Rd) and bε, b0 ∈ Cα,κ(Rd ×M,Rd), for ε ∈ (0, 1], such that

sup
ε∈(0,1]

|aε|C1+κ̄,0 + |bε|Cα,κ < ∞ , lim
ε→0

|bε − b0|Cα,κ = 0 .

We consider the fast-slow systems of ODEs posed on Rd ×M

d

dt
xε = aε(xε, yε) + ε−1bε(xε, yε) ,

d

dt
yε = ε−2gε(yε) ,

where gε : M → TM is a Lipschitz vector field. As before, the initial condition xε(0) = ξε ∈ Rd

is deterministic, and yε(0) is drawn randomly from a Borel probability measure λε on M .
We now give the analogues of Assumptions 2.11 and 2.12 for the current setting.

Assumption 5.1. There exists ā ∈ C1+κ̄(Rd,Rd) such that, for all t ∈ [0, 1] and x ∈ Rd,

|Vε(t)(x)− tā(x)| →λε 0 as ε → 0 ,

where Vε(t) =
∫ t
0 aε(·, yε(s)) ds.
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Let gε,t denote the flow generated by the vector field gε. Given v, w ∈ Cκ(M,Rm) and
0 ≤ s ≤ t ≤ 1, we define Wv,ε(t) ∈ Rm and Wv,w,ε(s, t) ∈ Rm×m by

Wv,ε(t) = ε

∫ tε−2

0
v ◦ gε,s ds , Wv,w,ε(s, t) =

∫ t

s
(Wv,ε(r)−Wv,ε(s))⊗ dWw,ε(r) .

As before, we write simply Wv,ε for Wv,v,ε.
Recall our notational convention about subspaces Cκ

ε (M) of Cκ(M) introduced before As-
sumption 2.3.

Assumption 5.2. There exists a closed subspace Cκ
ε (M) of Cκ(M) for each ε ∈ [0, 1] such that

bε ∈ Cα,κ
ε (Rd ×M,Rd) and such that

(i) for all v = (vε), w = (wε) ∈
∏

ε∈(0,1]C
κ
ε (M) with

sup
ε∈(0,1]

|vε|Cκ + |wε|Cκ < ∞ ,

there exists K = Kv,w,q > 0 such that for all 0 ≤ s ≤ t ≤ 1 and ε > 0,

|Wvε,ε(s, t)|L2q(λε) ≤ K|t− s|1/2 , |Wvε,wε,ε(s, t)|Lq(λε) ≤ K|t− s| .

(ii) There exists a bounded bilinear operator B : Cκ
0 (M) × Cκ

0 (M) → R such that for every
m ≥ 1 and all v = (vε)ε∈[0,1] with vε ∈ Cκ

ε (M,Rm) and limε→0 |vε − v0|Cκ = 0, it holds
that (Wvε,ε,Wvε,ε) →λε (Wv,Wv) as ε → 0 in the sense of finite-dimensional distributions,
where Wv is an Rm-valued Brownian motion and

Wij
v (t) =

∫ t

0
W i

v dW
j
v +B(vi0, v

j
0)t .

Remark 5.3. As in Remark 2.13, under the assumption that λε is gε,t-stationary, the simpler
bounds

|Wvε,ε(t)|L2q(λε) ≤ Kt1/2 and |Wvε,wε,ε(0, t)|Lq(λε) ≤ Kt for all ε, t ∈ (0, 1]

imply Assumption 5.2(i).

Remark 5.4. As in Proposition 2.15, one can show that Assumption 5.2 implies that the co-
variance of Wv is given by

E[W i
v(1)W

j
v(1)] = B(vi0, v

j
0) +B(vj0, v

i
0) .

Furthermore, as in Section 2.1, if aε, bε, Tε, λε do not depend on ε, then one can drop the condi-
tion that B is bounded in Assumption 5.2 since this follows automatically (see [17, Prop. 2.8]).

Consider the quadratic form

Σij(x) = B(bi0(x, ·), b
j
0(x, ·)) +B(bj0(x, ·), b

i
0(x, ·)) , i, j = 1, . . . , d . (5.1)

By the same argument as Lemma 2.9, Σ is positive semi-definite and the unique positive semi-
definite σ satisfying σ2 = Σ is Lipschitz. In particular, as before, there is a unique (strong)
solution to the SDE dX = ã(X) dt+ σ(X) dB for any Lipschitz ã : Rd → Rd.

The following is the main result of this section, the proof of which we omit since it requires
only minor changes to that of Theorem 2.17.
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Theorem 5.5. Suppose that Assumptions 5.1 and 5.2 hold, and that ξε → ξ ∈ Rd. Then
xε →λε X in the uniform topology as ε → 0, where X is the unique weak solution of the SDE

dX = ã(X) dt+ σ(X) dB , X(0) = ξ . (5.2)

Here, B is a standard Brownian motion in Rd, σ is the unique positive semi-definite square root
of Σ given by (5.1), and ã is the Lipschitz function given by

ãi(x) = āi(x) +

d∑
k=1

B(bk0(x, ·), ∂kbi0(x, ·)) , i = 1, . . . , d .

A Rough path Besov-variation embedding

We adapt Friz–Victoir [11, 12] in proving some variants of a Besov-variation embedding, ap-
plicable in an infinite-dimensional rough path setting. Let B be a Banach space and equip
B⊗2, . . . ,B⊗N with a system of admissible tensor norms. For a continuous multiplicative func-
tion W = (1,W1, . . . ,WN ) : [0, T ]2 → ⊕N

k=0B⊗k define the homogeneous Besov norm

∥W∥qWα,q ;[s,t] :=
N∑
k=1

∫∫
[s,t]2

|Wk
v,u|

q/k

B⊗k

|u− v|qα+1
dudv .

Proposition A.1. Suppose q > 1 and α ∈ (1q , 1). There exists a constant C = C(α, q,N) such
that

N∑
k=1

|Wk
s,t|q/k ≤ C|t− s|qα−1∥W∥qWα,q ;[s,t] .

Proof. We follow a similar strategy to [12, Proposition A.9]. We proceed by induction on N .
The case N = 1 follows directly from the GRR lemma [12, Corollary A.2]. Suppose the result
is true for N − 1. Since both sides scale homogeneously with dilations, we may suppose that
∥W∥qWα,q ;[s,t] ≤ 1. Let us write α − 1

q =: 1/p. All double integrals in the sequel are taken over
[s, t]2, and C denotes an unimportant positive constant which may change from line to line.

Define Υs,t = supu,v∈[s,t]
|Wu,v |

|v−u|N/p , and observe that it suffices to show Υs,t ≤ C. We have

WN
s,v −WN

s,u = WN
u,v +

N−1∑
j=1

WN−j
s,u ⊗Wj

u,v ,

and thus (∫∫ |WN
s,u −WN

s,v|q

|v − u|qα+1
dudv

)1/q
≤ ∆1 +∆2 ,

where

∆1 =

N−1∑
j=1

(∫∫
|WN−j

s,u |q |Wj
u,v|q

|u− v|qα+1
dudv

)1/q
,

∆2 =
(∫∫ |WN

u,v|q

|u− v|qα+1
dudv

)1/q
.

For ∆1, by the inductive hypothesis, we have |W(N−j)
s,u |q ≤ |t− s|q(N−j)/p, so that

∆1 ≤
N−1∑
j=1

|t− s|(N−j)/p
(∫∫

|Wj
u,v|q

|u− v|qα+1
dudv

)
.
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Again by the inductive hypothesis, we have

|Wj
u,v|q(1−1/j) ≤ |t− s|q(j−1)/p ,

so that

∆1 ≤
N∑
j=1

|t− s|(N−1)/p
(∫∫

|Wj
u,v|q/j

|u− v|qα+1
dudv

)
≤

N∑
j=1

|t− s|(N−1)/p .

For ∆2, we have

∆2 ≤
(∫∫

Υ
q(1−1/N)
s,t |t− s|q(N−1)/p

|WN
u,v|q/N

|v − u|qα+1
dudv

)1/q

≤ Υ
1−1/N
s,t |t− s|(N−1)/p .

Combining the above two estimates, we have(∫∫ |WN
s,u −WN

s,v|q

|v − u|qα+1
dudv

)1/q
≤ C|t− s|(N−1)/p(1 + Υ

1−1/N
s,t ) .

Applying the GRR lemma to the continuous path WN
s,· : [s, t] → B⊗N we have

|WN
s,t| ≤ C|t− s|1/p|t− s|(N−1)/p(1 + Υ

1−1/N
s,t )

≤ C|t− s|N/p(1 + Υ
1−1/N
s,t ) .

Finally, note that the above argument applies to any interval [s′, t′] ⊂ [s, t]. It follows that

Υs,t ≤ C(1 + Υ
1−1/N
s,t ) ,

and thus Υs,t ≤ C as desired.

Recall the homogeneous γ-Hölder “norm” for γ ∈ (0, 1]

∥W∥γ-Höl;[s,t] :=
N∑
k=1

sup
u,t∈[s,t]

|Wk
v,u|1/k

|u− v|γ
.

Corollary A.2. Let q > 1 and α ∈ (1q , 1). There exists a constant C = C(α, q,N) such that

∥W∥(α−1/q)-Höl;[s,t] ≤ C∥W∥Wα,q ;[s,t] .

Proof. Immediate from Proposition A.1.

Recall the homogeneous p-variation “norm” for p ≥ 1

∥W∥pp-var;[s,t] := sup
P

∑
[u,v]∈P

N∑
k=1

|Wk
u,v|p/k ,

where the supremum runs over all partitions P of [s, t].

Corollary A.3. Let q > 1 and α ∈ (1q , 1). There exists a constant C = C(α, q,N) such that

∥W∥1/α-var;[s,t] ≤ C|t− s|α−1/q∥W∥Wα,q ;[s,t] .
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Proof. By Proposition A.1 we have for all u, v ∈ [s, t] and k = 1, . . . , N

|Wk
u,v|

1
αk =

(
|Wk

u,v|q/k
) 1

αq

≤ C
(
|u− v|qα−1

) 1
qα

(
∥W∥qWα,q ;[u,v]

) 1
qα

.

Note however that ω1(u, v) = |u − v| and ω2(u, v) := ∥W∥qWα,q ;[u,v] are controls, and thus so is

ω := ω
1− 1

qα

1 ω
1
qα

2 . Hence
∥W∥1/α1/α-var;[s,t] ≤ ω(s, t) ,

from which the conclusion follows.

Remark A.4. Besov (rough path) regularity effectively interpolates between the well-known
Hölder- and p-variation cases, see [9] for a discussion.
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