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Abstract

Relative periodic solutions are ubiquitous in dynamical systems with continuous symmetry.
Recently, Sandstede, Scheel and Wulff derived a center bundle theorem, reducing local bifurca-
tion from relative periodic solutions to a finite dimensional problem. Independently, Lamb and
Melbourne showed how to systematically study local bifurcation from isolated periodic solutions
with discrete spatiotemporal symmetries.

In this paper, we show how the center bundle theorem, when combined with certain group
theoretic results, reduces bifurcation from relative periodic solutions to bifurcation from isolated
periodic solutions. In this way, we obtain a systematic approach to the study of local bifurcation
from relative periodic solutions.
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1 Introduction

Relative equilibria and relative periodic solutions occur in numerous physical experiments in which
there are continuous symmetries present. For example, in excitable media there arise spirals that
rigidly rotate, see [36], as well as spirals that undergo quasiperiodic meandering, see [32] and that
undergo linear drift [38, 25]. The rigidly rotating spirals are examples of relative equilibria — in a
rotating frame they are ordinary equilibria. The quasiperiodically meandering and linearly drifting
spirals are examples of relative periodic solutions. In appropriate moving frames (a rotating frame
and a translating frame respectively) they reduce to periodic solutions.

Similarly, in the Taylor-Couette experiment, wavy vortices [1] are examples of relative equi-
libria, whereas modulated wavy vortices [17] are examples of relative periodic solutions. Relative
equilibria and relative periodic solutions arise also in flame experiments [16] (and in the associated
numerics [3]), and in two dimensional convection patterns [29].
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Transitions from relative equilibria and relative periodic solutions have been analyzed in the above
settings using equivariant bifurcation theory. This is an extension to systems with symmetry of the
standard local bifurcation theory for systems without symmetry. We note that in dynamical systems
without symmetry, there is a complete theory of the generic local bifurcations that occur as a single
bifurcation parameter is varied; see for example Guckenheimer and Holmes [19, Chapter 3]. Local
bifurcations are by definition the bifurcations that occur in the neighborhood of a nonhyperbolic
equilibrium or a nonhyperbolic periodic solution.

As described in more detail below, there exists a systematic approach to bifurcation from equi-
libria [15] and relative equilibria [20, 30, 9] in systems with symmetry. The analogous theory for
periodic solutions is due to [21, 23]. In this paper, we develop a systematic approach to bifurcation
from relative periodic solutions, building upon previous work of [31].

The first systematic results in equivariant bifurcation theory were obtained for bifurcation from
fully symmetric equilibria under the assumption that the group of symmetries I' is a compact Lie
group; see Golubitsky, Stewart and Schaeffer [15]. Such equilibria are generically isolated.

A relative equilibrium is a T-orbit in phase space that is also invariant under the flow. If we
denote the flow by @, then ug lies on a relative equilibrium if and only if ®;(ug) € Tug for all . The
simplest example of a relative equilibrium is a group orbit of equilibria. A relative equilibrium on
which the flow is periodic is called a rotating wave. In general, the flow on a relative equilibrium is
either quasiperiodic or unbounded. The flows on a relative equilibrium were classified algebraically
by Field [11] in the case that I' is a compact Lie group and by Ashwin and Melbourne [2] for T a
general finite dimensional Lie group.

In the case that T' is compact, Krupa [20] showed that, modulo drifts along continuous group
orbits, the problem of bifurcation from a relative equilibrium reduces generically to the problem of
bifurcation from an isolated equilibrium as studied in [15]. In this way, the usual center manifold
theorem for equilibria [19] translates into a center bundle theorem for relative equilibria. Sandstede,
Scheel and Wulff [30] considered linear isometric representations of a possibly noncompact Lie group
I' on a Banach space. Suppose that I' acts continuously on wug and that T'uy is an embedded
submanifold with compact isotropy subgroup

A={yeT:yuy=ug}.

Under certain spectral hypotheses, it is shown in [30] that a finite dimensional center bundle re-
duction still exists, and moreover that T' acts properly on the center bundle. (Recall that T acts
properly on the space M if the map (y,u) — (yu,u) € M x M sends closed sets to closed sets and
preimages of points in M x M are compact.) It is then possible to apply the differentiable slice
theorem of Palais [28] (see also the book by tom Dieck [7]). As shown in Fiedler et al. [9], the slice
theorem gives convenient coordinates on the center bundle, enabling the computation of the drifts
arising through bifurcation.

More precisely, let T'ug be a relative equilibrium with compact isotropy subgroup A and let V
be a A-invariant cross-section. Consider the free action of I' x A on I' x V' where I" acts by left
multiplication on the I'-component, and § € A acts as

é- (77 U) = (’7(5_17 6’”)
Since A is compact and acts freely, we can form the quotient manifold
FxaV=>TxV)/A.

It follows from Palais [28] that there is a neighborhood U of the relative equilibrium that is diffeo-
morphic to T' xa V. The vector field restricted to U lifts to a I' x A-equivariant vector field on
I' x V. See Fiedler et al. [9].



Now we turn to bifurcation from relative periodic solutions. Recall that ug lies on a relative
periodic solution if ug does not lie on a relative equilibrium and there is some time 7" > 0 such that
&7 (ug) € T'ug. The corresponding relative periodic solution P is defined to be

P ={y®i(uo) : v €T, te[0,T)}.

The minimal choice of T is called the relative period of P and by rescaling time we may suppose
that T' = 1. The flows on a relative periodic solution were classified by Krupa [20] in the case that
T is compact (see also Field [12]) and by Ashwin and Melbourne [2] in the general case.

As in the case of relative equilibria, we suppose that the isotropy subgroup A of the point ug € P
is compact. In Lamb and Melbourne [21], it is assumed in addition that dimI' = dim A. The
relative periodic solution is then an ordinary periodic solution and moreover is generically isolated.
A systematic approach to bifurcation from such isolated periodic solutions is presented in [21]. Once
again, the problem is reduced to the problem of bifurcation from an isolated equilibrium.

A center bundle theorem for relative periodic solutions is proved in Sandstede, Scheel and
Waulff [31]. The local dynamics then reduces from an infinite dimensional phase space to a finite
dimensional manifold M on which the Lie group I' acts smoothly and properly. We take this as our
starting point and refer to [31] for a statement and discussion of the technical hypotheses behind
the center bundle theorem.

Remark 1.1 The center bundle theorem of [31] holds quite generally when I' is compact, and
under certain hypotheses when I' is noncompact. Moreover, as shown in [31], in some instances it is
possible to choose coordinates on the center bundle so that the reduced finite-dimensional equations
are amenable to established techniques from equivariant bifurcation theory. However, we emphasize
that the issue of choosing such coordinates is not solved in general in [31]. Hence, the results in [31]
(even when combined with those in [21, 23], and even when T is compact) fall short of providing a
fully systematic theory for bifurcation from relative periodic solutions. Such a theory is the purpose
of this paper.

Spatial and spatiotemporal symmetry

Let T be a finite dimensional Lie group acting smoothly and properly on the finite dimensional
manifold M. Suppose that P is a relative periodic solution (with relative period 1) for the T'-
equivariant ODE

o= F(u), (L.1)

where F : M — T'M is a I'-equivariant vector field.

The symmetries that leave P invariant come in two forms. First, there is the group of spatial
symmetries, namely the isotropy subgroup A of ug. (Since I' acts properly on M, the isotropy
subgroup A is automatically compact.) Second, there is the group of spatiotemporal symmetries ¥
defined in the following way. Choose o € I such that ®;(ug) = oug. Then, ¥ is the closed subgroup
of T generated by A together with . Note that A is a normal subgroup of X.

The subgroups A and ¥ depend on ug but are unique up to conjugacy within I'. We shall regard
ug, and hence A and X, as being fixed. More significantly, ¢ is defined only up to multiplication
by elements of A (so only the coset A is uniquely determined). It turns out that particularly
convenient choices of ¢ exist when I' is an algebraic group. (More generally, it is sufficient that the
normalizer N(A) of A is an algebraic group.) For background material on algebraic groups, we refer
to [27]. Such groups are characterized as being those subgroups of GL(n, R), n > 1, that are defined



by polynomial equalities in the coefficients of the matrices. Thus, every algebraic group is a finite
dimensional Lie group. We note that all compact Lie groups are algebraic, as are the Euclidean
groups E(N). The classical Lie groups are algebraic, and more generally a semisimple Lie group is
an algebraic group if and only if it is a matrix group.

The following result about algebraic groups is proved in Section 5. Let LG denote the Lie algebra
of a Lie group G.

Proposition 1.2 Suppose that T is an algebraic group, A is a compact subgroup, and oo € N(A).
Let 3. be the closed subgroup of T' generated by A and og. Then there is an element o € oA such
that o™ € expLZ(X) for some n > 1.

Here, Z(X) is the centralizer of ¥ inside T'.

Skew product for relative periodic solutions

Suppose that P is a relative periodic solution for a I'-equivariant vector field on M. As before,
the spatiotemporal symmetry X is the closed subgroup of I' generated by the spatial symmetry A
together with an element o.

Suppose further that I" is algebraic and A is compact. By Proposition 1.2, we may assume
without loss that o™ = expné where n > 1, £ € LZ(X). We form a semidirect product A x Zsy, by
adjoining to A an element @ of order 2n, where QdQ ! = odo~! for § € A. (In particular, Q™ lies
in the center of A x Zs,.) Also, define a = exp(—£)o, so a™ =1id.

We now state our main result. The proof is given in Section 2.

Theorem 1.3 In a comoving frame, moving uniformly with velocity &,

(a) There is a neighborhood U of the relative periodic solution P such that

TxaV)x8"  TxVxS§'

v Z2n B AXZQH ’

1%

where V is a representation of the group A X Zsy, S = R/2nZ, and the action of A x Za, on
I'xV x St is given by

5 (7,0,0) = (v67,60,8), €A, Q- (y,v,0) = (ya™',Qu,0 +1). (1.2)

(b) The equations on U lift to A X Zo,-equivariant skew product equations on T x V x St of the
form (after reparameterizing time)

"YZ’YfF(Uaa); ’[):fV(vae)a 0217 (13)

where fr : V x S* — LT and fv : V x S* = V are smooth vector fields satisfying fr(0,0) = &,
fv(0,8) =0, for all 6 € S*.

Remark 1.4 (a) In the comoving frame, the relative periodic solution P is transformed into a group
orbit (under T") of ordinary periodic solutions. We speak of comoving frames since it is necessary to
pass both to corotating frames (in case P is a modulated rotating wave) and to cotraveling frames
(in case P is a modulated traveling wave).

(b) The vector space V in Theorem 1.3 is defined to be a A-invariant cross-section to the relative
periodic solution P, see [31] and also Section 2. The representation of A x Zs,, is arbitrary, in the



sense that any representation can arise for an appropriate choice of manifold M and vector field F.
Furthermore, fr : V x 8! — LT and fy : V x 8! — V are general vector fields satisfying the
equivariance conditions and the restrictions at v = 0 in Theorem 1.3.

(c) If we replace I x V x S by T' x V, and A x Zs,, by A, then the skew product structure in
Theorem 1.3 reduces to the skew product structure in Fiedler et al. [9]. Hence Theorem 1.3 is a
generalization to relative periodic solutions of the results in [9] for relative equilibria.

The restrictions on fr and fy that arise from the action (1.2) of A x Z,, are easily computed
to be as follows:

fr((;'l},e) = Ad5fF(U70)7 de A; fF(Qvae) = Adafr‘(’l},e - 1);
fV(6v70):6fV(U76)7 6€A7 fV(Qvae):QfV(U70_1)'

If time is not reparameterized, the 6 equation takes the form 6= fo(v,8) where

f@(dv,G) :fG(U;G); 6€A, f@(QUae) :fG(UaG_l)'

Bifurcations

Lamb and Melbourne [21] give a systematic approach to generic bifurcation from isolated periodic
solutions with spatiotemporal symmetry. It follows from Theorem 1.3 that this theory generalizes to
arbitrary relative periodic solutions provided the hypotheses of Proposition 1.2 are satisfied. Indeed
the relative periodic solution P in Theorem 1.3 reduces to an isolated periodic solution for the (v, §)-
subsystem. Moreover, by Remark 1.4(b), the (v, #)-subsystem is a general A X Za,-equivariant ODE
possessing a periodic solution with spatial symmetry A and spatiotemporal symmetry A X Zay,.
Hence the theory of [21] applies with the group I' replaced by the group A x Zs,. In particular,
modulo drifts along continuous group orbits in I' governed by the 4 equation, bifurcation from a
relative periodic solution reduces to bifurcation from an isolated periodic solution.

The group A x Zs,, is closely related to the group A X Zoy used in [21] to study bifurcation from
isolated periodic solutions. There, the integer k is the least positive integer such that o* € Z(A).
Of course, k divides n. In fact, it turns out that in applying Theorem 1.3 it is sufficient to consider
representations V of A x Zy,, in which the generator Q of Z,, satisfies Q?* = I.

In other words, the (v,6)-subsystem in Theorem 1.3 can be taken to be a general A X Zog-
equivariant ODE on V x S! where S! = R/2kZ.

The paper is organized as follows. In Section 2, we sketch the results of [31] and prove Theo-
rem 1.3. In Section 3, we show how to apply the results in Sections 2. In Section 4, we investigate in
more depth the structure of relative periodic solutions that arise in equivariant dynamical systems,
building upon work of [20, 12, 2]. In Section 5, we prove Proposition 1.2, as well as related results
for nonalgebraic groups. In Section 6, we prove that provided the group action is proper, bifurcation
from relative periodic solutions for any symmetry group I' reduces, modulo drifts along continu-
ous group orbits, to bifurcation from isolated periodic solutions as studied in [21] (even though
Theorem 1.3 does not hold in this generality).

2 Relative periodic solutions and skew products

In this section, we prove the main result, Theorem 1.3, stated in the introduction. In Subsection (a),
we prove a result about twisted equivariant maps. In Subsection (b), we review the skew product



construction of Sandstede et al. [31]. Theorem 1.3 is proved in Subsection (c). The results in
Subsections (a) and (b) hold for general finite dimensional Lie groups I', whereas in Subsection (c)
we suppose that T' is algebraic.

(a) Twisted equivariant linear maps

Suppose that T is a finite dimensional Lie group with compact subgroup A. Let ¢ € N(A). Then
o induces an automorphism ¢ € Aut(A) defined by

#(8) = o~ L60.

Suppose that A acts orthogonally on a finite dimensional vector space X. Following [21], we say
that a linear map L : X — X is twisted equivariant if

Lé = ¢()L,

for all § € A. (In [24], such a map is said to be k-symmetric where k is least such that ¢* is the
identity automorphism of A.)

Proposition 2.1 Suppose that L : X — X is a twisted equivariant nonsingular linear map. Then
there is a twisted equivariant orthogonal map A : X — X such that A~1L is A-equivariantly isotopic
to the identity.

Proof. By polar decomposition, we can write L uniquely as L = AB where A is orthogonal and B
is positive definite. Indeed, B is defined as the unique positive definite square root of B> = LT L.

We claim that B is equivariant and A is twisted equivariant. It follows from the orthogonality
of the action of A on X that LT L commutes with A. But then for each § € A, the positive definite
matrix B' = §BJ~! satisfies (B')? = LTL. Since B is the unique positive definite square root of
LTL, it follows that B = B' = §B§~! so that B commutes with A. Since L is twisted equivariant
and B is equivariant, we have that A = LB™! is twisted equivariant, proving the claim.

Since B is positive definite and equivariant, it follows that J; = (1 —t)I +tB is positive definite
and equivariant for all ¢ € [0,1]. In particular, B is equivariantly isotopic to the identity. "

Lemma 2.2 Let A be a compact Lie group acting orthogonally on X and suppose that ¢ € Aut(A)
is an automorphism of finite order k. Let L : X — X be a twisted equivariant nonsingular linear
map. Then there is a twisted equivariant orthogonal map A : X — X such that A?* =T and A~'L
is A-equivariantly isotopic to the identity.

Proof. By Proposition 2.1, we may first reduce to the case where L is orthogonal.

The map L* is equivariant in the usual sense. Let 4 denote an eigenvalue of L¥ and denote the
corresponding eigenspace by E,. Note that E, is A-invariant and is also invariant under L. To
prove the lemma, it is sufficient to restrict to E,.

If u = +1, then we have L2* = T and it suffices to take A = L. Otherwise p lies on the unit
circle, but p is not real. Let A € C denote a k’th root of 1 and define A = A\™'L. Then A is twisted
equivariant, and A~'L is equivariantly isotopic to the identity. Moreover, A*F = I. "



(b) The skew product construction of [31]

We consider a finite dimensional Lie group I' acting smoothly and properly on a finite dimensional
manifold M. Let F be a I'-equivariant vector field on M with flow ®; and suppose that P is a
relative periodic solution. Choose ug € P. Without loss, we have that ®;(ug) = oug for some o € T’
and ®4(ug) ¢ Tup for 0 < t < 1. Let A and ¥ denote the spatial and spatiotemporal symmetry
groups of P, so A is compact and ¥ is the closed subgroup of I' generated by A and o.

In Sandstede et al. [31], it was shown how the flow in a neighborhood U of the relative periodic
solution P can be written as a skew product flow on a space of the form I' x V' x R. Here, V is
a A-invariant cross-section to P and 6 € R plays the role of the phase along the relative periodic
solution. Note that V is a Poincaré section which is transverse to (the Cartesian product of) the
time orbit and the group orbit of ug.

Roughly speaking, the idea in [31] is to construct a family of cross-sections Vp around the relative
periodic solution and to use the linearized flow (D®y),,, to define coordinates on Vy. First, write

To4(u)M = Tay(ue)P © Vo, (2.1)

where Vy = V and the cross-sections Vj are A-invariant and depend smoothly on 6. Let Pj :
Ty (uo)M — Vp denote the associated family of projections. By construction, the projections are
A-equivariant and depend smoothly on . Moreover, (D®y),, restricts to a A-equivariant map
Pg(beg)uo V> V.

The idea of the proof can be seen by glancing at the submersion 7 defined below in equation (2.3),
but with the term Jy omitted. For technical reasons, we require the following lemma.

0

Lemma 2.3 Let L = Pyo 1 (D®),, : V = V.
(a) There is an orthogonal map A :V — V and a smooth family of A-equivariant nonsingular linear
maps Jg : V =V, 0 € R, such that

Jo=1, LJgi1 = JyA, 6 e R (2.2)
(b) The projections Py can be chosen so that
Pyrio=0Py, 0 e R
Moreover,
Pp11(DPg11)uy = 0 Py(DPp)y, L.

Proof. Note that L : V — V is twisted equivariant as defined in Subsection (a). That is, Ld = ¢(d)L
for all § € A, where ¢ € Aut(A) is given by ¢(8) = 0~ 16o. It follows from Proposition 2.1 that
there is a twisted equivariant orthogonal map A : V' — V such that A~!L is A-equivariantly isotopic
to the identity. In particular, there is a smooth family of A-equivariant nonsingular linear maps
Jop: V= V,0€]0,1], such that Jo = I and LJ; = A. This family extends uniquely to a continuous
family Jy, 6 € R, satisfying equation (2.2). Modifying Jy near § = 0 and 6 = 1, we obtain a smooth
family Jy, 6 € R, proving part (a).

Next, we prove part (b). Let (,) be a A-invariant inner product on T,,M and define P to
be the orthogonal projection onto V. We repeat the argument above, but applied to the twisted
equivariant map L = 0= (D®, ), : Ty, M — Ty, M to obtain an orthogonal map A : Ty M — Ty M
and a smooth family of A-equivariant nonsingular linear maps jg : Tyy M — Ty, M such that

Jo=1,  LJp1=J4A, 0€R



Let (, )¢ be the A-invariant inner product on T, (y,) M defined by
(v,w)g = (J (D<I>g) v, J (DCI’g)golw).
We compute that
(D(I)G—H)uo = (D(I>9)<1>1(uo)(D<I)1)uo = (D(I)G)ouo (chl)uo = U(DCI)G)uoU_l(D(Pl)uo = U(D(I)G)uoz-
Hence

Join(D®g11),) = J; L L' (D®g) ot = A7 7, 1 (D®g) o

Using the orthogonality of A, it follows that

(v, Y11 = (Jpi (DBoi1)glv, T (DBor) glw) = (A71T,H (DBg) g oo, A7, 1 (D&g) l o™ )
(J '(D&g), o™ Jg (D&), o7 'w) = (o7 v, 0 w)s.

Define Vj to be the orthogonal complement to T, (y,)P in Ta, (4,) M with respect to the inner product
(, )9, and let Py : Tp,(4)M — Vg be the orthogonal projection. Then we have Py 10 = 0Py as
required.

Finally, we compute that

Ppi1(D®py1)uy = Poy10(D®g)uyo " (DP1)u, = 0 Py(D®g)uyo " (D®1 ),
= 0 Py(D®y)y, Poo 1 (D®1 )y, = 0 Py(D®g)u, L,
where we have used the fact that Pp(D®g)y,(I — Fy) = 0 (since (D®g)(TuP) C Toy(ue)P)- n
Now, consider the submersion 7: I' x V x R — M defined by
7(7,v,8) = 7(®g(uo) , Po(DPg)u, Jov). (2.3)

It follows from A-equivariance of Py, (D®p),, and Jp, and A-invariance of the points ®4(ug) € P,
that 7(vd,v,0) = 7(v, dv,0) for all § € A. By Lemma 2.3, we have

7(7,0,0 +1) = v(®o41(uo) , Pop1(DBgi1)ueJo410) = ¥(0®g(uo) , 0Pg(D®g)ueLJo410)
=0 (Po(uo) , Po(D®g)u, JoAv) = 7(v0, Av,6).
Define the orthogonal map Q = A~!. To summarize, we have the identifications

T(v8,v,0) = 7(7,00v,0), €A,  7(v,v,0 +1) =7(y0,Q '0v,6). (2.4)

Remark 2.4 If the term Jp is absent in the definition (2.3) of 7, then the presence of contracting
and expanding eigenvalues for L may imply that the image of 7 is a nonuniform neighborhood of P
as = +oo.

Next, we introduce an action of a group I'x (AxZ) on I'xV xR where I acts as left multiplication
on the I' component and the action of A x Z is given by

(7,0,0) = (v07",6v,0), €A, (1,v,0) = (yo,Qu,0 +1).



It is immediate that 7 is T-equivariant. It follows from the identifications (2.4) that 7 induces a
I'-equivariant map
I'xV xR

T : 7FX(A>4Z)_>M'

As shown in [31], this is an equivariant diffeomorphism onto a uniform neighborhood U of the relative
periodic solution.

The I'-equivariant vector field on the neighborhood U lifts to a I x (A x Z)-equivariant vector
field on ' x V x R. The I'-equivariance is equivalent to saying that the lifted vector field has the
skew product form

"VI’YfF(Uae)a @:fV('Uae)a ézf@(v,G), (25)

where fr(0,6) =0, fy(0,6) =0, for all 6 € R.

We end this subsection by demonstrating that the skew product equations (2.5) are general
equations satisfying the equivariance conditions and the restrictions at v = 0 (cf. Remark 1.4(b)).
We continue to suppose that F : M — TM is a fixed I'-equivariant vector field with flow &,
and relative periodic solution P of relative period 1. As usual, we fix a point ug € P and write
@ (ug) = oup- As described in this subsection, we construct a submersion 7: T' X V x R — U where
U is a uniform neighborhood of P. Note that 7 depends on the flow ®; and hence on the underlying
vector field F.

Now, let 7 : U — TU be a general I'-equivariant vector field defined on the neighborhood U
of the relative periodic solution P and satisfying F|p = F|p. The fixed submersion 7 (defined in
terms of F) gives a one-to-one correspondence between the I'-equivariant vector fields F:U-TU
with relative periodic solution P and T’ x (A x Z)-equivariant skew product equations

7:’7}}‘(1}10)1 ij:fV(’Uae)a é:f@(v,é?),

where fr(0,6) =0, fv(0,6) =0, for all § € R.

Hence, by perturbing the underlying vector field F, but keeping the submersion 7 fixed, we
obtain arbitrary equivariant perturbations of the skew product equations. It is in this sense that
the equations (2.5) are general.

(c) Proof of Theorem 1.3

Now, suppose that T is algebraic. By Proposition 1.2, we may arrange that ¢” € expLZ(X) for
some n > 1. We make two modifications to the construction in Subsection (b).

The first modification involves the choice of ). Since ¢™ € Z(A), the induced automorphism
¢ € Aut(A) satisfies ¢™ = Id. It follows from Lemma 2.2 that the isotopy Jy can be chosen so that
the orthogonal map A = Q! in equation (2.2) has finite order, indeed Q" = I. In the remainder
of this subsection, 7 : T X V x R = M denotes the submersion in Subsection (b) but with the new
isotopy Jy and orthogonal map Q).

The second modification is to pass to a convenient comoving frame. Write 0™ = expné where
£ € LZ(Y). Define a = exp(—£)o, so that a has order n. We define the new submersion

TV (v,v,0) = T(vexp(—6¢),v,0). (2.6)

Note that 77V remains I'-equivariant, since I' acts on the left.



Since 7(v0,v,0) = 7(v,0v,0) for all § € A, and £ € LZ(A), it is immediate that 7V (vd,v,0) =
TV (5, §v,0) for all § € A. Similarly, we compute that

" (7,0,0 + 1) = 7(7 exp(—E) exp(—0¢), v,0 + 1) = 7(y exp(—E) exp(—08)o, Q' v,6)
= 7(yaexp(—6¢), Q" 'v,0) = 7V (va, Q' v, 6).

Since a has order n and Q*" = I, it follows that 7°¢V(vy,v,8 + 2n) = 7V (v,v,6). Hence 7%
induces a T-equivariant submersion 72¢V : T' x V' x S — M, where S! = R/2nZ.

Since Q@ = A~! where A is twisted equivariant, it follows that Q6Q ! = odo~! for § € A. Hence
A and @ generate the compact group A X Zs, defined in the introduction. Moreover, we have a
fixed-point free action of A x Zy, on T x V x S! given by

(7,0,0) = (v671,6v,0), 6€A,  (,0,0) = (va~!,Qu, 0 +1).
It follows as in Subsection (b) that 77" induces a I'-equivariant diffeomorphism

(F XA V) X Sl
ZZn

new
T

IR

: U,
where U is a neighborhood of the relative periodic solution and I'x AV = (I'x V') /A. This completes
the proof of Theorem 1.3(a).

As before, the I'-equivariant vector field on U lifts to a T’ x (A X Zay,)-equivariant vector field on
[ x V x St. The skew product structure (1.3) follows again from T'-equivariance. Hence we have
proved Theorem 1.3(b).

Finally, we note that the coordinates on the new bundle are related to the coordinates on the old
bundle by the I'-equivariant transformation vV =« exp(6¢). The relationship between the vector
fields on the two bundles is given by

" (v,0) = Adexp(—ge) fr(v,0) + &. (2.7)

In particular, fR¢(0,6) = & for all € R. To verify equation (2.7), we compute that

A = 4 exp(6€) + v exp(0€)0€ = v{ fr (v, ) exp(0€) + exp(6€)¢}
= " {exp(—0¢) fr (v,0) exp(0E) + £} = "V fr°V.

Remark 2.5 The 2n-periodicity in Theorem 1.3 holds in complete generality and depends only on
the group-theoretic integer n in Proposition 1.2. However, the methods of the present subsection
often lead to an m-periodic bundle. This is the case when ) can be chosen in Lemma 2.2 so that
the order of @ divides n (for example, if n/k is even).

3 Bifurcations

In this section, we give examples illustrating how to study bifurcation from relative periodic solutions.
We assume that I is an algebraic group, so that we are in the situation of Theorem 1.3. (In Section 6,
we discuss the case when I is not algebraic.)

As described in the introduction, the first step is to study bifurcation from isolated periodic
solutions in the (v,#)-subsystem on V' x S', where S' = R/2nZ. The (v, 0)-subsystem is A x Zoy-
equivariant, where the group A x Zsy, is generated by the spatial symmetries A of the underlying
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relative periodic solution P together with an element ) of order 2k. Note that P reduces to a periodic
solution {0} x ST C V x S! with spatial symmetry A and spatiotemporal symmetry A x Za.

In principle, it is possible to apply the results of [21] to the (v, #)-subsystem. In practice, this is
slightly confusing due to the presence of additional structure in the (v, #)-subsystem. For example,
the phase space V' x S! is a trivial bundle over the periodic solution which was not assumed in [21].
Moreover, an important construction in [21] is a group A X Zsj which coincides here (but not
in [21]) with the spatiotemporal symmetry in the (v, )-subsystem. For these reasons, we repeat
certain calculations from [21] in the following exposition.

Some notational confusion arises from the fact that A x Zy, acts both on V' x S! and on the
cross-section V = V x {0} C V x S'. To avoid confusion, we now use @ to denote the action of @
on V x S' and Qv to denote the action of Q@ on V. Thus @ - (v,6) = (Qvwv,0 + 1). (Note that Q
here corresponds to o in [21] and that there is no analogue of Qv in [21].)

Following the notation of [21] (with o replaced by Q), we let g™") : V — QV be the first hit map
for the flow in the (v,8)-subsystem. (Alternatively, we could write g() : V x {0} = V x {1}, where
V x {0}, V x {1} C V x S are successive cross-sections along the periodic solution.) Bifurcations in
the (v, §)-subsystem are governed by eigenvalues of the twisted equivariant linear map Q' (Dg()), :
V =V (cf. L=0""(Dg")g in [21]). In fact, this linear map coincides with the twisted equivariant
linear map L = Pyo~'(D®),,|v from Section 2(b):

Proposition 3.1 L = Q' (Dg®),.

Proof. Write the time-one map ®; : {id} x V x {0} = {id} x V x {1} in the (v, v,8) coordinates
®,(id, v, 0) = (@] (id, v,0), ®?(id, v, 0), 1).

Using the identification (yo=1,v,0 + 1) ~ (v, Q‘_,lv,é?), we compute that

0_—1(1)1 (1d7 v, 0) = (a-_lq);_y(ida v, 0)7 d:>11}(1d: v, 0)7 1)7 = (Ado_lq)z(id7v7 0)0-_17 <I>’1’(id,1;, 0)7 1)7
= (Adtf—lq)’ly(ida'Uao)an_/l(Ifl)(ida(U;O):O)'

It follows that
L = Pyo™ (D®1)(ia,0,0)|v = Q3" Do ®Y)(i,0,0)-
On the other hand,
Q'gW(v,0) = Q1(21(id,v,0),1) = (Qy' ®}(id,,0),0)
so that @~*(Dg)o,0 = Q3" (Dy®Y) ia0,0) = L- .

By center manifold reduction, we may suppose without loss that V' is the center subspace of L.
Define Ay, to be the closed group generated by the actions of A and L on V.

Theorem 3.2 ( [21, Theorem 3.4] ) Suppose that the periodic solution in the (v,6)-subsystem
undergoes bifurcation. Generically, the center subspace V' of L is an irreducible representation of
AL. Moreover, either V is absolutely irreducible (nonHopf bifurcation), or V is irreducible of complex
type (Hopf bifurcation).

We now concentrate attention on the nonHopf case. The Hopf case is completely analogous.
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Proposition 3.3 Suppose that Ap acts absolutely irreducibly on V. Then L = Q‘_,l and Ay =
A x ng.

Proof. Observe that L and Q‘_,l are twisted equivariant so that Qv L : V — V is an equivariant
linear map. Therefore, Qv L = al where a € R. It follows that Qy and L commute and hence
kI = (QvL)** = Q¥ L* = L?*. Since V is the center subspace of L, it follows that a = +1.
Finally, QL = (Dg("))o which is equivariantly isotopic (by the flow) to the identity on V', ruling out
the possibility that o = —1. "

Next, we define a A-equivariant diffeomorphism h : V — V' by writing ¢(¥) (v,0) = (h(v), 1).

Proposition 3.4 ( [21, Lemma 4.4] ) Up to arbitrarily high order, coordinates can be chosen so
that h is Ar-equivariant. Moreover, h can be regarded, to arbitrarily high order, as a general Ay -
equivariant diffeomorphism satisfying h(0) = 0 and (Dh)o = I.

The analysis of bifurcation from relative periodic solutions thus divides into five steps:
1. Enumerate the absolutely irreducible representations of Ay = A X Zoy.

2. Study the bifurcations of a Ap-equivariant diffeomorphism h : V' — V satisfying h(0) = 0 and
(dh)o = I.

3. Interpret the results for bifurcation from the isolated periodic solution in the (v, #)-subsystem.
4. Substitute the solutions (v(t),6(t)) from Step 3 into the §-equation in (1.3) and solve for 7(¢).
5. Interpret the results for bifurcation from the relative periodic solution P in the original ODE (1.1).

We note that Steps 1 and 3 can be carried out using [21, 23]. Step 2 is covered in [6]. In this
way, we may analyze the (v,6)-subsystem modulo flat terms (that are not L-equivariant) in the
diffeomorphism h. It follows from determinacy results of Field [13] that many important features of
the (v, #)-subsystem are unaffected by the flat terms.

Step 4 is routine in the examples considered in this paper, but is nontrivial in general. (A similar
issue arises in bifurcation from relative equilibria and is made tractable there by ideas of Fiedler and
Turaev [10].)

The interpretation in Step 5 is implicit in the proof of Theorem 1.3. Note that, in particular, it is
necessary to pass back from the comoving frame to the original ‘laboratory’ frame. By concentrating
on specific aspects of the bifurcation theory for h in Step 2, we can state a general result about
solutions bifurcating from P in Step 5. Recall that an isotropy subgroup J C A X Zoy is called azial
if the fixed-point subspace of J is one dimensional.

Proposition 3.5 Let P be a relative periodic solution for the U'-equivariant ODE (1.1) on M, with
spatial symmetry A and spatiotemporal symmetry ¥ generated by A and o.

Suppose that there is a nondegenerate nonHopf bifurcation in the A X Zop-equivariant subsystem.
In particular Ay = A X Zoy acts absolutely irreducibly on E°. Suppose that J is an axial isotropy
subgroup of Ap, and let p > 1 be least such that L=P6 € J for some § € A.

Then there is a branch of relative periodic solutions PP for the ODE (1.1) on M with relative
period p, spatial symmetry AP = TN A, and spatiotemporal symmetry ISP generated by AP and
ot where o™ € Z(AP)aP§ is close to aP.
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Proof. Since J is axial, it follows from the equivariant branching lemma [15, 6] that there is a branch
of fixed points with isotropy J for the diffeomorphism h. By [21, Lemma 4.7], there is a periodic
solution y(t) for the (v,8)-subsystem with spatial symmetry J N A and satisfying y(p) = QPdy(0),
where p > 1, § € A, and p is least.

Write u(t) = 7% (v(t),y(t)) = 77V (y(¢),v(t),t), where 7"V is the submersion defined in Sec-
tion 2(c). In particular, u(0) = 7% (id, vg,0). The spatial symmetry of u(t) is a subgroup of A and
is independent of ¢, so it suffices to compare the isotropy subgroups of u(0) and vy. Let § € A. Then

du(0) = 67" (id, vg, 0) = 7"V (4, vp, 0) = 77V (id, dvg, 0).

It follows that du(0) = u(0) if and only if dug = vy and hence the spatial symmetry of the solution
u(t) is given by J N A. Further,

u(p) = 7"V (v(p), y(P)) = T (v(p), QPdy(0)) = 7" (v(p), QY 6v(0), p)
= 7" (y(p)a?d,v(0),0) = v(p)aPou(0).

Hence u(t) is a relative periodic solution with relative period p (easily verified to be minimal) and
spatiotemporal symmetry P generated by AP = J N A and o = y(p)aPs.

Now, ~(t) is the solution to the % equation in the skew product equations (1.3) with initial
condition (0) = id. The solution y(t) depends smoothly at least on v/X (where ) is the bifurcation
parameter), so that solutions (¢, A) to the equation ¥ = v fr(y(t, ), t,A) depend smoothly on /.
Since fr(0,t,0) = ¢, it follows that v(t,0) = expt{ and hence o®f(A) = v(p, \)aP§ is close to
(exp p&)aPd = aP4.

The condition fr(6v,8) = Adsfr(v,8) implies that fr(y(t,)),t,A) € LZ(AP¥) for all ¢, € R.
Hence 7(t,\) € Z(AP). Tt follows that o®f € Z(APH)oPs. .

Remark 3.6 In Proposition 3.5, we have concentrated attention on the existence of relative periodic
solutions arising from axial isotropy subgroups J C Ap = A X Zy,. More detailed bifurcation
results (such as existence of relative periodic solutions corresponding to nonaxial isotropy subgroup
J, stabilities, and so on) follow similarly from a more detailed analysis of the associated bifurcation
for the Ap-equivariant diffeomorphism h.

In the remainder of this section, we consider examples of nonHopf bifurcation from modulated
rotating waves (Example 3.7) and modulated traveling waves (Example 3.8).

Example 3.7 (Modulated rotating wave) A modulated rotating wave is a relative periodic so-
lution that is periodic in a corotating frame. We consider modulated rotating waves with spatiotem-
poral symmetry ¥ = SO(2) and A = Z, (¢ > 1) in systems with symmetry (a) I' = SO(2) and
(b) T' = E(2). Such modulated rotating waves arise in a variety of different forms in cellular flame
experiments [16, 3] (with I' = SO(2)), and as “meandering (¢-armed) spiral waves” in chemical
reactions [32] (with ' = SE(2)).
(a) T =S0(2). It is immediate that £k = n = 1. Moreover, the element o (which is generically an
irrational rotation) can be written as o = exp £ for some ¢ € LSO(2). In particular, a = id.

Passing to the skew product equations (1.3) in the corotating frame rotating with speed &, the
modulated rotating wave becomes an ordinary periodic solution with spatial symmetry A = Z, and
no further spatiotemporal symmetry.

Since A X Zsgy, = Zg X Z4 is abelian, the absolutely irreducible representations V' are one dimen-
sional. Let V. denote the trivial irreducible representation of A = Z,. When £ is even, there is also
a nontrivial irreducible representation V_ with kernel Z,/,. Since dim V' = 1, there is a unique axial
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Space L J AP aP§  Z(APT)0 ybi Remarks
Vi 1 {(Rarse, L) Zg¢ 1 id SO(2) 0(2) saddle-node
Vi =1| (Rarse) Z, 2 id SO(2) O(2) period doubling
V_o(Leven) 1| (Ryry, L) Z¢p 1 id SO(2) SO(2)
V_(Leven) —1| (LRyse) 7y 1 Ry SO(2) SO(2) period doubling

Table 1: Spatiotemporal symmetry of bifurcating solutions in nonHopf bifurcation from a modulated
rotating wave with T' = O(2), ¥ = SO(2), A = Zy, £ > 1. All bifurcations are to modulated rotating
waves. All bifurcations are period preserving pitchforks bifurcations unless stated otherwise. Period
preserving and period doubling refers to periodicity in the corotating frame (ignoring new slow
drifts). R,/ is the generator of Zg.

isotropy subgroup J C A X Zgy, namely the subgroup of A X Zyy, that acts trivially on V. Applying
Proposition 3.5, it is now straightforward to verify the entries in Table 1.

The notion of period preserving/doubling depends a priori on the choice of comoving frame.
However, in this example, there is a natural choice of o, namely ¢ = exp¢ with a = id. In
the corresponding corotating frame, the underlying modulated rotating wave reduces to a periodic
solution with a well-defined absolute period (in this case, absolute period 1).

Similarly, the bifurcating relative periodic solutions have well-defined absolute periods in the
corotating frame modulo new slow drifts on Z(AP)?. Define ¢ > 1 to be the least integer such that
89 = (aP8)? € AP, Then the absolute period modulo slow drifts is approximately pq and depends
only on the choice of o. Since we have a natural choice of ¢ in this example (and also in Example 3.8
below), we may speak of period preserving and period doubling bifurcations.

We caution that even with the natural choice of o, we are not claiming that there is a ‘natural’
comoving frame (since the equation exp £ = o does not determine £ uniquely).

(b) T'=SE(2). This is almost identical to the the case I' = O(2). In particular, we have k = n =1,
a =id, A XZyy = Zyx Z> as before. The entries in Table 1 are unchanged except that when AbIf — 1
we obtain Z(AP)? = SE(2). This change occurs only when £ = 1 and in the V_ cases when £ = 2.

Under the assumption (valid generically) that £ # 0, the only change in the conclusions when
Z(APH)0 = SE(2) is that the center of approximate rotation of the bifurcating modulated rotating
waves varies periodically in time (cf. [14]).

Example 3.8 (Modulated traveling wave) A modulated traveling wave is a relative periodic
solution that is periodic in a cotraveling frame. We consider nonHopf bifurcation from a modulated
traveling wave with T' = SE(2), ¥ =D; X Z and A = D;. Such modulated traveling waves arise for
example as “bound pairs of spiral waves”; see [8].

Observe that Z(X)? = R. Tt is immediate that k = n = 1. Moreover, the element o (which is
generically a translation) can be written as o = exp £ for some £ € LR. In particular, o = id. Again,
we pass to the skew product equations (1.3) in the cotraveling frame traveling with speed £. Our
results are given in Table 2
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Space L[| J APF p oP§ Z(APTH?  ¥PT  Remarks
Vi 1|(s, L) Dy 1 id R Dy x Z saddle-node
Vi =1| (k) D, 2 id R Dy x Z period doubling
V_ 1| (L) 1 1 id SE(2) SO(2) modulated rotating wave
Vo 1| (k) 1 1 & SE(2) Z period doubling

Table 2: Spatiotemporal symmetry of bifurcating solutions in nonHopf bifurcation from a modulated
traveling wave with I' = SE(2), ¥ = Dy x Z, A = I);. The entries for Z*f are given only up to
conjugacy. All bifurcations are period preserving pitchforks of modulated traveling waves unless
stated otherwise.

4 Relative periodic solutions and comoving frames

In this section we study the structure of the relative periodic solution itself.

In Subsection (a), we recall some basic results concerning topologically cyclic subgroups and
Cartan subgroups. As shown in [20, 12, 2], these concepts drive the dynamics on relative periodic
solutions. These results are described and extended slightly in Subsection (b).

In Subsection (c), we introduce the index m of a relative periodic solution. Provided T is
algebraic, the index m is finite and divides the integer n in Proposition 1.2. Moreover, we show that
m is stable if T" is compact and also if T is the Euclidean group E(NNV) for some N.

In Subsections (d) and (e), we consider relative periodic solutions with finite index m. In Sub-
section (d), we show that the relative periodic solution reduces to a group orbit of periodic solutions
of period m in a suitable moving frame. In Subsection (e), we show that a neighborhood of the
relative periodic solution can be written as a 2m-periodic bundle. This is the optimal periodicity
that may be obtained in general.

(a) Topologically cyclic subgroups and Cartan subgroups

We begin by recalling the main definitions and results concerning Cartan subgroups [4]. Let G be a
finite dimensional Lie group. We denote the connected component of the identity by G°, and define
the projection 7 : G — G/G°. Let g € G and define H(g) to be the closure of the subgroup of
G generated by g. Such a subgroup H(g) is said to be topologically cyclic and either H(g) = Z or
H(g) 2 T? x Z, where p > 0, ¢ > 1 are integers. Note that 7(H(g)) = (r(g)}, where {(m(g)) C G/G°
is the cyclic subgroup generated by m(g).

We concentrate on the case when H(g) is compact. In particular, the cyclic group w(H(g)) is
finite. Define G = m'm(H(g)). Then G is a finite dimensional Lie group consisting of finitely
many connected components of G. Hence G is diffeomorphic to K x R* where a > 0 and K is
the (unique up to conjugacy) maximal compact subgroup of G; see for example [5]. Observe that
(w(g)) = 7(H(g)) = n(K) = (G). It follows from the theory of Cartan subgroups [4] that there is
a maximal (with respect to inclusion) topologically cyclic subgroup H C K containing g such that
w(H) = (w(g)). This subgroup H is called the Cartan subgroup corresponding to g and is unique up
to conjugacy. In fact, it is sufficient to require maximality with respect to dimension in defining H
(instead of maximality with respect to inclusion).

We note that this construction depends only on 7(g). More precisely, if g; and g, lie in the same
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connected component of G, and H(gy) and H(g2) are compact, then (up to conjugacy) we obtain the
same group G = K x R* and the same Cartan subgroup H corresponding to g; and g2. Moreover,
for generic g in this connected component of G, either H(g) = Z or H(g) = H [4].

Definition 4.1 Let ¢ € G and suppose that H(g) is compact. Let H be the Cartan subgroup
corresponding to g and write H = T? x Z,,. We say that g has rank d and index m.

Example 4.2 Let G be the nonsplit extension of SO(2) by an element g such that g> = R, € SO(2).
A matrix representation of this group is

cosf —sinf 0 0 0 010

Ry = sinf@  cosf 0 0 g= 0 0 01
0 0 cosf sinf |’ -1 0 0O

0 0 —sinf cosé 0 -1 0 O

The Cartan subgroup corresponding to g is isomorphic to Z4, although G = G has only two connected
components.

Thus, even when G is compact, the index m of an element g € G may be larger than the number
of connected components of G in contrast to what is claimed in [12, Lemmas 4.1,4.2], [2, Theorem
4.1, Proposition 4.3]. (This error is of no consequence for the results in [12, 2].)

(b) Dynamics on relative periodic solutions

We now return to the set up of vector fields with relative periodic solutions. Let I' be a finite
dimensional Lie group acting smoothly and properly on a finite dimensional manifold M. Let
F : M — TM be a smooth I'-equivariant vector field with flow ®;, and suppose that P is a relative
periodic solution with relative period 1. Choose ug € P and write ®;(ug) = ouo where o € I.

As usual, we have the (compact) spatial symmetry group A and the spatiotemporal symmetry
group X. Recall that o € N(A) and that ¥ is the closed subgroup of N(A) generated by A and o.
Observe that X/A is the topologically cyclic subgroup of N(A)/A generated by the coset oA.

Now, ¥ is compact if and only if ¥/A is compact, in which case dim¥/A < d where d is the
rank of cA € N(A)/A. Moreover, when ¥ is compact, it is generically the case that dim /A = dj
see [20, 12, 2]. (Here, genericity is within the class of smooth I'-equivariant vector fields F : M — T M
with relative periodic solution P.)

Altogether, we have the following result [20, 12, 2]. (In contrast to [2], we do not require that
N(A)/A has finitely many connected components.)

Proposition 4.3 Let T be a finite dimensional Lie group, and let P be a relative periodic solution.
If ¥ is noncompact, then P is foliated by unbounded trajectories. If . is compact, then P is foliated
by (p+ 1) dimensional tori with (p+ 1)-frequency quasiperiodic flows for some p < d, where d is the
rank of oA € N(A)/A. Moreover, generically p = d.

(c) The index of a relative periodic solution
We assume the set up of Subsection (b).
Definition 4.4 Suppose that I' is a finite dimensional Lie group and that P is a relative periodic

solution. Then the indez of P is the least positive integer m such that 6™ € expLZ(X) - A. If no
such integer m exists, we say that P has infinite indez.
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In the remainder of this subsection, we show how the index m in Definition 4.4 is related to the
integer m in Definition 4.1 and to the integer n in Proposition 1.2.

Proposition 4.5 Suppose that T is a compact Lie group and that P is a relative periodic solution.
Then the index of P is finite and coincides with the index of the element oA € N(A)/A.

Proof. Without loss, we may suppose that A = 1. In particular, Z(X) = Z(0).

Let m be the index of P and let ¢ be the index of o, so that the Cartan subgroup corresponding
to o has the form H = T¢ x Z,. We show that ¢ = m.

Since 0 € H = T x Z,, it follows that 07 € T¢ C Z(0)° and hence m divides ¢. In particular,
m is finite.

It remains to show that g is the least such positive integer. Since o™ € T?, we can form a
subgroup H = T? x Z,, C H_generated by T and o. But H is a topologically cyclic subgroup
containing ¢ and satisfying 7(H) = (n(0)). Since H has the same (hence maximal) dimension as H
it follows that H is the Cartan subgroup corresponding to o. Hence ¢ = m. "

Corollary 4.6 Suppose that T’ is a compact Lie group. Then the index m of a relative periodic
solution is stable under perturbations (of the element o € N(A)).

Proof. By Proposition 4.5, the index m is determined by the Cartan subgroup H corresponding
to oA. But H depends only on the connected component of N(A)/A containing ¢ A and hence is
stable under perturbations. "

Corollary 4.7 Let T = G x RV be the semidirect product of a compact subgroup G C O(N) and a
normal vector subgroup RY, N > 1. Suppose that A = 1. Then the index m of a relative periodic
solution is finite and stable under perturbations (of the element o € T').

Proof. Write o € I in the form o = (R, w), where R € G, w € RY. We show that the index m of o
in T coincides with the index mg of R € G. The result then follows immediately from Corollary 4.6.

First, we verify that mg < m. Suppose that ¢™ = exp £ where £ € LZ (), and write £ = (g, &w)
where ¢ € LG, &, € LRY. It is an immediate consequence of the semidirect product structure that
R™ =exp&gr and £g € LZ(R). Hence R has index mg < m.

Next, we verify that m < mpg. Conjugating o = (R,w) by an element of the form (I,y) where
y € RV is chosen appropriately, we can transform ¢ into an element o = (R, w) where Rw = w. Since
G is compact, R has finite index mp. Hence there is an element £ € LG such that R™® = exp &g
and Adrér = €r. Let £ = (€g,mrw) € LT'. A calculation shows that ¢™% = exp& and Ad, & = &.
Hence o has index m < mg. ]

Remark 4.8 Corollaries 4.6 and 4.7 show that the index m is stable for compact groups and for
groups that are ‘Euclidean-like’ (taking G = O(N) in Corollary 4.7 yields the Euclidean group
' =E(N)).

However, in general, the index m need not be stable to perturbations of the element ¢ € N(A).
For example, consider the case T' = SL(2,R), A = 1. The image of the exponential map exp :
LSL(2,R) — SL(2,R) consists of those 2 x 2 matrices v € T for which try > —2 together with
v = —I; see for example [5, p. 74]. If o lies in the image of the exponential map, then m = 1.
Otherwise, m = 2. Hence the index m of o € T is stable if and only if tro # —2.

Proposition 4.9 The relative periodic solution P has finite index m if and only if o can be chosen
(within 6A) so that o™ € expLZ(X) for some positive integer n.
In particular, if T is algebraic, then P has finite index.
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Proof. Suppose that o™ = exp(()do where ¢ € LZ(X) and do € A. Define the compact Lie group
A =AnN Z(o) and observe that do € A. Let H C A be the Cartan subgroup containing do. Then
8¢ € HO for some g > 1, and we can write 6 = €™? where € € A. Let ¢ = oe ! € 0A. Then

M — gMe—Mme — exp(qo(sg e ™ € exp LZ(E)'

Take n = mgq. This proves the nontrivial direction in the first statement of the proposition and the
second statement follows from Proposition 1.2. "

When the index m is finite, we have that m divides the integer n in Proposition 1.2. Note also
that m depends only on the coset 0 A, whereas n depends on the choice of o within this coset.

(d) Structure of a relative periodic solution

It is clear that a relative equilibrium with spatial symmetry A is diffeomorphic to I'/A. Similarly,
for a relative periodic solution P, we have

(T/A)xR  T'xR
A T AXZ
where the action of A x Z on I" x R is given by
(7,0) = (v671,0), 6 €A, (1,0) = (yo ',0+1).

When P has finite index m, we can simplify this representation of P by passing to a suitable
comoving frame. In particular, we show that in a comoving frame, P is the quotient by a compact
Lie group of an m-periodic trivial bundle I x S'. Here, m-periodicity is optimal.

Write 6™ = §p exp m(, where ¢ € LZ(X) and g € A. Let X,,, denote the subgroup of I" generated
by A and 8 = exp(—({)o. Note that 3 € N(A) and that 8™ € A. Hence ¥,, is a cyclic extension
of A of order m, so £,,/A = Z,,. We call ¥, the discrete spatiotemporal symmetry group of the
relative periodic solution.

P

Lemma 4.10 Suppose that P has finite index m. Write 0™ = dgexpm( where ( € LZ(X) and
0o € A. Define B and X, as above. Then, in a comoving frame moving with velocity (,

(T/A)x 8" TxS!

P D

where S1 = R/mZ.
The action of ¥, on T x St is given by

(1:0) = (1671,0), €A, (1,0) = (v, 0+1).
Proof. Define the smooth parameterization 7 : ' x R — P given by

7(7,0) = v exp(—(0) Pg(uo).

Since ¢ € LZ(A), we have that 7(vd~1,0) = 7(v,0) for all § € A. Moreover, since ( € LZ(o),
we have that 7(v,0 + 1) = vexp(—() exp(—(0)oPy(ug) = 7(7v8,6). In particular, 7(y,0 + m) =
7(v8™,8) = 7(vd0,0) = 7(7,0). Hence 7 induces a smooth map 7 : I’ x S1 — P with the required
properties. []

In the comoving frame in Lemma 4.10, the relative periodic solution P becomes a group orbit of
ordinary periodic solutions with spatial symmetry A and spatiotemporal symmetry ¥.,,. Moreover,
the integer m is the least possible. When P is a discrete rotating wave, m is the absolute period of
P, and X, = X. Hence the index m corresponds to the integer m in [21].
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(e) A 2m-periodic bundle

We continue to suppose that P is a relative periodic solution with finite index m. In Subsection (d),
we passed to a comoving frame in which P could be represented as an m-periodic bundle; more
precisely, the quotient of an m-periodic trivial bundle by a free compact Lie group action. Here, the
integer m is the least possible. It is natural to ask whether a neighborhood of P can be represented
as a 2m-periodic bundle. (A factor 2 is to be expected to take account of orientability issues.) In
this subsection, we answer this question positively.

Although the 2n-periodic bundle obtained in Section 2 is adequate for applications, there are
at least three reasons for looking for an 2m-periodic bundle. First, the integer m is intrinsically
defined, independent of any choices. Second, m is optimally small. (Recall that in general m divides
n.) Third, this bundle makes transparent how the action of the discrete spatiotemporal symmetry
group X, on the cross-section V comes about. Overall, the 2m-periodic bundle seems more natural.

Write 6™ = §p expm( where ¢ € LZ(X) and dg € A. In Section 4(c), we introduced the discrete
spatiotemporal symmetry group X,,, namely the subgroup of I' generated by A and 8 = exp(—()o.

The group ¥,, is a cyclic extension of A of order m. To take account of orientability problems,
we define a related cyclic extension X,,,.

Proposition 4.11 Let X, be the group generated by A and an element R such that ROR™' =
o601, for 6 € A, and R*™ = 2. Then Za,, is a cyclic extension of A of order 2m.

Proof. The group Xs,, can be realized as a matrix group:

6 0 8 0
(0 1)75€A5 (0 ewi/m)‘ .

Theorem 4.12 Let P be a relative periodic solution with finite index m, and write o™ = g expm(,
where ( € LZ(X) and 6o € A. Form the group Xs,, generated by A and R as in Proposition 4.11.
Then, there is a neighborhood U of the relative periodic solution P such that, in a comoving frame,
moving uniformly with velocity C,

TxaV)x8"  TxVxS§'

U
Z2m EQm ’

1%

where V is a representation of the group Yo, and S = R/2mZ.
The action of S, on T x V x St is given by

d- (771}70) = (7671761}76)7 de Aa R- (771}70) = (7/6717RU70 + 1)7
where 8 = exp(—()o.

Proof. Let A:V — V be the orthogonal twisted equivariant linear map in equation (2.2). Let G
be the closed subgroup of O(V') acting on V generated by the actions of A and A and let Z denote
the centralizer of G in O(V).

We claim that doA™ € Z. Note that 0=™dy € Z(A) so that §od = c™do~™dy, for all § € A. In
other words, dgd = ¢~ (8)dy, for all § € A. By twisted equivariance, A™§ = ¢™(§)A™ for all § € A.
Hence the composition dg A™ commutes with elements of A. At the same time, Ady = ¢(dg)A = dp A
since §op commutes with o. It follows that dgA™ commutes with A proving the claim.

Now, Z is a space of equivariant linear maps, and it follows from general arguments, see Ap-
pendix A, that B? € Z° for all B € Z. Hence 63 A’™ € Z°. Since Z is compact, we can write
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02 A?™ = exp(2mn) where n € LZ. In particular, exp(tn) is A-equivariant and commutes with A for
allt € R. Set R = Qexp(n), where @ = A~! so that R*™ = §Z.
Let 7 : ' x V x R — M be the submersion defined in Section 2(b). As in the proof of Theo-
rem 1.3(a), we consider a modified submersion 7°¢V. This time, we define
(v, v,0) = 7(v exp(—6¢), exp(—6n)v,6).

As before, 7™V (v4,v,0) = 7"V (v, 0v,0) for all § € A, and we compute that
7 (7 exp(—() exp(—6¢), exp(—n) exp(—bn)v, 0 + 1)

(v exp(—() exp(—0¢)o, Q" exp(—n) exp(—0n)v, §)
(B exp(—0(), exp(—0n) R 'v,6) = 7% (v8, R 'v,0).

Since ™ = § and R*™ = &, it follows that

T (y,v,0 + 1)

% (7, 0,0 + 2m) = TV (83, 65 20, 0) = TV (v, 0, ).

Hence 7"°% induces a [-equivariant submersion 7V : I' x V x S' — M, where S' = R/2mZ.
Moreover, we have a fixed-point free action of s, given by

(7,0,6) = (v67,60,8), 6€A,  (v,v,0) = (87", Rv,0 +1).

It follows that 7 induces a I'-equivariant diffecomorphism 7 : ((T' xa V) X S')/Z,, = U, where U is
a neighborhood of P and T' xA V = (' x V)/A. n

Remark 4.13 (a) As was the case for the 2n-periodic bundle in Theorem 1.3(a), the cross-section
V may be an arbitrary representation of the group Xs,,. In particular, the symbol R is used to
denote the abstract group element R € ¥o,,, the action of R on the representation space V', and the
induced action of Ron I' x V' x S*.

(b) Although the index m is well-defined, the elements do € A and ( € LZ(X) are not in general
well-defined. It is natural to demand that §p has the least order possible. In many examples, this

enables a well-defined choice of o and hence of dg, exp ¢ and so on (but ¢ itself is still not well-
defined).

(c) In general, we cannot hope to obtain m-periodicity in Theorem 4.12. However, let dg, @Q and Z
be as in the proof of Theorem 4.12. If §6Q™ € Z°, then we obtain an m-periodic bundle

TxaV)x8 TxVxS§t

Ve S

where S' = R/mZ.

(d) The derivation of the bundle in Theorem 4.12 involves passing to a comoving frame in the
physical variables (7 — v exp(—6()) and simultaneously passing to a comoving frame in the phase
space variables (v — exp(—8n)v).

If the relative periodic solution P is a discrete rotating wave then there is no need to go into
a comoving frame, and Theorem 4.12 applies with ( = 0, 8 = o, and %,, = ¥. In particular,
Yom is precisely the group ¥y introduced in Vanderbauwhede [34, 33] for studying period doubling
bifurcation (see also [26, 22]). Hence Theorem 4.12 clarifies the role of ¥ and Xy in the approach
of [34, 33, 26, 29] to bifurcation from discrete rotating waves. A discussion of these approaches can
be found in [22].
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When P is a modulated traveling wave, it follows easily from Theorem 4.12 that the action of A
on the cross-section V extends to an (unfaithful) action of X: let o act as R 1.

When P is a modulated rotating wave, it is not necessarily the case that the action of A on V
extends to an action of 3. For example, suppose that ¥ = SO(2), A = Z», and let V be the one
dimensional nontrivial representation of A.

In general, the 2k-periodicity of the equations on the slice, achieved in Theorem 1.3, is not
preserved. This is due to the fact that k£ and m are unrelated in general [21].

Example 4.14 Consider a relative periodic solution P with I' = O(2), ¥ =Dy and A = Zy, £ > 3.
A concrete example is given by “pulsating waves” in two dimensional convection; see [29]. Since ¥
contains reflections, P is a discrete rotating wave (so ( =0, 8 = ¢ in Theorem 4.12). Observe that
k =m = n = 2. In addition, o is necessarily of order two, so that do = id.

Assume that the cross-section V' is two dimensional and that we have a faithful action of A = Z,
on V. We show that the bundle in Theorem 4.12 can be chosen to be m-periodic and not only
2m-periodic.

Let @, G and Z be as in the proof of Theorem 4.12. Since () is orthogonal, @) is either a
rotation or reflection on V. If @ is a reflection, then §Q™ = Q? = I. If Q is a rotation, then
7% = 7Z = S0O(2), so that 6oQ™ = Q? € Z°. Either way, it follows that Remark 4.13(c) applies, and
the 4-periodic bundle in Theorem 4.12 reduces to a 2-periodic bundle.

5 Proof of Proposition 1.2

Throughout this section, I' is a finite dimensional Lie group, A C I' is a compact subgroup, and o
lies in the normalizer N(A) of A. The centralizer of A is denoted by Z(A). Each element o € N(A)
defines an automorphism ¢ € Aut(A) given by ¢(6) = 0~ 1do. Recall that o is defined only up to
the coset oA.

The main aim of this section is to prove Proposition 1.2. In addition, the following result is
required in Section 6:

Proposition 5.1 Suppose that T' is a matriz group, A is a compact subgroup, and oy € N(A).
Then there is an element o € 0gA such that o* € Z(A) for some k > 1.

In Subsection (a), we prove a result about the relationship between N(A) and Z(A). In Subsec-
tions (b) and (c), we prove Propositions 5.1 and 1.2.
(a) Normalizers and centralizers

Suppose that T" is a finite dimensional Lie group with compact subgroup A. Field [12, Proposition 3.2]
showed that N(A)? = A® Z(A)%. We give a different proof of this result. (The ideas in this proof
are required in Lemma 5.3 below.)

Lemma 5.2 Suppose that T is a finite dimensional Lie group and that A C T is a compact subgroup.
Then

(a) LN(A) = LA + LZ(A).
(b) N(A)® = A® Z(A)°.
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Proof. The adjoint action of A on LI restricts to a representation of A on LN(A). Moreover,
the subalgebra LA C LN(A) is a A-invariant subspace. Since A is compact, we may choose a
A-invariant inner product on LN(A). We then have the A-invariant splitting

LN(A) =LA @ (LA)*.

Let n € (LA)Y. To prove part (a), it is sufficient to prove that n € LZ(A). Let 6 € A. We
show that Adsn = 7. By A-invariance of (LA)', we have that Adsn —n € (LA)*, so it remains
to show that Adsm —n € LA. But n € LN(A) so that exp(tn)d~!exp(—tn) € A. It follows
that dexp(tn)é~! - exp(—tn) € A. Differentiating with respect to ¢ and setting ¢ = 0, we obtain
Adsn —mn € LA as required.

Next, we prove part (b). Let G consist of those elements v € N(A)? such that v € A® Z(A)°.
We show that G is a nonempty open and closed subset of the connected component N(A)° so that
G =N(A).

Openness of G is immediate from part (a), and it is an elementary argument to show that G
is nonempty and closed. Indeed, G contains the identity and so is nonempty. To see that G is
closed, let {v,} be a sequence in G with v, — v € N(A)°. Write v, = 6,7, where §, € A°,
T, € Z(A)°. By compactness of A, we may pass to a subsequence so that 6, — & € A°. Then
Tn = 0,y = 071y € N(A)?. Write 7 = lim,, o 7, = 1. Since Z(A)? is closed, 7 € Z(A)° so
that v = 67 € A° Z(A)°. Hence v € G and G is closed. .

We require the following refinement of Lemma 5.2(a).

Lemma 5.3 Suppose that T is a finite dimensional Lie group and that A C T is a compact subgroup.
Let 0 € N(A) and suppose that there is an integer k > 1 such that o* = exp £, where £ € LN(A)
and Ad, £ =&. Then & = x + n where x € LA, n € LZ(A) and Ad, x = x, Ad,n = 1.

Proof. As in the proof of Lemma 5.2, we have the unique decomposition £ = x +n where x € LA,
n € (LAt Cc LZ(A).

Let X be the group generated by o and A, and observe that LA is Y-invariant. If ¥ is compact,
then the scalar product on LT can be chosen to be Y-invariant. It then follows that (LA)L is -
invariant. In particular, we have the decomposition £ = Ad, & = Ad, x + Ad, n where Ad, x € LA,
Ad, n € (LA)*. By uniqueness of the decomposition, we have Ad, x = x, Ad, n = 1 as required.

When ¥ is noncompact, the proof is more complicated. By Lemma 5.2 we have a preliminary
decomposition £ = x + 7j where ¥ € LA, 7 € LZ(A). Consider the subspace X = LA & R(7}) =
LA + R(§) € LN(A). Then X is invariant under the adjoint actions of A and ¢ and hence is a
Y-invariant subspace.

Let (-,-) be any A-invariant scalar product on X and set

k—1
(u,v) = Z(Ad(,j u, Ad,i v).
j=0
We claim that (u,v) is X-invariant. We can then proceed as in the case when ¥ is compact to obtain
a new decomposition £ = x + 7, this time with the required properties.

Since o € N(A), it follows that (u,v) is A-invariant. It remains to show o-invariance, specifically
to show that (Adgs u, Adyr v) = (u,v). Let § =expx € A, e = expf) € Z(A). Then it is sufficient,
by A-invariance of the inner product, to show that Ad,» = Ads on X.

Let u € LA. Then Ad,xu = AdsAd.u = Adsu since € € Z(A), and so Ad,» = Ads on LA.
Since 7 € LZ(A) we have that Ads 7 = 7. At the same time, [£,7] = [X,7] + [7,7)] = 0 so that
Ad, 7] = Adexpefl = 7). Therefore, Ad,» and Ad; are the identity on R(7}). This completes the proof
that Ad,» = Ads on X. ]
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(b) Matrix groups and Proposition 5.1

We begin by proving Proposition 5.1 when T is a compact Lie group. Then we obtain the result for
matrix groups, and we give a counterexample for more general groups.

Proposition 5.4 Suppose that T is a compact Lie group, A is a compact subgroup, and o9 € N(A).
Then there is an element o € ogA such that o* € Z(A) for some k > 1.

Proof. Compact Lie groups have finitely many connected components, so of € (N(A)NZ(0))° for
some k > 1. By surjectivity of the exponential map, of = exp £ where £ € LN(A) and Ad, ¢ = &.
Let £ = x + n be the decomposition in Lemma 5.3 and define § = exp(x/k) € A. Then
ol = 6% expn, where expn € Z(A). By Lemma 5.3, Ad,,x = x and so oo commutes with J. Hence
o = 096! satisfies 0% = expn € Z(A) as required. L]

Proof of Proposition 5.1. Since I' is a matrix group, I' acts faithfully on some finite dimensional
vector space V. In particular, A acts faithfully on V. Let ¢ € Aut(A) be the automorphism induced
by 0, so that o5 dog = ¢(8). Equivalently, o5 ' : V' — V is a twisted equivariant nonsingular linear
map (05 '6 = #(8)oy ). Choose a A-invariant inner product on V. It follows from Proposition 2.1
that there is a twisted equivariant orthogonal map @) : V' — V. In particular,

R7'R = 05500 = ¢(9),

where R = Q1.

Let G C O(V) be the closed group generated by A and R. Then G is a compact Lie group. It
follows from Proposition 5.4 that there is an element dy € A such that R = Rd, satisfies RF € Z(A)
for some k > 1.

Now, define 0 = 6¢dg- Since op and R induce the same automorphism ¢ € Aut(A), it follows
that o and R induce the same automorphism. Hence o* € Z(A). "

Remark 5.5 The hypothesis that I" is a matrix group can be weakened further to the assumption
that I has a finite dimensional representation in which A acts faithfully.

Similarly, it is sufficient to assume that A has a finite dimensional faithful representation V for
which there is a nonsingular linear map L : V — V that is twisted equivariant with respect to the
automorphism ¢.

Finally, we give a counterexample when I' is not a matrix group.

Example 5.6 Let A = T2. Then Aut(A) is isomorphic to the group of 2 x 2 matrices with integer
entries and determinant £1. In particular, SL(2,Z) C Aut(A). Hence we can form the semidirect
product T = T? x SL(2,Z). Note that T is a two dimensional Lie group, A = T? is a compact
subgroup and N(A) =T. Moreover Z(A) = A. Now let o9 be any element of SL(2,Z) of infinite
1 i )) Then of & Z(A) for any k > 1. Since (coA)* = ok A, it
follows that o* ¢ Z(A) for any o € 0pA and k > 1.

order. (For example, g9 = (

(c) Algebraic groups and Proposition 1.2

As in the previous subsection, we prove Proposition 1.2 first for compact Lie groups, and then for
algebraic groups.
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Proposition 5.7 Suppose that T is a compact Lie group, A is a compact subgroup, and o9 € N(A).
Let ¥ denote the closed subgroup of I generated by A and og. Then there is an element o € opA
such that o™ € expLZ(X) for some n > 1.

Proof. The proof is already implicit in the proof of Proposition 5.4 (with n = k). We showed
there that o can be chosen so that 6™ = expn € expLZ(A). Furthermore, n was constructed using
Lemma 5.3, so that Ad,,n = 7. Hence 0" € expLZ(X). ]

Example 5.8 In contrast to the case for the integer k, Proposition 5.7 cannot be generalized to
arbitrary matrix groups. For example, the group I' = Z is a matrix group. Let A = 1 and ¢ # 0.
Then we are forced to take 0 = 09, and no power lies in the connected component of the identity.
In this example, ¥ = 1 but there is no finite integer n.

There are two ways in which compactness is utilized in the proof of Propositions 5.4 and 5.7.
The first, which is highlighted in Examples 5.6 and 5.8, is that compact Lie groups have finitely
many connected components. The second is that the exponential map exp : LG — G is surjective
for connected compact Lie groups. This property may fail for connected but noncompact Lie groups,
an example being G = SL(2,R); see Remark 4.8. The proof of Proposition 5.7 can be revised to
take account of elements for which some sufficiently high power lies in the image of the exponential
map. However, even this property fails in general:

Example 5.9 Let G be the universal cover of SL(2,R). (Topologically, G = R3.) Again, G is a
connected semisimple Lie group. However, it can be shown that there exist elements g € G for which
g™ is not in the image of the exponential map for all n > 1; see [27, p.164].

A similar, but more computable example, is the universal cover G of SE(2). Again G is home-
omorphic to R3, but now G is a connected solvable Lie group with a semidirect product structure
G = R x R? where multiplication is defined by

(tl,Ul) (tQ,UQ) = (tl + t2,€27rit1112 + 'l)1).

An elementary computation shows that (¢,v) lies in the image of the exponential map if and only if
v=0ort¢Z. Let g =(1,v) where v # 0. Then g™ = (m,mwv), so g™ is not in the image of the
exponential map for all m > 1.

It turns out that Proposition 5.7 can be generalized to the class of algebraic groups. We require
the following lemma of Goto [18].

Lemma 5.10 Suppose that G is an algebraic group and that g € G. Then there is an integer n such
that g™ € exp LG.

Proof. The centralizer Z(g) is a subgroup of G defined by linear equalities and hence is algebraic.
Similarly, the center C' of Z(g) is algebraic and hence has finitely many connected components. Of
course, g lies in C, and so g™ € C° for some n > 1. Moreover, C? is a finite dimensional connected
abelian Lie group and hence exp : LC' — C° is surjective. It follows that g” € expLC C expLG. =

In fact, Goto [18] proves that when G is algebraic, there is an integer n (depending only on G) such
that g™ € exp LG for all g € G. We do not require this stronger result in this paper.

Proof of Proposition 1.2. Since A is compact, it follows from [37, p. 282] that A is algebraic
and moreover that A and I are realized simultaneously as algebraic groups (by inclusions A C T C
GL(n)). It is immediate then that the normalizer of A inside I' is algebraic. Hence N(A)N Z(o0y) is
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algebraic. By Lemma 5.10, there is an integer n > 1 such that 0§ = exp £ where £ € L(N(A)NZ(09)).
Now proceed as in the proof of Proposition 5.7. "

Remark 5.11 In general, we define two integers k and n, where k divides n, associated with the
element 69 € N(A). Namely, an integer k such that o* € Z(A) for some o € gpA, and an integer
n such that o™ € exp LZ(X) for some o € ggA. When T is algebraic, we have shown that o can be
chosen so that n (and hence k) is finite.

Calculations are simplest when o is chosen so that k and n are as small as possible. However,
we note that in general it is not possible to choose a single representative ¢ that simultaneously
minimizes k and n. For example, let A = SO(2) % Z4 where Z, is generated by an element 7 of
order 4 that induces the automorphism € — —6 on elements § € SO(2). Let I' = X = A X Z4 where
Zs is generated by an element o of order 2 such that oo lies in the center of I'. (In other words, oo
commutes with 7 and induces the same automorphism as 7 on SO(2).) Then the minimum values
of k and n are k =1 (achieved by o¢7) and n = 2 (achieved by og), but there is no element of ggA
that simultaneously achieves k =1 and n = 2.

6 A generalization of Theorem 1.3

In this section, we show that many aspects of bifurcation from a relative periodic solution are
captured by the methods in this paper, even when I' is not an algebraic group. For example, when
a traveling wave is discretized in space, the underlying symmetry group is generally a matrix group
(often T' = Z%) but not algebraic. We note that “discrete traveling waves” occur in discrete models
of spatially periodic media and in numerical simulations.

We begin by supposing that I' is a matrix group, and then we consider the case when I' is an
arbitrary finite dimensional Lie group. Throughout, we assume that I" acts smoothly and properly
on a finite dimensional manifold M, and that P is a relative periodic solution with compact spatial
symmetry A. As before, the spatiotemporal symmetry ¥ is the closed subgroup of T' generated by
the spatial symmetry A together with an element o.

Provided T is a matrix group, it follows from Proposition 5.1 that ¢ can be shown to satisfy
o* € Z(A) for some k = 1. We form the semidirect product A x Zs; by adjoining to A an element
Q of order 2k as described in the introduction. We also form a semidirect product A xZ by adjoining
an element of infinite order (with the same multiplication).

Theorem 6.1 Suppose that T is a matrix group, and define A x Zoy, and A X 7 as above.
(a) There is a neighborhood U of the relative periodic solution P such that

CxaV)xR _TxVxR
Z T OAXZ

U=

where V is a representation of the group A X Zsy, and the action of A XZ onT xV xR is
given by

(7,0,8) = (v07,60,0), € A, (,0,0) = (yo ', Qu,0 + 1).

(b) The equations on U lift to (A x Z)-equivariant skew product equations on T X V x R of the
form (after reparameterizing time)

4 = vfr(v,6), b= fv(v,0), 6=1, (6.1)
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where fr : V x R = LT and fy : V x R = V are smooth vector fields satisfying fr(0,0) =0,
fv(0,8) =0, for all 6 € R.

Proof. We proceed as in Subsections (b) and (c) of Section 2, except that we do not pass to a
comoving frame (so £ = 0). In particular, the twisted equivariant linear map @ : V' — V is chosen
to have order 2k%. -

We note (as in Remark 1.4) that fr and fy are general vector fields satisfying the conditions
stated in Theorem 6.1.

Corollary 6.2 Assume the setup of Theorem 6.1, and let S* = R/2kZ. Then the skew product
equations restricted to V x R define a general smooth A x Ziyy-equivariant vector field on V x S' of
the form

o= fy(v,0), 6=1,
where f1(0,0) =0 for all § € S*. The action of A x Zoy, is given by
(v,0) = (0v,0), 6 € A, (v,0) » (Qu,0+1).

It follows that provided I' is a matrix group, modulo drifts along group orbits, bifurcation from a
relative periodic solution with compact spatial symmetry A reduces to bifurcation from an isolated
periodic solution with spatial symmetry A and spatiotemporal symmetry group A X Z .

Finally, we show that a similar result is true even when I' is not a matrix group, except that now
the integer k depends on the specific representation of A on the cross-section V.

Theorem 6.3 Let V be a A-invariant cross-section to the relative periodic solution at ug. Let
L:V =V be the linear map defined, as in Section 2(b), by L = Poo =1 (D®1).,.
Then the element o can be chosen (in cA) so that for some k > 1,

(a) o*6v = éa*v for all 5 € A, v €V, and

(b) There is a linear map A :V — V satisfying A%* = I such that L™ A is equivariantly isotopic
to the identity.

With these choices of o, k and Q = A™%, the conclusions of Theorem 6.1 hold.

Proof. The actions of A and L on V generate a group G acting linearly on V. In general, the
action of G is not faithful. However, the quotient of G by the kernel of the action is a matrix group
and Proposition 5.1 applies to this quotient. Hence o can be chosen so that part (a) holds for some
k. (In other words, o* lies in the centralizer of A modulo the kernel of the action of A on V.) Part
(b) follows from Lemma 2.2. "

We stress that, in contrast to the case when I' is a matrix group, the choices of o, k£ and @ in
Theorem 6.3 depend on the specific representation of A on V.

Remark 6.4 (a) This theorem enables us to study bifurcation from a relative periodic solution for
any finite dimensional Lie group I'. In particular, modulo drifts along continuous group orbits, the
entire bifurcation is reduced to bifurcation from an isolated periodic solution for the group A x Zoy
generated by the actions of A and @) on V.

(b) It is a consequence of Theorem 6.3 that situations such as that in Example 5.6 do not arise in the
context of relative periodic solutions. That is, the existence of the twisted equivariant nonsingular
linear map L arising from the flow precludes certain representations of A. Let T' = T? x SL(2,7)
and A = T?2. Suppose that o € SL(2,7Z) is an element whose eigenvalues are not roots of unity.
Then A is forced to act trivially on the subspace V.
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A Appendix: Equivariant linear maps

In the proof of Theorem 4.12, we exploited a standard result about nonsingular equivariant linear
maps, namely that the square of a nonsingular equivariant linear map is connected to the identity
by a path of such maps. Presumably this result is well known, but we give a proof in this appendix
since a complete proof is hard to find elsewhere.

Suppose that G is a compact Lie group acting orthogonally on a real vector space X and let
Hom(X) denote the space of equivariant linear maps. Let Z(X) C Hom(X) denote the group of
equivariant nonsingular linear maps, and let Z(X)? denote the connected component of the identity
in Z(X). In this appendix, we prove that B? € Z(X)? for all B € Z(X).

Let V be a G-irreducible subspace of X. Then Hom(V') is a real division ring D isomorphic to
R, C or H. The irreducible subspace V is said to be of real, complex or quaternionic type.

The space X can be decomposed (nonuniquely) as a direct sum of irreducible subspaces. There
is also a unique isotypic decomposition X = ®W;, where each isotypic component Wj is a direct sum
of isomorphic irreducible subspaces and distinct isotypic components consist of distinct irreducible
subspaces. We say that an isotypic component W is of real, complex or quaternionic type if W
consists of irreducible subspaces of real, complex or quaternionic type.

An important property of the isotypic decomposition is that the isotypic components are pre-
served by any equivariant linear map. In other words, Hom(X) = ®@Hom(W;). Next, let W be a
fixed isotypic component. If we write W = @*V, then the isomorphism Hom (V) = D induces an
isomorphism Hom(W) = M,,, (D) where M,,(D) is the space of m x m matrices with entries in D. In
particular, the eigenvalues of B € Hom (W) are given by the eigenvalues of the corresponding matrix
a € M,,(D) but with multiplicity dimp V. Altogether, we have a complete description of Hom(X).

Proposition A.1 Suppose that W is an isotypic component.
(a) If W is of complex or quaternionic type, then Z(W) is connected.
(b) If W is of real type, then Z(W) has two connected components.

Proof. The isomorphism Hom(W) = M,,(D) induces an isomorphism Z(W) = GL(m,D). Of
course, GL(m, R) has two connected components and GL(m,C) has one connected component, as
can be seen easily from the Jordan normal forms for real and complex matrices. The correspond-
ing result in the quaternionic case follows similarly from the Jordan normal form for quaternionic
matrices which can be found in [35]. ]

Corollary A.2 Suppose that G acts orthogonally on X and that B € Z(X). Then B? € Z(X)°.

Proof. Let X = @W; be the isotypic decomposition of X, and write B = @B; where B; € Z(W;).
By Proposition A.1, B} € Z(W;)° and hence B* € Z(X)°. "

Finally, we note that the results in this appendix go through without change if we restrict to
spaces of orthogonal equivariant linear maps.
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