Bifurcation from Periodic and Relative Periodic
Solutions in Equivariant Dynamical Systems

Jeroen S. W. Lamb [an Melbourne
Department of Mathematics Department of Mathematics
Imperial College University of Houston

London SW7 2BZ, United Kingdom Houston, TX 77204-3476, USA

Claudia Wulff

Institut fir Mathematik I
Freie Universitat Berlin
14195 Berlin, Germany

Abstract

We review recent developments in the theory for generic bifurcation from peri-
odic and relative periodic solutions in equivariant dynamical systems.

1 Introduction

Equivariant bifurcation theory is concerned, to a large extent, with local bifurcation
theory for vector fields that are equivariant with respect to the action of a compact
Lie group I, see for instance Golubitsky, Stewart and Schaeffer [11]. In particular, a
systematic approach to bifurcation from equilibria is laid out in [11]. This approach
has been generalized to include bifurcation from relative equilibria (where a single group
orbit is flow invariant), see Krupa [14], and also situations where I is noncompact but acts
properly on a finite dimensional manifold, see Fiedler, Sandstede, Scheel and Wulff [7].

Recently, the corresponding theory for bifurcation from periodic solutions has been in
development. The simplest case is when the periodic solution has only spatial symmetries
(symmetries that fix the periodic solution pointwise in phase space), and has been studied
by Chossat and Golubitsky [5] (see also Ruelle [20]).

The more complicated case in which a periodic solution has not only spatial, but also
spatiotemporal, symmetries has been studied by Lamb, Melbourne and Wulff [16, 18]. In
these papers, we consider isolated discrete rotating waves. These are isolated periodic
solutions with a mixture of spatial and spatiotemporal symmetries. We have shown
that bifurcations from isolated discrete rotating waves reduce to bifurcations from fixed



points of twisted equivariant diffeomorphisms, which in turn reduce (up to flat terms) to
bifurcations of equilibria of equivariant vector fields. The novel ingredient in this reduction
scheme is the systematic treatment of twisted equivariant diffeomorphisms.

In Wulff, Lamb and Melbourne [23] we consider bifurcation from relative periodic
solutions. These are flow-invariant sets that reduce to periodic solutions at the I' orbit
space level. (Here, I' is possibly noncompact but is assumed to act properly on a finite
dimensional manifold.) It is shown in [23] how to reduce the problem to bifurcation from
an isolated discrete rotating wave for an equivariant vector field with a compact symmetry
group.

Thus, we have the following hierarchy of reductions:

relative periodic solutions

}

isolated discrete rotating waves

!

fixed points for twisted equivariant diffeomorphisms

}

equilibria for equivariant vector fields

In this paper, we review the above results. For transparency, we state our results
for dynamical systems in R" that are equivariant with respect to a compact Lie group,
although our results apply to a more general context (in particular also to noncompact
symmetry groups). For more details we refer the reader to [16, 18, 23].

2 Periodic and relative periodic solutions in
equivariant systems

We consider equivariant dynamical systems in R", ie smooth ordinary differential equa-
tions of the form

dx

— = f(z), reR" 2.1

= f) (21)
that are equivariant with respect to a linear (orthogonal) representation of a compact Lie
group I' on R”

vf(x) = f(yz), VyeT.

Consequently, a I'-equivariant dynamical system admits a solution z(¢) if and only if it
also admits yz(t) as a solution, for all v € I

Equivariant dynamical systems arise naturally in many problems in physics. The
general aim is to study typical (generic) phenomena in such dynamical systems, such as
for instance local bifurcations from equilibria and periodic solutions.

A systematic approach towards the bifurcation theory for equilibria and relative equi-
libria was set out in [11, 14]. In this paper, we review the recently developed corresponding
approach towards local bifurcation from periodic and relative periodic solutions.



Consider a periodic solution z(t) of (minimal) period T, ie there exists a T" > 0 least
such that z(0) = (7). The symmetries of periodic solutions in equivariant systems fall
into two categories: spatial and spatiotemporal symmetries. Spatial symmetries are ele-
ments § € I that fix a solution x(t) pointwise, so that dxz(t) = z(t) for all t. Spatiotemporal
symmetries are elements o € T that fix z(¢) setwise, but not necessarily pointwise. In par-
ticular, they satisfy oxz(t) = z(t + T,) for some 0 < T, < T. Spatiotemporal symmetries
that are not spatial (ie with 7, > 0) are also called time-shift symmetries of z(t).

It is easily verified that the spatiotemporal symmetries of a periodic solution z(¢) form
a group X under composition. The spatial symmetries form a subgroup A of ¥. In fact,
A is a normal subgroup of ¥ and the quotient /A is isomorphic to S* or to a finite
cyclic group Z,,. If the quotient is S*, the periodic solution is a rotating wave, which is a
special case of a relative equilibrium. We speak of a discrete rotating wave if

S/A 27,

Here m is the largest positive integer such that there exists a time-shift symmetry o in
% for which oz(t) = z(t + =) (we call such a time-shift symmetry a minimal time-shift
symmetry of z(t)). Consequently, the group ¥ is generated by A and o:

Y =(A,o0).

We say that a discrete rotating wave with spatial symmetry A is isolated if dim A = dimT'.
(Note that if dimI" > dim A, discrete rotating waves come in continuous families due to
equivariance.)

Example 2.1

(i) Discrete rotating waves are well-known to arise by Hopf bifurcation from a symmet-
ric equilibrium [11]. For example, a fully symmetric equilibrium in a D,-equivariant
dynamical system admits a codimension one Hopf bifurcation to periodic solutions
with spatial symmetry A = Dy and spatiotemporal symmetry ¥ = D;. We have
m = 2, and the time-shift symmetry ¢ may be taken to be any reflection of I, that
is not in D, combined with a time-shift of half the period.

(ii) Discrete rotating waves are observed in many physically relevant situations. For
instance, the so-called Von Kdrmdn vortex street that arises in a fluid flowing past a
cylinder at low Reynolds numbers, is an example of an isolated discrete rotating wave
with spatial symmetry A = SO(2) and spatiotemporal symmetry ¥ = SO(2) x Zq
(under the assumption of periodic boundary conditions). Here again, we have m = 2,
and the spatiotemporal symmetry consists of the generator of Z, combined with a
time-shift of half the period of the solution. See [16, 17] for more details.

A solution z(t) is called a relative periodic solution of (2.1) if there exists a T > 0 least
such that

ox(t) =xz(t+T), for some o €I



V A

Figure 1: Schematic sketch of the first-hit-pull-back map f = o~ '¢g® for an isolated
discrete rotating wave.

We call T the relative period of z(t), and o a minimal time-shift symmetry of z(¢). From
this definition it is evident that periodic solutions are special examples of relative periodic
solutions. However, relative periodic solutions need not be periodic. They are called
relative periodic because they correspond to periodic solutions in the orbit space R" /T.

As in the case of periodic solutions, the spatial symmetry of a relative periodic solution
is defined as those elements of I" that fix z(¢) pointwise. The spatiotemporal symmetry
group X of a relative periodic solution is the closure of the group generated by A and a
minimal time-shift symmetry o.

Example 2.2 An elementary example of a relative periodic solution is a quasiperiodic
solution in an SO(2)-equivariant dynamical system with spatial symmetry A = 1, and
minimal time-shift symmetry o satisfying z(t + T') = oz(t), where o is a typical element
in SO(2) so that the closure of the group generated by o is equal to ¥ = SO(2). Notice
that in this situation the solution is not periodic. Examples of this kind of relative
periodic solution (often referred to as modulated rotating waves) have been observed
in Taylor-Couette experiments (wavy vortices) [13] and in flame patterns inside circular
burners [12].

3 Bifurcation from isolated discrete rotating waves

We consider local bifurcations from an isolated periodic solution with a given spatiotem-
poral symmetry group.

To study bifurcation from an isolated discrete rotating wave x(t), it turns out to be
useful to construct a first-hit-pull-back map f on a A-invariant local section V' transverse
to (t). The map f consists of two parts: a first-hit map ¢(" between the section V' and
another section oV, followed by a pull-back to V by o~! (see Figure 1). Consequently we
have:

f=o"g".



There is a simple relationship between the Poincaré return map G : V +— V and the
diffeomorphism f. Namely, G = ¢™ f™. The periodic solution corresponds to a fixed
point of both f and G.

The strategy is to study bifurcations of f and relate them to bifurcations of the
underlying flow. One complication arising from this approach is that the structure of the
map f is in general not (standard) equivariance but twisted equivariance. In particular,
by A-equivariance of ¢(!) we have:

f6=¢(8)f, where ¢(6) =0 'do.

Note that the definition of twisted equivariance depends on the group A and the group
automorphism ¢ € Aut(A).

It turns out that we can always chose o such that there exists a finite positive integer
k for which ¢* is equal to the identity automorphism on A. This value of k plays an
important role in the analysis. (Note that in previous work, twisted equivariance has also
been called k-symmetry, see for example [15]).

When k& = 1, the bifurcation problem is that of a general A-equivariant diffeomor-
phism. This situation is well known to arise when one considers local bifurcations from
periodic solutions with only spatial symmetry [5], or periodic solutions with an Abelian
spatiotemporal symmetry group [6, 4]. In general this situation occurs whenever peri-
odic solutions have a minimal time-shift symmetry that commutes with all the spatial
symmetries.

When k > 2, we require the methods in [16] (see also [17] for a less technical discus-
sion). We use the integer k to define the following extension of A: A xZyy is the (abstract)
group generated by A and an element 7 satisfying 72¥ = 1 (identity) and 7167 = ¢(6)
for all 0 € A.

Codimension one bifurcations are governed by the following theorem.

Theorem 3.1 ([16] Codimension one bifurcation) Codimension one bifurcations
from a fixed point of a twisted equivariant diffeomorphism are in one-to-one “correspon-
dence” with codimension one bifurcations from an equilibrium of a A X Zok-equivariant
vector field.

Remark 3.2

(a) We write “correspondence” in quotes since the proof of the theorem relies on the
symmetry of formal normal forms for twisted equivariant maps [15], so aspects of
the bifurcations that are beyond all orders are not necessarily preserved by the
correspondence. However, a finite determinacy result of Field [9] ensures that many
branches of solutions (and their stability) are preserved by the correspondence.

(b) Theorem 3.1 is a reformulation of results in [16]. In particular, nonHopf and Hopf
bifurcation in [16] correspond to respectively steady state and Hopf bifurcation of
A X Zgi-equivariant vector field.



(c) The analysis of codimension one steady state and Hopf bifurcation for A x Zg-
equivariant vector fields involves the computation of respectively absolutely irre-
ducible representations and irreducible representations of complex type for A x Zoy.
In [16], it is shown how to obtain these representations from the representations of
A using induced representation theory.

To generalize Theorem 3.1 to higher codimension bifurcation, we need to introduce a
notion of resonance. Let xy denote the fixed point of f corresponding to the underlying
isolated discrete rotating wave. We consider the linearization Df of f at z(, restricted
to the center subspace E. (ie the subspace on which all eigenvalues of D f have absolute
value one.)

Proposition 3.3 ([18]) There exists a decomposition Df = LyA = ALq, where A is an
equivariant linear map, Ly is a twisted equivariant linear map and L3* = I.

Definition 3.4 (Resonance) An eigenvalue u of an equivariant matrix A is called reso-
nant if 4 = exp(2mip/q) where p,q € N are in their lowest terms and ¢ > 3. A bifurcation
is called nonresonant if the decomposition Df = LgA in Proposition 3.3 can be chosen
such that A has no resonant eigenvalues. Otherwise the bifurcation is called resonant.

Theorem 3.5 ([18] Nonresonant bifurcation) In the absence of resonances, bifurca-
tions of arbitrary codimension from a fixed point for a twisted equivariant diffeomorphism
are in one-to-one “correspondence” with bifurcations of the same codimension from an
equilibrium for a A X Zigg-equivariant vector field.

Let p; = exp(2mip;/q;) be the resonant eigenvalues of A, and define £ = lem({¢;}) > 3.
In the nonresonant case we define £ = 1. It turns out that the decomposition Df = LyA
can always be chosen such that ged(2k,¢) = 1. We define the group A x Zgy, as above,
but now with 7 having order 2k/ instead of 2k.

Theorem 3.6 ([18] Resonant bifurcation) Resonant bifurcations from a fized point
for a twisted equivariant diffeomorphism “correspond” to bifurcations from an equilibrium
point for a A X Zoye-equivariant vector field.

Remark 3.7 In the resonant case (£ > 1), bifurcation for twisted equivariant diffeomor-
phisms reduces to bifurcation for an equivariant vector field, but (unlike the nonresonant
case) in the process of reduction one loses the correspondence of genericity between fam-
ilies of diffeomorphisms and families of vector fields, since the equivariant vector fields
satisfy some special conditions on the linear part. Note that this phenomenon already
occurs in the context of resonant bifurcations in nonsymmetric systems, see eg [1, 2].

There is the usual distinction between strong and weak resonances [1, 2]. Roughly
speaking, the resonance corresponding to an eigenvalue y = e2**?/4 is strong if ¢ is small
and weak if ¢ is large. In general, this distinction depends on the number of nonresonant
and resonant eigenvalues (taking into account algebraic and geometric multiplicities) and
also depends on the desired completeness of the analysis of the dynamics.



We note that the simplest solutions that occur in Hopf bifurcation are branches of
invariant two-tori. It follows from Field [9] (building upon work of Ruelle [20]) that in
most cases the branching and stability of two-tori are the same for bifurcations with
resonance as for nonresonant bifurcations — only resonances of a specified low order are
“strong” in this context. In particular, if one focuses on the simplest aspects of the theory,
it usually suffices to consider bifurcation of A X Zs-equivariant vector fields.

More delicate dynamics such as phaselocking on the invariant tori is influenced by
resonances of all orders. In this context, a weak resonance is one for which the analysis
is comparatively straightforward; see [1, 2] for Hopf bifurcation from periodic solutions in
systems without symmetry.

In order to be able to apply Theorems 3.5-3.6 to concrete bifurcation problems, one
needs to know how to interpret the results of the reduced equivariant bifurcation problem
in terms of solutions for the underlying flow.

The simplest interpretation is for equilibria. Suppose the underlying discrete rotat-
ing wave has period one. Let 2P be an equilibrium arising in a local bifurcation of the
A X Zgp-equivariant vector field, corresponding to a periodic solution PPf. The spa-
tiotemporal symmetry group X" of PP is intimately related to the symmetry properties

of 2P in the reduced problem. We define

Abif — {6 c A | 5:L,bif — mbif}.

Proposition 3.8 (Symmetry and period of bifurcating solutions) Let p > 1 be
least such that xPf = 7P5,2P for some 6y € A. Then the spatial symmetry of P* is equal
to AP and Y is generated by AP and the minimal time-shift symmetry o®f = oP4,.
The time-shift associated with o® is g

Let mPt > 1 be least such that (o®H)™" € AP and hence P /AP = 7, . Then
the period of PP is close to the integer 2. mPi,

bif

For similar interpretations of periodic solutions for the A x Zo-equivariant vector field,
see [16, 18].

Remark 3.9 Suppose that we have a codimension one nonHopf bifurcation (cf Theorem
3.1 and Remark 3.2(b), and [16]). Then ¢ = 1 and we reduce to a codimension one steady
state bifurcation for a A X Zgg-equivariant vector field. By [16, Proposition 4.5], it is
generically the case that we have either a period preserving bifurcation where £ -mPf =1
for each periodic solution PP corresponding to an equilibrium 2", or a period doubling
bifurcation where . mP = 2 for each of these periodic solutions.

Example 3.10

(i) In Example 2.1(i) we presented a discrete rotating wave with spatial symmetry
A = D, and spatiotemporal symmetry 3 = D,. Taking any reflection in ¥ \ A
as our minimal time-shift symmetry, we find that in this case £ = 2. Hence, the
bifurcation problem reduces to a Dy X Zg4-equivariant bifurcation problem. For a
detailed discussion of codimension one bifurcations for this example, see [16].



In Example 2.1(ii), we have k£ = 1, and the bifurcation problem reduces to a SO(2) x
Zop-equivariant bifurcation problem. Again, see [16] and also [17].

(ii) (Suppression of period doubling.) Swift and Wiesenfeld [22] observed that periodic
solutions with (only) a time-shift symmetry of order two do not have generic (codi-
mension one) bifurcations of period doubling type. To illustrate our approach, we
will discuss this result from our viewpoint.

The bifurcation problem for a discrete rotating wave with period one and a single
time-shift symmetry of order two reduces to a Zs-equivariant bifurcation problem
(because k = 1, and not because X = Z,). Here the generator 7 of Z, corresponds to
the minimal time-shift symmetry o combined with a half period time-shift. For any
bifurcating fixed point 2, we now observe that it is fixed with respect to 72 (because
72 = 1). This implies that the solution has a pure time-shift symmetry that takes
the form of a unit time-shift (two times a half). Hence the corresponding solutions
must have period (close to) one, and so period doubling cannot occur. In fact,
generically we have a Z, symmetry breaking pitchfork bifurcation producing fixed
points with no symmetry. The bifurcating points correspond to periodic solutions
with approximately the same period as the original solution, but without the Z,
time-shift symmetry.

Note that when a periodic solution has no symmetry, the bifurcation problem gener-
ically (codimension one) also reduces to a Zg-equivariant bifurcation problem. How-
ever then 7 represents a pure time-shift symmetry consisting of a unit time-shift.
The generic Zs symmetry breaking pitchfork bifurcation produces new fixed points
with no symmetry, that are thus not invariant with respect to 7 but only with
respect to 72. Hence, they represent periodic solutions with period (close to) two.

4 Local bifurcations from relative periodic solutions

In the case of bifurcation from relative periodic solutions, the strategy is to reduce to a
problem of bifurcation from isolated discrete rotating waves.

For relative periodic solutions, it is more complicated than in the discrete rotating
wave case to set up a surface of section and define a return map. Following Sandstede,
Scheel and Wulff [21], however, in analogy to the approach towards bifurcation from
relative equilibria [14, 7], it is possible to find convenient coordinates in which to describe
the differential equation in an open neighborhood of a relative periodic solution P. These
equations take the form of a skew-product between dynamics in a neighborhood of an
isolated discrete rotating wave and dynamics on the group I'. In particular, the dynamics
near the discrete rotating wave is independent of the dynamics on I', but the dynamics
on [' is driven by the dynamics near the discrete rotating wave. The dynamics on I' is
usually referred to as drift (along the group orbit). We will not give full details on these
equations, but refer to [23] instead. Certain aspects of our results are presented in the
following theorem.

Define A x Z;, in the usual way, now with 7% = 1.



Theorem 4.1 The dynamics in a neighborhood of P is equivalent, modulo drifts along
group orbits, to the dynamics in the neighborhood of an isolated discrete rotating wave
y(t) with spatial symmetry A and spatiotemporal symmetry A X Zy.

More precisely, there is a I'-invariant neighborhood U of P and a A X Zg-invariant
neighborhood W of y(t) such that the dynamics on the orbit spaces U/T" and W/(A X Zy)
are topologically conjugate.

Moreover, each symmetry 776 € A X Zy, § € A, acting on W corresponds to a
symmetry of the form yo?§ € T' acting on U, where v € T is near identity.

Theorem 4.1 reduces bifurcation from a relative periodic solution to bifurcation from
an isolated discrete rotating wave. In particular, there is a one-to-one correspondence
between (group orbits of) periodic solutions lying close to y(t), and relative periodic
solutions lying close to P.

Combining the results of Theorems 3.5-3.6 with Theorem 4.1, we conclude that bi-
furcation from a relative periodic solution with spatial symmetry A and spatiotemporal
symmetry generator o reduces to bifurcation from an equilibrium of a A X Zgyg-equivariant
vector field.

Remark 4.2 Note that in the general problem of bifurcation from discrete rotating waves
(as treated in [16, 18]) we have either an orientable or nonorientable local flow around
the periodic solution. However, in [23] we always obtain a trivial (orientable) bundle
structure. Alternatively, following Theorem 4.1, we may directly reduce to a general
discrete rotating wave without orientability conditions on the local bundle structure.

Remark 4.3 Theorem 4.1 represents only part of the theory given in Wulff et al. [23].
For example, Theorem 4.1 does not provide a means of computing the element 7 in the
spatiotemporal symmetry voPd. We note that for a bifurcating relative periodic solution
with spatial symmetry AP v is a general near identity element in Z(APf), and hence
the results of Krupa [14] and Field [8] can be used to determine the expected drift on the
bifurcating relative periodic solutions.

In addition, the implications of such drifts in phase space for phenomena viewed in
physical space have been studied recently [10] in the context of Hopf bifurcation from
relative equilibria. The corresponding analysis for Hopf bifurcation from relative periodic
solutions requires the full strength of the results in [23].

More generally, the results in [23] hold for many noncompact Lie groups I, including
the Euclidean group. We note that the computation of the slow drift v is particularly
important in this context, since the value of v determines whether the drift is compact or
unbounded. (The genericity results of [14, 8] generalize to the noncompact group setting,
see [3] and [23, Section 5(b)], but do not predict the actual value of y.) Again, v may be
determined using the results in [23].

5 Extensions in the presence of additional structure

The theory developed in [16, 23, 18] provides a systematic approach towards the study
of bifurcation of (relative) periodic solutions in equivariant dynamical systems, including



mode interactions.

However, dynamical systems may have additional structure, apart from equivariance.
If so, this structure needs to be taken into account.

We here mention two additional structures which recently have attracted much atten-
tion: time-reversal symmetry (in general, reversible equivariant systems), and symplectic
structure (reversible equivariant Hamiltonian systems). Lamb and Wulff [19] show that
bifurcation from reversible relative periodic solutions reduces to bifurcation from isolated
reversible discrete rotating waves. This in turn reduces [18] to bifurcation from equilibria
of reversible equivariant vector fields. The analogous theory for bifurcation from relative
periodic solutions in reversible equivariant Hamiltonian systems is treated in Wulff, Lamb
and Roberts [24].
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