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Abstract

We develop operator renewal theory for flows and apply this to obtain results on
mixing and rates of mixing for a large class of finite and infinite measure semiflows.
Examples of systems covered by our results include suspensions over parabolic rational
maps of the complex plane, and nonuniformly expanding semiflows with indifferent
periodic orbits.

In the finite measure case, the emphasis is on obtaining sharp rates of decorrelations,
extending results of Gouëzel and Sarig from the discrete time setting to continuous time.
In the infinite measure case, the primary question is to prove results on mixing itself,
extending our results in the discrete time setting. In some cases, we obtain also higher
order asymptotics and rates of mixing.

AMS Subject Classifications: 37A25, 37A40, 37A50, 60K05
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1 Introduction

This paper is concerned with mixing for continuous time dynamical systems. To set the
background for our results, we begin by discussing developments for discrete time.

Much recent research has centered around the statistical properties of smooth dynam-
ical systems with strong hyperbolicity (expansion/contraction) properties. Results such as
exponential decay of correlations and statistical limit laws are by now classical for uniformly
hyperbolic diffeomorphisms [6, 32, 34]. In particular, if f : X → X is uniformly hyperbolic
and µ is an equilibrium measure corresponding to a Hölder potential, then the correlation
function

∫
X v w ◦f

n dµ−
∫
X v dµ

∫
X w dµ decays exponentially quickly as n→∞ for Hölder

observables v, w : X → R.
Young [38] extended this result to a large class of nonuniformly hyperbolic systems,

including planar dispersing billiards, and also established polynomial decay of correlations
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for systems that are more slowly mixing [39]. The results were then shown to be optimal by
Sarig [33] and Gouëzel [17]. Turning to the infinite measure case, the fundamental difference
is that limn→∞

∫
X v w◦f

n dµ = 0 for reasonably well-behaved observables v, w. Hence there
arises the preliminary problem of showing that an

∫
X v w ◦ f

n dµ →
∫
X v dµ

∫
X w dµ for a

suitable normalising sequence an →∞ and for sufficiently well-behaved v, w. The secondary
problem is to estimate the speed of convergence (rate of mixing). Definitive results on the
preliminary problem, and first results on the rate of mixing, were obtained recently in [28].

In the continuous time situation, decay of correlations is less well understood. Ex-
ponential decay of correlations has been proved only for a very thin set of Anosov flows
(those that possess a contact structure or have exceptionally smooth stable and unstable
foliations), see [8, 24]. On the other hand, superpolynomial decay of correlations holds for
“typical” uniformly hyperbolic flows [9, 12] for observables that are sufficiently regular. The
typical set of flows includes those with a pair of periodic points whose ratio of periods is
Diophantine [9] and also includes an open and dense set of flows [12]. Results on super-
polynomial decay were extended by [26] to nonuniformly hyperbolic flows whose Poincaré
map is within the class considered in [38]. For flows whose Poincaré map lies in the class
considered in [39], it was shown in [27] that typically polynomial decay holds for sufficiently
regular observables.

In the current paper, we develop a continuous time operator renewal theory, and thereby
obtain results on sharp lower bounds for finite measure semiflows with polynomial decay of
correlations, and mixing (as well as higher order asymptotics) for infinite measure semiflows,
extending the discrete time results of [17, 33, 28]. Our results hold typically in the same
sense as discussed above (so it suffices that there exists a pair of periods with Diophantine
ratio, see hypothesis (A2) and Remark 2.1 below).

1.1 Illustrative examples

To describe the main results, we consider (mainly for convenience) the family of Pomeau-
Manneville intermittent maps [31] considered by [25], and their suspensions in the contin-
uous time case. Specifically, define the interval maps f : X → X, X = [0, 1],

f(x) =

{
x(1 + 2γxγ), 0 < x < 1

2

2x− 1 1
2 < x < 1

, (1.1)

where γ > 0. There is a unique (up to scaling) σ-finite absolutely continuous invariant
measure and this measure is finite if and only if γ < 1. Such maps have a uniformly
expanding (or Gibbs-Markov, see Section 2 for precise definitions) first return map to the
set Y = [1

2 , 1]. Set β = 1/γ and

ξβ(t) =


t−β β > 2

(log t)t−2 β = 2

t−(2β−2) 1 < β < 2

, ξβ,ε(t) =

{
t−(β−ε), β ≥ 2

t−(2β−2), 1 < β < 2
. (1.2)

Discrete time, finite measure For γ ∈ (0, 1), it follows from [39, 20] that correlations
decay like n−(β−1): ∫

X
v w ◦ fn −

∫
X
v

∫
X
w = O(n−(β−1)),
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for all v : X → R Hölder and w : X → R lying in L∞. This decay rate is sharp [17, 33]:∫
X
v w ◦ fn −

∫
X
v

∫
X
w = c

∫
X
v

∫
X
w n−(β−1) +O(ξβ(n)),

for all observables v, w supported in a compact subset of (0, 1] with v Hölder and w in L∞.
Here c is a positive constant depending only on γ.

Discrete time, infinite measure For γ ∈ (1, 2), we showed [28] that there is a constant
c > 0 (depending only on γ) such that

n1−β
∫
X
v w ◦ fn → c

∫
X
v

∫
X
w,

for all observables v, w supported in a compact subset of (0, 1] with v Hölder and w in L∞.
The same result holds for γ = 1 with n1−β replaced by log n. For γ ≥ 2, such results cannot
hold in the generality considered in [28] but, using the extra structure of the maps (1.1),
the corresponding results were obtained by [19] for all γ > 1. In addition, rates of mixing
and higher asymptotics for γ ∈ (1, 2) were obtained in [28], improved upon in [35]. and
extended to the case γ ≥ 2 in [36].

Continuous time, finite measure Now suppose that ϕX : X → R+ is a Hölder roof
function bounded away from zero. We form the suspension flow ft : Λ→ Λ in the usual way
(see Section 2 for definitions). This semiflow has an indifferent periodic orbit corresponding
to the indifferent fixed point 0 ∈ X.

In the finite measure case γ ∈ (0, 1), it follows from [27] that typically
∫

Λ v w ◦ ft −∫
Λ v
∫

Λw decays at the rate t−(β−1) as t → ∞ for observables v, w : Λ → R where v is
Hölder and w is sufficiently smooth in the flow direction.

Here we prove that such results are optimal: for any ε > 0∫
Λ
v w ◦ ft −

∫
Λ
v

∫
Λ
w = c

∫
Λ
v

∫
Λ
w t−(β−1) +O(ξβ,ε(t)),

for all observables v, w supported away from the indifferent periodic orbit with v Hölder and
w sufficiently smooth in the flow direction. If moreover

∫
Λ v = 0, then

∫
v w◦ft = O(t−(β−ε)).

This is the direct analogue of the results in [17, 33].

Continuous time, infinite measure Finally, consider the semiflow ft : Λ → Λ for
γ ≥ 1. For γ ∈ (1, 2) we prove in this paper that typically

t1−β
∫

Λ
v w ◦ ft → c

∫
Λ
v

∫
Λ
w,

for all observables v, w supported away from the indifferent periodic orbit with v Hölder
and w sufficiently smooth in the flow direction. Again the same result holds for γ = 1 with
t1−β replaced by log t, and we obtain higher order asymptotics. This is the direct analogue
of the results in [28].
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1.2 Ingredients of the proofs

The methods in this paper combine

(i) Operator renewal theory developed by [15, 33] for the discrete time finite measure
situation.

(ii) The methods we introduced in the infinite ergodic theory setting in [28] which built
upon [14, 15, 33].

(iii) The ideas of [9] for uniformly hyperbolic flows and their extension [26, 27] to the
nonuniformly hyperbolic setting.

However, there is a fourth and equally important component, namely

(iv) An operator renewal equation for flows (Theorem 3.3).

As far as we can tell, the operator renewal equation for flows introduced in Section 3
below has no counterpart in the existing probability theory literature. Continuous time
versions of renewal theory have been developed previously in the probability theory litera-
ture. We refer to [11, Ch. XI] for the general framework surrounding Blackwell’s renewal
theorem [4]. For such a theorem in the infinite mean setting (the continuous time ana-
logue of [14]) we refer to [10, Theorem 1]. We also mention the work of Kingman (see
for instance [23]) for the continuous analogue, developed for both finite and infinite mean
setting, of Feller’s theory on discrete regenerative phenomena. However, it is unclear how to
apply these methods here, and our approach seems to have certain advantages as discussed
in Remark 3.6.

In Section 2, we state our main results for suspensions of nonuniformly expanding maps,
and recover the statements in the introduction (suspensions of intermittent maps) as a
special case. The remainder of this paper is then divided into three parts. In Part I, we
derive the operator renewal equation for flows. In Part II, we prove our results on infinite
measure systems. In Part III, we prove our results on finite measure systems. The paper is
written in such a way that Parts II and III can be read independently.

Remark 1.1 For discrete time systems, operator renewal theory was developed first in the
finite measure case before being extended to the infinite measure situation. For continuous
time systems, we present the material in the reverse order. The reason for this is that
having formulated the continuous time operator renewal equation described above in (iv),
it is fairly straightforward to deduce our main results for infinite measure semiflows from
the existing work described in components (ii) and (iii). (We note however that certain
technical estimates in the proof and usage of Lemma 5.2 are considerably more complicated
than in the case of discrete time, infinite measure.) In contrast, although our results for
finite measure semiflows follow from components (i), (iii) and (iv), it requires significantly
more work to glue these methods together.

Notation We use the “big O” and � notation interchangeably, writing an = O(bn) or
an � bn if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1. Three positive
constants arise frequently throughout the paper: C1 and C2 introduced in Section 2, and
c2 = (C2 + 1)−1 which appears for the first time in Section 8.
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2 Statement of the main results

Suspension semiflows Let (Y, µ) be a probability space and F : Y → Y an ergodic
measure-preserving transformation. Let ϕ : Y → R+ be a measurable roof function. Form
the suspension Y ϕ = {(y, u) ∈ Y × R : 0 ≤ u ≤ ϕ(y)}/ ∼ where (y, ϕ(y)) ∼ (Fy, 0).
The suspension flow ft : Y ϕ → Y ϕ is given by ft(y, u) = (y, u + t) computed modulo
identifications and the measure µϕ = µ×Lebesgue is ergodic and ft-invariant. In the finite
measure case, we normalise by ϕ̄ =

∫
Y ϕdµ so that µϕ = (µ× Lebesgue)/ϕ̄ is a probability

measure.

Gibbs-Markov maps We assume throughout that F : Y → Y is a full branch Gibbs-
Markov map. Roughly speaking F is uniformly expanding with good distortion properties.

We recall the key definitions [1]. Let (Y, µ) be a Lebesgue probability space with
countable measurable partition α. Let F : Y → Y be an ergodic, conservative, measure-
preserving, Markov map transforming each partition element bijectively onto Y . For any
θ ∈ (0, 1), define dθ(y, y

′) = θs(y,y
′) where the separation time s(y, y′) is the least integer

n ≥ 0 such that Fny and Fny′ lie in distinct partition elements in α. It is assumed that the
partition α separates orbits of F , so s(y, y′) is finite for all y 6= y′. Then dθ is a metric. Let
Fθ(Y ) be the Banach space of dθ-Lipschitz functions v : Y → R with norm ‖v‖ = |v|∞+ |v|θ
where |v|θ is the Lipschitz constant of v.

Define the potential function g = log dµ
dµ◦F : Y → R. We require that g is uniformly

piecewise Lipschitz: that is, g|a is dθ-Lipschitz on each a ∈ α and the Lipschitz constants
can be chosen independent of a.

For n ≥ 1 we let αn denote the partition into n-cylinders. Let gn =
∑n−1

j=0 g ◦ F j .
It follows from the Lipschitz property of g together with full branches that there exists a
constant C1 > 0 such that

egn(y) ≤ C1µ(a), and |egn(y) − egn(y′)| ≤ C1µ(a)dθ(F
ny, Fny′), (2.1)

for all y, y′ ∈ a, a ∈ αn, n ≥ 1.
From now on, we adopt a convenient abuse of notation and define |1av|θ =

supy,y′∈a:y 6=y′ |v(y) − v(y′)|/dθ(y, y′). We write 1av ∈ Fθ(Y ) if 1av is bounded and
|1av|θ <∞.

Roof function The roof function ϕ : Y → Z+ is assumed to be piecewise Lipschitz with
respect to dθ0 for some θ0 ∈ (0, 1), (ie 1aϕ ∈ Fθ0(Y ) for all a ∈ α), and satisfying inf ϕ > 0.
For convenience of notation, we suppose that inf ϕ > 2. In particular, the set Ỹ = Y × [0, 1]
lies inside Y ϕ.

We make various further assumptions:

(A1) There is a constant C2 > 0 such that |1aϕ|θ0 ≤ C2 infa ϕ for all a ∈ α.

(A2) There exist two periodic orbits for ft with periods τ1, τ2 such that τ1/τ2 is Diophan-
tine. We require that the periodic orbits intersect Y only in the interior of partition
elements.
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Remark 2.1 Condition (A1) is automatic for a large class of examples discussed in Sub-
section 2.1. Condition (A2) is sufficient for a rather technical “approximate eigenfunction”
criterion of Dolgopyat [9] to be satisfied. This criterion is stated precisely in Definition 4.2
and holds also for an open dense set of roof functions [12].

Observables We consider observables v, w : Ỹ → R of the following form. Writing
vu(y) = v(y, u), define |v|θ = supu∈[0,1] |vu|θ and ‖v‖θ = |v|∞ + |v|θ. Then Fθ(Ỹ ) is the

space consisting of those v ∈ L∞(Ỹ ) with ‖v‖θ <∞.
For m ≥ 0, set |w|∞,m = maxj=0,...,m |∂jtw|∞. We write w ∈ L∞,m(Ỹ ) if w is supported

in Y × (0, 1) with |w|∞,m <∞.

Define

ρv,w(t) =

∫
Y ϕ

v w ◦ ft dµϕ,

and write v̄ =
∫
Y ϕ v dµ

ϕ, w̄ =
∫
Y ϕ w dµ

ϕ. In the finite measure case, the correlation function
of v and w is given by ρv,w(t)− v̄w̄. We can now state our main theorems.

Theorem 2.2 (Infinite measure) Assume that F : Y → Y is a full branch Gibbs-Markov
map with roof function ϕ : Y → R+ satisfying conditions (A1) and (A2).

(a) Suppose that ϕ is nonintegrable and µ(ϕ > t) = `(t)t−β where β ∈ (1
2 , 1] and ` is a

measurable slowly varying function (so limx→∞ `(λx)/`(x) = 1 for all λ > 0).

Let dβ = 1
π sinβπ for β < 1 and dβ = 1 for β = 1. Define ˜̀(t) = `(t) for β < 1 and

˜̀(t) =
∫ t

1 `(s)s
−1 ds for β = 1.

Then there exist θ ∈ (0, 1), m ≥ 1, and a function a : (0,∞) → (0,∞) with
limt→∞ a(t) = 0 such that

|˜̀(t)t1−βρv,w(t)− dβ v̄w̄| ≤ ‖v‖θ|w|∞,m a(t),

for all v ∈ Fθ(Ỹ ), w ∈ L∞,m(Ỹ ).

(b) Suppose moreover that µ(ϕ > t) = ct−β + O(t−q) where β ∈ (1
2 , 1), q ∈ (1, 2β) and

c > 0. There exist constants d1 = c−1dβ, d2, d3, . . . ∈ R, and for any ε > 0, there exist
θ ∈ (0, 1), m ≥ 1, such that

ρv,w(t) =
∑
j

djt
−j(1−β)v̄w̄ +O(‖v‖θ|w|∞,m t−β(1−q−1(2β−1)−ε)),

for all v ∈ Fθ(Ỹ ), w ∈ L∞,m(Ỹ ), t > 0. Here, the sum is over those j ≥ 1 with
j(1− β) ≤ β(1− q−1(2β − 1)− ε).
In particular, if µ(ϕ > t) = ct−β + O(t−2β), then the error term is of the form

O(‖v‖θ|w|∞,m t−( 1
2
−ε)). If in addition β > 3

4 and d2 6= 0, then we obtain second order
asymptotics.
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Remark 2.3 Explicit formulas for the constants dj , j ≥ 2, can be found in [28, Section 9].
Write µ(ϕ > t) = ct−β(1 +H(t)). Then dj = ej

∫∞
0 H(t) dt where ej is a nonzero constant

depending only on j and β. In particular, either all the constants dj are nonzero (the typical
case) or dj = 0 for all j ≥ 2. (The functions H and H1 in [28, Lemma 3.2] coincide in the
continuous time context.)

In the finite case, define

ζ(t) =

∫ ∞
t

µ(ϕ > τ) dτ, ξβ,ε(t) =

{
t−(β−ε), β ≥ 2

t−(2β−2), 1 < β < 2
. (2.2)

Theorem 2.4 (Finite measure) Assume that F : Y → Y is a full branch Gibbs-Markov
map with roof function ϕ : Y → R+ satisfying conditions (A1) and (A2).

(a) Suppose that µ(ϕ > t) = O(t−β) where β > 1. Then for any ε > 0, there exists
θ ∈ (0, 1), m ≥ 1, such that

ρv,w(t)− v̄w̄ = (1/ϕ̄)v̄w̄ ζ(t) +O(‖v‖θ|w|∞,m ξβ,ε(t)),

for all v ∈ Fθ(Ỹ ), w ∈ L∞,m(Ỹ ), t > 0.

(b) Suppose further that v̄ = 0. Then for any ε > 0, there exists θ ∈ (0, 1), m ≥ 1, such
that

ρv,w(t) = O
(
‖v‖θ|w|∞,m t−(β−ε)),

for all v ∈ Fθ(Ỹ ), w ∈ L∞,m(Ỹ ), t > 0.

Remark 2.5 It is well-known that the regular variation assumption is necessary for Theo-
rem 2.2. The assumption of polynomial tails in Theorem 2.4 can be relaxed as in [16] or [30]
but we do not pursue that here.

2.1 Examples with full branch Gibbs-Markov first return maps

In formulating Theorems 2.2 and 2.4, we considered suspensions where the map F : Y → Y
is uniformly expanding and the roof function ϕ : Y → R+ is unbounded. Often it is
convenient to reverse the roles and to start with a map f : X → X that is less well-behaved
(nonuniformly expanding instead of uniformly expanding) together with a bounded roof
function ϕX : X → R.

In particular a large class of examples covered by our methods are those where the map
f : X → X has a first return map F : Y → Y that is full branch and Gibbs-Markov and
where ϕX is globally Lipschitz. This includes suspensions of parabolic rational maps of the
complex plane (Aaronson et al. [3]) and Thaler’s class of interval maps with indifferent fixed
points [37] (in particular the family (1.1) defined above).

The separation time s, and hence the metric dθ, extends from Y to X: define
s(f `y, f `y′) = s(y, y′) for all y, y′ ∈ a, a ∈ α, 0 ≤ ` < τ(y). Suppose that the roof func-
tion ϕX : X → R+ is locally Lipschitz with respect to this metric and define the induced

roof function ϕ : Y → Z+, ϕ(y) =
∑τ(y)−1

j=0 ϕX(y). Thus we obtain equivalent semiflows
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using either (f, ϕX) or (F,ϕ). Furthermore, condition (A1) is automatic if ϕX is globally
Lipschitz, and the statement of condition (A2) is unchanged in the new setting (the set of
periods for (f, ϕX) or (F,ϕ) are identical).

Example 2.6 Consider the family of intermittent maps (1.1) discussed in the introduction.
Such maps f : X → X have a full branch Gibbs-Markov first return map to the set
Y = [1

2 , 1]. Recall that v : X → R is Cη for η ∈ (0, 1] if v is continuous and supx 6=x′ |v(x)−
v(x′)|/|x− x′|η <∞.

Proposition 2.7 Suppose that ϕX : X → R+ is Cη, η ∈ (0, 1]. Then

µ(y ∈ Y : ϕ(y) > t) = c0t
−β(1 +O(t−βη)),

where β = 1/γ, c0 = 1
4β

βϕX(0)βh(1
2), and h : Y → R+ is the density for µ.

Proof See [15, Theorem 1.3] for a similar calculation in the case γ < 1. Recall (see for
example [28, Proposition 11.12]) that the first return time τ : Y → Z+ satisfies

µ(τ > n) = c1n
−β(1 +O(n−β)), (2.3)

where c1 = 1
4β

βh(1
2).

If τ(y) = k, then write

ϕ(y) =
k−1∑
j=0

ϕX(f jy) = ϕX(y) + (k − 1)ϕX(0) +
k−1∑
j=1

(ϕX(f jy)− ϕX(0)),

where f jy = O((k − j)−β) for j = 1, . . . , k − 1. It follows that

∣∣∣k−1∑
j=1

(ϕX(f jy)− ϕX(0))
∣∣∣ ≤ |ϕX |η k−1∑

j=1

|f jy)|η � k1−ηβ.

Hence ϕ(y) = k(ϕX(0) +O(k−βη)) = ϕX(0)τ(y)(1 +O(τ(y)−βη). This combined with (2.3)
yields the result.

Corollary 2.8 Suppose that X = [0, 1] and that f : X → X is an intermittent map of the
form (1.1), with γ ∈ (0, 2). Let ϕX : X → R+ be a Cη-roof function, η ∈ (0, 1]. Suppose
further that the suspension semiflow possesses a pair of periodic orbits with Diophantine
ratio of periods. Let β = 1/γ and c0 = 1

4β
βϕX(0)βh(1

2). Then

(a) For γ ∈ [1, 2), the conclusion of Theorem 2.2(a) holds with ˜̀(t) ∼ c0 for γ ∈ (1, 2)
and ˜̀(t) ∼ c0 log t for γ = 1.

Moreover if η ∈ (0, 1] is sufficiently large (η ∈ (1−β
β , 1] suffices), then the conclusion

of Theorem 2.2(b) holds.
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(b) For γ ∈ (0, 1), the conclusion of Theorem 2.4(a) holds in the form

ρv,w(t)− v̄w̄ = (1/ϕ̄)c0(β − 1)−1v̄w̄ t−(β−1) +O(t−p),

where p = min{β − 1 + βη, 2β − 2} for β < 2 and p = min{β − 1 + βη, β − ε} for
β ≥ 2.

Moreover, if v̄ = 0, then we obtain ρv,w(t) = O(t−(β−ε)) as in Theorem 2.4(b).

Proof Condition (A1) is automatic, and we have explicitly assumed condition (A2).
Proposition 2.7 gives the required estimates on µ(ϕ > t). Hence the results follow from
Theorems 2.2 and 2.4.

Part I

Continuous time operator renewal theory

In this part of the paper, we formulate an operator renewal equation for flows.

3 The operator renewal equation

Transfer operators Let R : L1(Y ) → L1(Y ) denote the transfer operator for F : Y →
Y and let Lt : L1(Y ϕ) → L1(Y ϕ) denote the family of transfer operators for ft. (So∫
Y Rv w dµ =

∫
Y v w ◦ F dµ,

∫
Y ϕ Ltv w dµ

ϕ =
∫
Y ϕ v w ◦ ft dµ

ϕ for suitable test functions
v, w.)

Recall that Ỹ = Y × [0, 1]. We define the probability measure µ̃ = µ × Lebesgue on
Ỹ . Note that in the infinite measure case µϕ|Ỹ = µ̃, whereas in the finite measure case
µϕ|Ỹ = (1/ϕ̄)µ̃.

Define F̃ : Ỹ → Ỹ by setting F̃ (y, u) = (Fy, u). Note that F̃ (y, u) = fϕ(y)(y, u).

Define ϕ̃ : Ỹ → R+, ϕ̃(y, u) = ϕ(y). Then F̃ = fϕ̃. Let R̃ denote the transfer operator
corresponding to the map F̃ : Ỹ → Ỹ (

∫
Ỹ R̃v w dµ̃ =

∫
Ỹ v w ◦ F̃ dµ̃). Given v ∈ L1(Ỹ ) and

u ∈ [0, 1] we define vu ∈ L1(Y ), vu(y) = v(y, u). It is easily verified that

(R̃v)(y, u) = (Rvu)(y). (3.1)

Renewal operators For t > 0, define Tt, Ut : L1(Ỹ )→ L1(Ỹ ) by setting

Ttv = 1Ỹ Lt(1Ỹ v), Utv = 1Ỹ Lt(1{ϕ̃>t}v).

For s ∈ C, define the families of operators on L1(Ỹ ),

R̂(s)v = R̃(e−sϕ̃v), T̂ (s)v =

∫ ∞
0

e−stTtv dt, Û(s)v =

∫ ∞
0

e−stUtv dt.

Note that R̂, T̂ , Û are analytic on H = {Re s > 0} and that R̂ is well-defined on H =
{Re s ≥ 0}. We also define R̂0(s) : L1(Y )→ L1(Y ) for s ∈ H: R̂0(s)v = R(e−sϕv).
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Remark 3.1 Throughout the paper, we write â(s) to denote a function that is analytic on
H, with inverse Laplace transform a(t).

We note that R̂0(s) has the formal inverse Laplace transform R0(t)v = R(δϕ(t)v), where
δx is the δ-measure at x, but this is not used explicitly in the paper.

Proposition 3.2 ρ̂(s) =
∫
Ỹ T̂ (s)v w dµϕ for v ∈ L1(Ỹ ), w ∈ L∞(Ỹ ), s ∈ H.

Proof We have ρ(t) =
∫
Ỹ v w ◦ ft dµ

ϕ =
∫
Ỹ Ltv w dµ

ϕ =
∫
Ỹ Ttv w dµ

ϕ, so that

ρ̂(s) =

∫ ∞
0

e−stρ(t) dt =

∫ ∞
0

e−st
∫
Ỹ
Ttv w dµ

ϕ dt =

∫
Ỹ
T̂ (s)v w dµϕ,

as required.

Theorem 3.3 T̂ (s)R̂(s) = T̂ (s)− Û(s) for s ∈ H.

Proof Let w ∈ L∞(Ỹ ). We compute that∫
Ỹ
T̂ (s)R̂(s)v w dµ̃ =

∫
Ỹ

∫ ∞
0

e−stLtR̃(e−sϕ̃v)w dt dµ̃ =

∫ ∞
0

e−st
∫
Ỹ
e−sϕ̃v w ◦ ft ◦ F̃ dµ̃ dt

=

∫
Ỹ

∫ ∞
0

e−s(t+ϕ̃)v w ◦ ft+ϕ̃ dt dµ̃ =

∫
Ỹ

∫ ∞
ϕ̃

e−stv w ◦ ft dt dµ̃

=

∫
Ỹ

∫ ∞
0

e−stv w ◦ ft dt dµ̃−
∫
Ỹ

∫ ϕ̃

0
e−stv w ◦ ft dt dµ̃

=

∫
Ỹ
T̂ (s)v w dµ̃−

∫
Ỹ

∫ ∞
0

1{ϕ̃>t}e
−stv w ◦ ft dt dµ̃ =

∫
Ỹ
T̂ (s)v w dµ̃−

∫
Ỹ
Û(s)v w dµ̃

so T̂ R̂ = T̂ − Û as required.

For future reference, we record the following formula for Ut.

Proposition 3.4 Suppose that v ∈ L1(Ỹ ). Then

(Utv)(y, u) =

{
v(y, u− t)1[t,1](u), 0 ≤ t ≤ 1

(R̃vt)(y, u), t > 1
,

where vt(y, u) = 1{t<ϕ(y)<t+1−u}v(y, u− t+ ϕ(y)).

Proof For t ≤ 1, we have Utv = Ttv and so∫
Ỹ

(Utv)w dµ̃ =

∫
Ỹ
v w ◦ ft dµ̃ =

∫
Ỹ
v(y, u)w(y, u+ t) dµ̃

=

∫
Y

∫ 1−t

0
v(y, u)w(y, u+ t) du dµ =

∫
Y

∫ 1

t
v(y, u− t)w(y, u) du dµ

=

∫
Ỹ
v(y, u− t)1[t,1](u)w(y, u) dµ̃.
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For t > 1,∫
Ỹ

(Utv)w dµ̃ =

∫
Ỹ
Tt(1{ϕ̃>t}v)w dµ̃ =

∫
Ỹ

1{ϕ̃>t}v w ◦ ft dµ̃

=

∫
Ỹ

(1{ϕ̃>t}v)(y, u)w(Fy, u+ t− ϕ(y)) dµ̃

=

∫
Y

∫ 1

ϕ(y)−t
1{ϕ(y)>t}v(y, u)w(Fy, u+ t− ϕ(y))) du dµ

=

∫
Y

∫ 1+t−ϕ(y)

0
1{ϕ(y)>t}v(y, u− t+ ϕ(y))w(Fy, u)) du dµ

=

∫
Ỹ

1{t<ϕ(y)<t+1−u}v(y, u− t+ ϕ(y))w ◦ F̃ (y, u) dµ̃ =

∫
Ỹ

(R̃vt)(y, u)w(y, u) dµ̃,

as required.

In Section 2.1, we defined the symbolic metric dθ on Y and the Banach space Fθ(Y ) of
dθ-Lipschitz functions v : Y → R. The next result makes use of the Gibbs-Markov structure
and a weakened version of condition (A2).

Proposition 3.5 Let θ ∈ (0, 1). Viewing the family of twisted transfer operators R̂0(s) as
operators on Fθ(Y ),

(a) The spectral radius of R̂0(s) is less than 1 for s ∈ H−{0} and is equal to 1 for s = 0.

(b) 1 is a simple eigenvalue for R̂0(0) and is isolated in the spectrum of R̂0(0).

Proof This is standard. By for example the proof of [28, Proposition 11.4], R̂0(s) has
spectral radius at most 1 and essential spectral radius at most θ for all s ∈ H. Also the
spectral radius is less than 1 for all s ∈ H. Hence it suffices to consider eigenvalues at 1 for
s = ib. It follows from ergodicity of F that 1 is a simple eigenvalue for its transfer operator
R̂0(0), so it remains to rule out 1 as an eigenvalue for R̂0(ib), b 6= 0.

Consider the family of operators Mb : Fθ(X) → Fθ(X) given by Mbv = eibϕv ◦ F .
The operators R̂0(ib) and Mb are L2 adjoints so it is equivalent to show that 1 is not an
eigenvalue for Mb. We claim that if 1 is an eigenvalue, then every period τ corresponding
to a periodic orbit for the semiflow lies in (2π/b)Z which violates condition (A2). (For this
proposition it suffices to have two irrationally related periods.)

To prove the claim, suppose that Mbv = v for some v ∈ Fθ(X), v 6≡ 0. In other words,
eibϕv ◦ F = v. In particular, |v| ◦ F = |v| and it follows by ergodicity that |v| is constant.

Hence v is nonvanishing. Iterating, we have eib
∑k−1
j=0 ϕ◦F

j

v ◦ F k = v. Now suppose that y is
a periodic point for F of period k. The period τ of the corresponding periodic orbit for ft
is given by τ =

∑k−1
j=0 ϕ(F jy) and so v(y) = eibτv(y). Dividing by v(y), we obtain eibτ = 1

verifying the claim.

Let T̂0(s) = (I − R̂0(s))−1; this is well-defined for s ∈ H − {0}. Write vu(y) = v(y, u).
Then

((I − R̂(s))−1v)(y, u) = (T̂0(s)vu)(y), s ∈ H− {0}.

11



Also we obtain the renewal equation

T̂ (s) = Û(s)(I − R̂(s))−1, s ∈ H− {0}.

By Proposition 3.2, we obtain an analytic extension

ρ̂(s) =

∫
Ỹ
Û(s)(I − R̂(s))−1v w dµϕ, (3.2)

defined on a neighbourhood of H− {0}.

Remark 3.6 The operator renewal equation T̂ (s) = Û(s)(I − R̂(s))−1 has the desired
effect of relating the Laplace transform of the transfer operators Tt for the flow with the
perturbed transfer operator R̂0(s)v = R(e−sϕv) where R is the transfer operator for the
Poincaré map F .

In dynamical systems theory, there are two standard types of discrete time system that
can be obtained from a continuous time system: Poincaré maps such as F and the time-h
map fh for fixed h > 0. In the probability theory literature, a standard technique after
Kingman [22] is to consider discrete time “skeletons” fh and to pass to the continuous time
limit as h → 0. However, for the properties studied in the current paper, the partially
hyperbolic time-h map is as difficult to study as the underlying continuous time system. In
contrast, the uniformly expanding Poincaré map F is much more tractable.

Hence, at least for certain situations in dynamical systems theory, and perhaps in prob-
ability theory too, the renewal equation presented here seems a more useful approach than
passing to discrete time skeletons.

The following elementary result is required in both Part II and Part III.

Proposition 3.7 Let m ≥ 1. Suppose that v ∈ L1(Ỹ ) and w ∈ L∞,m(Ỹ ). Then

ρ̂v,w(s) =
m∑
j=1

ρ
v,∂j−1

t w
(0)s−j + s−mρ̂v,∂mt w(s).

Proof First note that ρv,w is m-times differentiable and ρv,w
(j) = ρ

v,∂jtw
for j = 0, . . . ,m.

By Taylor’s Theorem, ρv,w(t) = Pm(t) +Hm(t), where

Pm(t) =
m−1∑
j=0

1

j!
ρv,w

(j)(0)tj , Hm(t) =

∫ t

0
g(t− τ)ρv,w

(m)(τ) dτ, g(t) =
tm−1

(m− 1)!
.

Hence ρ̂v,w(s) =
∑m−1

j=0 ρ
v,∂jtw

(0)s−(j+1) + Ĥm(s), where Ĥm(s) = ĝ(s)ρ̂v,∂mt w(s) =

s−mρ̂v,∂mt w(s).
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4 Dolgopyat-type estimates

In this section, we recall estimates of [9] extended to the nonuniformly hyperbolic setting [26,
27]. These are required to control (I − R̂(s))−1 for s = ib, b large. The arguments need
some modification here to allow for the possibility that ϕ 6∈ L1.

We recall that the twisted transfer operators R̂0(s) : L1(Y )→ L1(Y ) satisfy for n ≥ 1,

(R̂0(s)nv)(y) =
∑
a∈αn

egn(ya)e−sϕn(ya)v(ya), (4.1)

where ya denotes the unique preimage ya ∈ a ∩ F−ny and ϕn =
∑n−1

j=0 ϕ ◦ F j .

Lemma 4.1 For every ε > 0, there exist constants C ≥ 1 and θ, τ ∈ (0, 1) such that for
every v ∈ Fθ(Y ), b ∈ R,

(a) |R̂0(ib)v|∞ ≤ |v|∞,

(b) |R̂0(ib)nv|θ ≤ C{(1 + |b|ε
∫
Y ϕ

ε dµ)|v|∞ + θn|v|θ}.

(c) ‖Rnv −
∫
Y v dµ‖θ ≤ Cτ

n‖v‖θ.

Proof Note that R̂0(s)nv = Rn(e−sϕnv). Since |R|∞ = 1, it follows that part (a) is valid.
Full branch Gibbs-Markov maps are mixing, so R has no eigenvalues on the unit circle except
for the simple eigenvalue at 1. Part (c) follows from this together with quasicompactness [1,
Section 4.7].

It remains to prove (b). Our argument improves [7] where it is assumed that ϕ ∈ L1(Y ).
Let y, y′ ∈ Y . Then

(R̂0(ib)n(1av))(y)− (R̂0(ib)n(1av))(y′) = D1 +D2 +D3,

where

D1 = (egn(ya) − egn(y′a))eibϕn(ya)v(ya), D2 = egn(y′a)(eibϕn(ya) − eibϕn(y′a))v(ya),

D3 = egn(y′a)eibϕn(y′a)(v(ya)− v(y′a)).

By the estimates (2.1),

|D1| ≤ C1µ(a)|v|∞dθ(y, y′), |D3| ≤ C1µ(a)|v|θdθ(ya, y′a) = C1θ
nµ(a)|v|θdθ(y, y′).

Summing over a ∈ αn, we obtain that the terms of type D1 and D3 contribute C1|v|∞ and
C1θ

n|v|θ respectively to |R̂0(ib)nv|θ.
Next,

|D2| ≤ C1µ(a)

n−1∑
j=0

|eibϕ(F jya) − eibϕ(F jy′a)||v|∞.

Recall that by assumption 1aϕ ∈ Fθ0(Y ) for some θ0 ∈ (0, 1). Using the inequality |eix−1| ≤
min{2, |x|} ≤ 2|x|ε for x ∈ R, ε ∈ [0, 1],

|D2| ≤ 2C1µ(a)|b|ε
n−1∑
j=0

|1F jaϕ|εθ0dθ0(F jya, F
jy′a)

ε|v|∞.
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Let θ = θε0. Then dθ0(F jya, F
jy′a)

ε = dθ(F
jya, F

jy′a) = θn−jdθ(y, y
′). By (A1),

|D2| ≤ 2C1C
ε
2µ(a)|b|ε

n−1∑
j=0

inf(1F jaϕ)εθn−jdθ(y, y
′)|v|∞.

Hence, summing over a ∈ αn, the D2 terms contribute 2C1C
ε
2|b|ε|v|∞S, where

S =
∑
a∈αn

µ(a)
n−1∑
j=0

θn−j inf(1F jaϕ)ε =
n−1∑
j=0

∑
d∈αn−j

∑
a∈αn:F ja=d

µ(a)θn−j inf(1F jaϕ)ε

=
n−1∑
j=0

θn−j
∑

d∈αn−j

inf(1dϕ)ε
∑

a∈αn:F ja=d

µ(a) =

n−1∑
j=0

θn−j
∑

d∈αn−j

inf(1dϕ)εµ(d)

≤
n−1∑
j=0

θn−j
∫
Y
ϕε dµ ≤ θ(1− θ)−1

∫
Y
ϕε dµ.

This completes the proof of part (b).

For b ∈ R, define Mb : L∞(Y )→ L∞(Y ), Mbv = eibϕv ◦ F .

Definition 4.2 There are approximate eigenfunctions on a subset Z ⊂ Y if there exist
constants A > 0 arbitrarily large, β > 0 and C ≥ 1, and sequences |bk| → ∞, ψk ∈ [0, 2π),
uk ∈ Fθ(Y ) with |uk| ≡ 1, such that setting nk = [β ln |bk|],

|Mnk
bk
uk(y)− eiψkuk(y)| ≤ C|bk|−A,

for all y ∈ Z and all k ≥ 1.

A subset Z0 ⊂ Y is called a finite subsystem if Z0 =
⋂
n≥0 F

−nZ where Z is a finite
union of partition elements a ∈ α.

Proposition 4.3 There exists a finite subsystem Z0 such that there are no approximate
eigenfunctions on Z0.

Proof By (A2), we can fix two periodic orbits with periods τ1 and τ2 such that τ1/τ2

is Diophantine. Let Z be the union of the partition elements a ∈ α intersected by the
periodic orbits and define Z0 =

⋂
n≥0 F

−nZ. It follows from [9, Section 13] that there are
no approximate eigenfunctions on Z0.

Lemma 4.4 There exists A > 0 and C ≥ 1 such that ‖(I − R̂(ib))−1‖θ ≤ C|b|A for all
b ∈ R with |b| ≥ 1.

Proof By (3.1), it suffices to prove this with R̂(ib) replaced by R0(ib) : Fθ(Y ) → Fθ(Y ).
By Proposition 4.3, there is a finite subsystem on which there are no approximate eigen-
functions. The estimate for (I − R̂0)−1 follows from this by exactly the argument used
in [26, Lemmas 3.12 and 3.13]. Lemma 4.1 plays the role of [26, Proposition 3.7].
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Remark 4.5 We shall consider various families of linear operators acting on various func-
tion spaces. Throughout, ‖ ‖θ denotes the operator norm on either Fθ(Y ) or Fθ(Ỹ ). Simi-
larly, ‖ ‖∞ denotes the operator norm on either L∞(Y ) or L∞(Ỹ ). Whether the space is Y
or Ỹ should be clear from the context.

Part II

Infinite measure systems

In this part of the paper, we prove our main results in the infinite measure context. Through-
out, we assume the setup from Section 2, so F : Y → Y is a full branch Gibbs-Markov map
and ϕ : Y → R+ is a roof function satisfying assumptions (A1) and (A2). In addition, we
make the standing assumption throughout this part of the paper that ϕ is nonintegrable
and µ(ϕ > t) ∼ `(t)t−β where β ∈ (1

2 , 1] and `(t) is slowly varying.
Section 5 contains various operator-theoretic estimates. Our result on first order asymp-

totics (mixing) stated in Theorem 2.2(a) is proved in Section 6. Our result on second order
asymptotics and rates of mixing, Theorem 2.2(b), is proved in Section 7.

5 Functional analytic estimates

In this section, we carry out various operator-theoretic estimates. Most of these are fairly
straightforward generalisations of the estimates in [28] which built upon [2, 14]. However,
the estimates in Lemma 5.2 are considerably more complicated than in the discrete time
case.

5.1 Estimates for R̃

In this subsection, we prove a key technical estimate that we have not seen elsewhere in the
literature (though Lemma 5.2 has a similar flavour to estimates in [35]).

We have the estimate µ(E > t) = O(`(t)t−β) for various functions E : α → R related
to ϕ including the locally constant functions E(a) = infa ϕ and hence E(a) = |1aϕ|∞ and
E(a) = |1aϕ|θ0 by condition (A1).

We use the following resummation argument extensively.

Proposition 5.1 Let ω,E : α → R be such that µ(E > t) = O(`(t)t−β), ω is a bounded
function, and ω(a) ≤ GE(a). Then

∑
a∈α µ(a)ω(a)� `(1/G)Gβ.

Proof For L ≥ 1, write∑
a∈α

µ(a)ω(a) ≤ G
∑

a:E(a)≤L

µ(a)E(a) +
∑

a:E(a)>L

µ(a)|ω|∞ = GK +O(`(L)L−β),
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where

K =
∑

a:E(a)≤L

µ(a)E(a) ≤
L∑
j=1

∑
a:E(a)∈(j−1,j]

µ(a)j =
L∑
j=1

∑
a:E(a)>j−1

µ(a)j −
L∑
j=0

∑
a:E(a)>j

µ(a)j

=

L−1∑
j=0

∑
a:E(a)>j

µ(a)(j + 1)−
L∑
j=0

∑
a:E(a)>j

µ(a)j ≤
L−1∑
j=0

∑
a:E(a)>j

µ(a)

=

L−1∑
j=0

µ(E > j)� `(L)L1−β.

Taking L ≈ 1/G yields the result.

Lemma 5.2 Let ε ∈ (0, β). There exists θ ∈ (0, 1), C > 0 such that

‖R̃(ib1)− R̃(ib2)‖θ ≤ C
{
`(|b1 − b2|−1)|b1 − b2|β + `(|b1 − b2|ε/β−1|b2|−ε/β)|b2|ε|b1 − b2|β−ε

}
.

Proof By (3.1), it suffices to prove the result for R̂0(ib). We show that

|R̂0(ib1)− R̂0(ib2)v|θ ≤ C
{
`(|b1 − b2|−1)|b1 − b2|β

+ `(|b1 − b2|ε/β−1|b2|−ε/β)|b2|ε|b1 − b2|β−ε
}
‖v‖θ.

A simpler argument which we omit shows that |(R̂0(ib1)−R̂0(ib2))v|∞ ≤ C`(|b1−b2|−1)|b1−
b2|β|v|∞ and the result follows.

The structure of the calculation begins as in [2, Theorem 2.4]. Let DR = R̂0(ib1) −
R̂0(ib2) and ∆(y) = eib1ϕ(y) − eib2ϕ(y). Recalling formula (4.1), we have (DRv)(y) =∑

a∈α ∆(ya)e
g(ya)v(ya) and so

(DRv)(y)− (DRv)(y′) =
∑
a∈α

∆(ya)e
g(ya)v(ya)−∆(y′a)e

g(y′a)v(y′a)

=
∑
a∈α

∆(ya)[e
g(ya)v(ya)− eg(y

′
a)v(y′a)] + [∆(ya)−∆(y′a)]e

g(y′a)v(y′a).

By the estimates (2.1),

|(DRv)(y)− (DRv)(y′)| ≤ C1|v|θJ1 + C1|v|∞J2,

where
J1 =

∑
a∈α

µ(a)|∆(ya)|dθ(y, y′), J2 =
∑
a∈α

µ(a)|∆(ya)−∆(y′a)|.

Now ∆ is bounded and also |∆(ya)| ≤ |b1− b2||1aϕ|∞ = GE(a) where G = |b1− b2| and
µ(E > t) = O(`(t)t−β). By Proposition 5.1, J1 � `(|b1 − b2|−1)|b1 − b2|βdθ(y, y′).

Next,

|∆(ya)−∆(y′a)| ≤ |ei(b1−b2)ϕ(ya) − ei(b1−b2)ϕ(y′a)|+ |ei(b1−b2)ϕ(y′a) − 1||eib2ϕ(ya) − eib2ϕ(y′a)|,
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so J2 ≤ J ′2 + J ′′2 where

J ′2 =
∑
a∈α

µ(a)|ei(b1−b2)ϕ(ya) − ei(b1−b2)ϕ(y′a)|,

J ′′2 =
∑
a∈α

µ(a)|ei(b1−b2)ϕ(y′a) − 1||eib2ϕ(ya) − eib2ϕ(y′a)|,

Now J ′2 =
∑

a∈α µ(a)ω(a) where ω is bounded and |ω(a)| ≤ GE(a) where G = |b1 −
b2|dθ0(y, y′) and E(a) = |1aϕ|θ0 . It follows from (A1) that µ(E > t) = O(`(t)t−β). By
Proposition 5.1, J ′2 � `((|b1− b2|dθ0(y, y′))−1)(|b1− b2|dθ0(y, y′))β. By Potter’s bounds (see

for instance [5]), J ′2 � `(|b1 − b2|−1)|b1 − b2|βdθ0(y, y′)β−ε. Choosing θ ≥ θβ−ε0 , we obtain
J ′2 � `(|b1 − b2|)−1|b1 − b2|βdθ(y, y′).

Finally, write J ′′2 =
∑

a∈α µ(a)ω(a) where ω is bounded. The inequality |eix− 1| ≤ 2|x|δ
holds for all x ≥ 0, δ ∈ [0, 1], so

|ω(a)| ≤ 4
{
|b1 − b2||1aϕ|∞

}1−ε/β{|b2||1aϕ|θ0dθ0(y, y′)
}ε/β

= 4GE(a),

where G = |b1 − b2|1−ε/β|b2|ε/βdθ0ε/β (y, y′) and E(a) = |1aϕ|1−ε/β∞ |1aϕ|ε/βθ0 . Again µ(E >

t) = O(`(t)t−β) so it follows from Proposition 5.1 and Potter’s bounds that

J ′′2 � `(G−1)Gβ = `(|b1 − b2|ε/β−1|b2|−ε/βdθ0ε/β (y, y′)−1)|b1 − b2|β−ε|b2|εdθ0ε(y, y
′)

� `(|b1 − b2|ε/β−1|b2|−ε/β)|b1 − b2|β−ε|b2|εdθ0ε/2(y, y′).

Choosing θ ≥ θε/20 , we obtain

J ′′2 � `(|b1 − b2|ε/β−1|b2|−ε/β)|b1 − b2|β−ε|b2|εdθ(y, y′),

completing the proof.

Remark 5.3 If supa∈α |1aϕ|θ <∞, then the proof simplifies considerably [2] and we obtain
that ‖R̂(ib1) − R̂(ib2)‖θ ≤ C`(|b1 − b2|−1)|b1 − b2|β. However, such a condition is too
restrictive for the inducing step in Subsection 2.1 and in particular is not satisfied for
Example 2.6.

Proposition 5.4 ‖R̂(s)− R̂(0)‖∞ � `(1/|s|)|s|β for all s ∈ H.

Proof Again it suffices to prove the result for the operators R̂0(s). It follows from the
proof of Lemma 5.2 that ‖R̂0(ib) − R̂0(0)‖∞ � `(|b|)|b|β. An identical argument shows
that ‖R̂0(ib + h) − R̂0(ib)‖∞ � `(h)hβ for all b ∈ R and h > 0 (the restriction to h > 0
guarantees that the function 1− e−hϕ is bounded).

5.2 Estimates for (I − R̂)−1

Let cβ = i
∫∞

0 e−iσσ−β dσ.
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Lemma 5.5 Viewing (I − R̂(s))−1 as a family of linear operators on Fθ(Ỹ ),

(I − R̂(ib))−1v ∼ c−1
β `(1/b)−1b−β

∫
Y
v(y, ·) dµ(y), as b→ 0+.

Proof Since R̂(ib)v(y, u) = (R̂0(ib)vu)(y), where vu(y) = v(y, u), it suffices to prove that
((I − R̂0(ib))−1v) ∼ c−1

β `(1/b)−1b−β
∫
Y v dµ as b→ 0+, for all v ∈ Fθ(Y ).

By Lemma 5.2, the map b 7→ R̂0(ib) is continuous. By Proposition 3.5(a), R̂0(0) has
1 as a simple eigenvalue, so there exists δ > 0 and a continuous family λ(ib) of simple
eigenvalues of R̂0(ib) for b ∈ (−δ, δ) with λ(0) = 1. Let P (ib) denote the corresponding
family of spectral projections with complementary projections Q(ib) = I − P (ib). Also, let
v(ib) denote the corresponding family of eigenfunctions normalized so that

∫
Y v(ib) dµ = 1.

In particular, v(0) ≡ 1 and P (0)w =
∫
Y w dµ for all w ∈ L1(Y ).

Following Gouëzel [18] (a simplification of [2]), we write

λ(ib) =

∫
Y
λ(ib)v(ib) dµ =

∫
Y
R0(e−ibϕv(ib)) dµ =

∫
Y
e−ibϕ dµ+ V (ib),

where V (ib) =
∫
Y (R̂0(ib)− R̂0(0))(v(ib)− v(0)) dµ.

By the argument in [14] (see also [2, 28]), 1 −
∫
Y e
−ibϕ dµ ∼ cβ`(1/b)b

β as b → 0+. By

Lemma 5.2, R̂0 and hence v are Cβ−2ε (say), so |V (ib)| = O(b2(β−2ε)). Hence,

1− λ(ib) ∼ cβ`(1/b)bβ as b→ 0+.

Next, for b ∈ (−δ, δ),

(I − R̂0(ib))−1 = (1− λ(ib))−1P (0)− (1− λ(ib))−1(P (ib)− P (0))

+ (I − R̂0(ib))−1Q(ib).

By Proposition 3.5(a), ‖(I − R̂0(ib))−1Q(ib)‖θ = O(1). By Lemma 5.2, ‖P (ib)− P (0)‖θ �
bβ−2ε. Hence

(I − R̂0(ib))−1 = (1− λ(ib))−1(P (0) + o(1)) +O(1) ∼ c−1
β `(1/b)−1b−βP (0) as b→ 0+,

as required.

Proposition 5.6 |(I− R̂(s))−1v|∞ � `(1/|s|)−1|s|−β‖v‖θ for all s ∈ H with |s| sufficiently
small, and all v ∈ Fθ(Ỹ ).

Proof As in the proof of Lemma 5.5, for s ∈ H close to zero, we have the decomposition

(I − R̂0(s))−1v = (1− λ(s))−1P (0)v + (1− λ(s))−1(P (s)− P (0))v + (I − R̂0(s))−1Q(s)v,

where the last term is bounded. (As before, λ(s) is the leading eigenvalue for R̂0(s) with
spectral projection P (s) and Q(s) = I − P (s).) By Proposition 5.4, P (s)− P (0) = o(1) as
s→ 0, so it remains to estimate (1− λ(s))−1. Again, write

λ(s) =

∫
Y
e−sϕ dµ+ V (s), V (s) =

∫
Y

(R̂0(s)− R̂0(0))(v(s)− v(0)) dµ,
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where v(s) are the normalised eigenfunctions for λ(s). By Proposition 5.4, ‖R̂0(s) −
R̂0(0)‖L∞(Y ) � `(1/|s|)|s|β and this estimate is inherited by v(s) so that |V (s)|∞ � |s|2β−ε.

Let G(x) = µ(ϕ < x). Following and using the proof of [29, Lemma 2.4],

1−
∫
Y
e−sϕ dµ =

∫ ∞
0

(1− e−sx) dG(x) = s

∫ ∞
0

e−sx(1−G(x)) dx = `(1/|s|)sβJ(s)

where J(s)→ Γ(1− β) as s→ 0. Hence 1− λ(s) ∼ c`(1/|s|)sβ with c = Γ(1− β).

Lemma 5.7 For b ∈ (0, 1], ‖(I − R̂(ib))−1‖θ � `(1/b)−1b−β.

Proof The proof of Lemma 5.5 shows that there exists δ > 0 so that the result holds for
b ∈ (−δ, δ). Proposition 3.5(b) guarantees that ‖(I − R̂(ib))−1‖θ = O(1) for b ∈ (δ, 1].

5.3 Estimates for Û

In this subsection, we obtain estimates for the family of operators Û(s) that appeared in
the renewal equation.

Lemma 5.8 (a) Û(0)v(y, u) =
∫ u

0 v(y, τ) dτ +
∫ 1
u (R̃v)(y, τ) dτ .

(b) The family of linear maps Û(ib) : L∞(Ỹ ) → L1(Ỹ ), b ∈ R, is uniformly bounded
(indeed ‖Û(ib)‖ ≤ 2 for all b ∈ R) and ‖Û(i(b + h)) − Û(ib)‖ � `(1/h)hβ for all
h > 0.

Proof (a) Write
∫
Ỹ Û(0)v w dµ̃ =

∫
Ỹ

∫ 1
0 Utv w dt dµ̃ +

∫
Ỹ

∫∞
1 Utv w dt dµ̃. Using Proposi-

tion 3.4,∫
Ỹ

∫ 1

0
Utv w dt dµ̃ =

∫
Ỹ

∫ 1

0
1{t,1)(u)v(y, u− t)w(y, u) dt dµ̃

=

∫
Ỹ

{∫ u

0
v(y, u− t) dt

}
w(y, u) dµ̃ =

∫
Ỹ

{∫ u

0
v(y, τ) dτ

}
w(y, u) dµ̃,

and ∫
Ỹ

∫ ∞
1

Utv w dt dµ̃ =

∫
Ỹ

∫ ∞
1

1{t<ϕ̃(y)<t+1−u}v(y, u− t+ ϕ̃(y))w(Fy, u) dt dµ̃

=

∫
Ỹ

{∫ ϕ̃

ϕ̃−1+u
v(y, u− t+ ϕ̃(y)) dt

}
w(Fy, u) dµ̃

=

∫
Ỹ

{∫ 1

u
v(y, τ) dτ

}
w ◦ F̃ (y, u) dµ̃ =

∫
Ỹ

{∫ 1

u
(R̃v)(y, τ) dτ

}
w(y, u) dµ̃.

This completes the proof of part (a).
(b) By Proposition 3.4, |Utv|1 ≤ |v|∞ for 0 < t < 1, and |Utv|1 ≤ µ̃{(y, u) : t < ϕ̃(y, u) <
t+ 1− u}|v|∞ ≤ µ{t < ϕ < t+ 1}|v|∞. Hence,

|Û(ib)v|1 =
∣∣∣∫ ∞

0
e−ibtUtv dt

∣∣∣
1
≤
∫ ∞

0
|Utv|1 dt ≤

(
1 +

∫ ∞
1

µ(t < ϕ < t+ 1) dt
)
|v|∞

=
(

1 +

∫ ∞
1

(µ(ϕ > t)− µ(ϕ > t+ 1)) dt
)
|v|∞ =

(
1 +

∫ 2

1
µ(ϕ > t)) dt

)
|v|∞ ≤ 2|v|∞.
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Also,

|(Û(i(b+ h))− Û(ib))v|1 =
∣∣∣∫ ∞

0
e−ibt(e−iht − 1)Utv dt

∣∣∣
1

≤ |v|∞
(
h+

∫ ∞
1
|e−iht − 1|µ(t < ϕ < t+ 1) dt

)
.

But ∫ ∞
1
|e−iht − 1|µ(t < ϕ < t+ 1) dt ≤ h

∫ L

1
tµ(t < ϕ < t+ 1) dt

+ 2

∫ ∞
L

µ(t < ϕ < t+ 1) dt.

Also, note that∫ L

1
tµ(t < ϕ < t+ 1) dt =

∫ L

1
tµ(ϕ > t) dt−

∫ L

1
tµ(ϕ > t+ 1) dt

=

∫ L

1
tµ(ϕ > t) dt−

∫ L+1

2
(t− 1)µ(ϕ > t) dt ≤ 1 +

∫ L

2
µ(ϕ > t) dt� `(L)L1−β,

by Karamata’s Theorem (see for instance [5]). Similarly,∫ ∞
L

µ(t < ϕ < t+ 1) dt =

∫ ∞
L

µ(ϕ > t) dt−
∫ ∞
L+1

µ(ϕ > t) dt

=

∫ L+1

L
µ(ϕ > t) dt ≤ µ(ϕ > L) = `(L)L−β.

Putting these together, |Û(i(b+h))− Û(ib)|1 � h+h`(L)L1−β + `(L)L−β. The conclusion
follows by taking L = 1/h.

Remark 5.9 It is immediate from the proof that ‖Û(s)‖L∞(Ỹ )7→L1(Ỹ ) ≤ 2 for all s ∈ H.

5.4 Estimates for T̂

In this subsection, we combine our estimates from the previous subsections to estimate
T̂ = Û(I − R̂)−1. Recall that cβ = i

∫∞
0 e−iσσ−β dσ.

Corollary 5.10 There exists A > 0 such that for all ε ∈ (0, β/2), the family of linear maps
T̂ (ib) : Fθ(Ỹ )→ L1(Ỹ ) satisfies the following properties.

(a) T̂ (ib)v ∼ c−1
β `(1/b)−1b−β

∫
Ỹ v dµ̃ as b→ 0+.

(b) ‖T̂ (ib)‖ �

{
`(1/b)−1b−β, 0 < b < 1

bA, b ≥ 1
.
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(c) For 0 < b1 < b2 < 1,

‖T̂ (ib1)− T̂ (ib2)‖ �`(1/b1)−2b−2β
1

{
`(|b1 − b2|−1)|b1 − b2|β

+ `(|b1 − b2|ε/β−1|b2|−ε/β)|b2|ε|b1 − b2|β−ε
}
.

For 1 < b1 < b2 < b1 + 1, ‖T̂ (ib1)− T̂ (ib2)‖ � bA2 |b1 − b2|β−2ε.

Proof (a) By continuity of Û (Lemma 5.8(b)), we have

lim
b→0+

`(1/b)bβT̂ (ib)v = lim
b→0+

Û(ib)`(1/b)bβ(I − R̂(ib))−1v

= Û(0) lim
b→0+

`(1/b)bβ(I − R̂(ib))−1v.

By Lemma 5.8(a),(
lim
b→0+

`(1/b)bβT̂ (ib)v
)

(y, u) =

∫ u

0

(
lim
b→0+

`(1/b)bβ(I − R̂(ib))−1v
)

(y, τ) dτ

+

∫ 1

u
R̃
(

lim
b→0+

`(1/b)bβ(I − R̂(ib))−1v
)

(y, τ) dτ.

Hence, by Lemma 5.5,(
lim
b→0+

`(1/b)bβT̂ (ib)v
)

(y, u) = c−1
β

∫ u

0

∫
Y
v(y, τ)) dµ dτ + c−1

β

∫ 1

u

(
R̃

∫
Y
v(y, τ) dµ

)
dτ

= c−1
β

∫ 1

0

∫
Y
v(y, τ) dµ̃,= c−1

β

∫
Ỹ
v dµ̃,

where we have used also the fact that R̃ fixes functions that are independent of y. This
proves part (a).
(b) This follows from Lemma 5.7 and Lemma 5.8(b) for 0 < b < 1 and from Lemma 4.4
and Lemma 5.8(b) for b ≥ 1.
(c) We give the details for 0 < b1 ≤ b2 ≤ 1. Recall that T̂ (ib) = Û(ib)S(ib) where
S(ib) = (I − R̂(ib))−1. By the resolvent inequality,

‖S(ib1)− S(ib2)‖θ ≤ ‖S(ib1)‖θ‖R̂(ib1)− R̂(ib2)‖θ‖S(ib2)‖θ
� `(1/b1)−2b−2β

1

{
`(|b1 − b2|−1)|b1 − b2|β + `(|b1 − b2|ε/β−1b

−ε/β
2 )bε2|b1 − b2|β−ε

}
,

using Lemma 5.2 and Lemma 5.7. Combining this with Lemma 5.8(b),

‖T̂ (ib1)− T̂ (ib2)‖Fθ 7→L1 ≤ ‖Û(ib1)− Û(ib2)‖L∞ 7→L1‖S(ib1)‖θ
+ ‖Û(ib1)‖L∞ 7→L1‖S(ib1)− S(ib2)‖θ

� `(|b1 − b2|−1)|b1 − b2|β`(1/b1)−1b−β1

+ `(1/b1)−2b−2β
1 {`(|b1 − b2|−1)|b1 − b2|β + `(|b1 − b2|ε/β−1b

−ε/β
2 )bε2|b1 − b2|β−ε}.

The argument for 1 < b1 < b2 < b1 + 1 is similar but simpler because we establish a
cruder estimate. The slowly varying functions are taken care of by ε′s in the exponents,
and by increasing the value of A.
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6 First order asymptotics (mixing)

In this section, we prove Theorem 2.2(a).

6.1 The case β ∈ (1
2
, 1)

Proposition 6.1 There exists δ > 0 such that |ρ̂(s)| � `(1/|s|)−1|s|−β for s ∈ H satisfying
|s| ≤ δ.

Proof This follows from Theorem 3.3, Proposition 5.6 and Remark 5.9.

Proposition 6.2 ρ(t) = 1
2π

∫∞
−∞ e

ibtρ̂(ib) db = 1
π Re

∫∞
0 eibtρ̂(ib) db.

Proof Since ρ̂ is analytic on H, we can invert the Laplace transform by computing ρ(t) =
1

2πi

∫
Γ1
estρ̂(s) ds where Γ1 is the contour Re s = 1 traversed upwards. As noted in (3.2),

ρ̂(ib) is well-defined and continuous on the imaginary axis except for the singularity at zero,
so by Cauchy’s Theorem we can move the contour to a contour Γ0 which consists of the
segments of the imaginary axis {s = ib : −∞ < b < −δ} ∪ {s = ib : δ < b < ∞} together
with a semicircle Γδ = {s = δeiψ : −π/2 < ψ < π/2} where δ > 0 is arbitrarily small.

Let ε ∈ (0, 1 − β). It follows from Proposition 6.1 that
∫

Γδ
estρ̂(s) ds = O(eδtδ1−β−ε)

and
∫ δ
−δ e

ibtρ̂(ib) db = O(δ1−β−ε). Letting δ → 0, we obtain ρ(t) = 1
2πi

∫
Γ1
estρ̂(s) ds =

1
2πi

∫
Γ0
estρ̂(s) ds = 1

2π

∫∞
−∞ e

ibtρ̂(ib) db as required.

Recall that cβ = i
∫∞

0 e−iσσ−β dσ.

Proposition 6.3 For any a > 0,

lim
t→∞

`(t)t1−β
∫ a/t

0
eibtρ̂v,w(ib) db = c−1

β

∫ a

0
eiσσ−β dσ

∫
Ỹ
v dµ

∫
Ỹ
w dµ.

Proof It follows from Proposition 3.2 and Corollary 5.10(a) that ρ̂(ib) =
c−1
β `(1/b)−1b−βh(b)

∫
Ỹ v dµ̃

∫
Ỹ w dµ̃ where limb→0+ h(b) = 1. The result follows from the

dominated convergence theorem as in [28, Lemma 5.2].

Proposition 6.4 Let β′ ∈ (1
2 , β). For all 2π < a < t,∫ 1

a/t
eibtρ̂v,w(ib) db = O(`(t)−1t−(1−β)a−(2β′−1)).

Proof We modify [28, Lemma 5.1] to deal with the ε in Corollary 5.10(c). Let b, b1, b2 ∈
(0, 1], b1 < b2. By Proposition 3.2 and Corollary 5.10(b,c),

|ρ̂(ib)| � `(1/b)−1b−β‖v‖θ|w|∞,

|ρ̂(ib1)− ρ̂(ib2)| � `(1/b1)−2b−2β
1

{
`(|b1 − b2|−1)|b1 − b2|β

+ `(|b1 − b2|ε/β−1b
−ε/β
2 )bε2|b1 − b2|β−ε

}
‖v‖θ|w|∞.
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Write

I =

∫ 1

a/t
eibtρ̂(ib) db = −

∫ 1+π/t

(a+π)/t
eibtρ̂(i(b− π/t)) db.

Then 2I = J1 + J2 + J3, where

J1 = −
∫ 1+π/t

1
eibtρ̂(i(b− π/t)) db, J2 =

∫ (a+π)/t

a/t
eibtρ̂(ib) db,

J3 =

∫ 1

(a+π)/t
eibt(ρ̂(ib)− ρ̂(i(b− π/t))) db.

We suppress the factor ‖v‖θ|w|∞ from now on. Clearly J1 = O(t−1), and by Potter’s
bounds,

|J2| �
∫ (a+π)/t

a/t
`(1/b)−1b−β db = `(t)−1t−(1−β)

∫ a+π

a
[`(t)/`(t/σ)]σ−β dσ

� `(t)−1t−(1−β)

∫ a+π

a
σ−β

′
dσ � `(t)−1t−(1−β)a−β

′
.

Finally,

|J3| � `(t)t−β
∫ 1

a/t
`(1/b)−2b−2β db+ t−β+ε

∫ 1

a/t
`(1/b)−2b−2β+ε`(t1−ε/βb−ε/β) db

= J ′3 + J ′′3 .

By Potter’s bounds,

J ′3 = `(t)−1tβ−1

∫ t

a
[`(t)/`(σ/t)]2σ−2β dσ � `(t)−1tβ−1

∫ ∞
a

σ−2β′ dσ

� `(t)−1tβ−1a−(2β′−1),

and shrinking ε if necessary so that ε < 2(β − β′),

J ′′3 = `(t)−1tβ−1

∫ t

a
[`(t)/`(σ/t)]2[`(t/σε/β)/`(t)]σ−(2β−ε) dσ

� `(t)−1tβ−1

∫ ∞
a

σ−2β′ dσ � `(t)−1tβ−1a−(2β′−1),

as required.

Proposition 6.5 For any ε ∈ (0, β), there exist θ ∈ (0, 1), m ≥ 1, such that∫∞
1 eibtρ̂v,w(ib) db = O(t−(β−ε)), for all v ∈ Fθ(Ỹ ), w ∈ L∞,m(Ỹ ).

Proof Choose m > 2A+ε+1. By Proposition 3.7, ρ̂v,w(s) = P̂m(s)+Ĥm(s), where P̂m(s)
is a linear combination of s−j , j = 1, . . . ,m, and Ĥm(s) = s−mρ̂v,∂mt w(s).
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Since P̂m is analytic on Im s ≥ 1, we can write

i

∫ ∞
1

eibtP̂m(ib) db = −
∫ 1

0
e(i−a)tP̂m(i− a) da+ i

∫ ∞
1

e(−1+ib)tP̂m(−1 + ib) db

= O(t−1) +O(e−t) = O(t−1).

It remains to estimate the contribution from Ĥm(ib) = b−mρ̂v,∂mt w(ib). Modifying the
proof of Proposition 6.4 (using the fact that b 7→ ρ̂v,∂mt w(ib) satisfies the other estimates in
Corollary 5.10(b,c)), we have that for any ε > 0 and any ε′ > ε,

|Ĥm(ib1)− Ĥm(ib2)| ≤ b−(m−2A−ε′)
2 |b1 − b2|β−ε‖v‖θ|∂mt w|∞.

Hence, ∣∣∣2∫ ∞
1

eibtĤm(ib) db
∣∣∣ ≤ ∫ ∞

1
|Ĥm(ib)− Ĥm(i(b− π/t))| db

+

∫ 1+π/t

1
|Ĥm(i(b− π/t))| db

� t−(β−ε)
∫ ∞

1
b−(m−2A−ε′) db+O(t−1) = O(t−(β−ε)),

as required.

Proof of Theorem 2.2(a) Combining Propositions 6.3, 6.4 and 6.5 (with ε < 2β − 1),

lim
t→∞

`(t)t1−β
∫ ∞

0
eibtρ̂v,w(ib) db = c−1

β

∫ a

0
eiσσ−β dσ

∫
Ỹ
v dµ̃

∫
Ỹ
w dµ̃+O(a−(2β′−1)).

Since a is arbitrary and β′ > 1/2,

lim
t→∞

`(t)t1−β
∫ ∞

0
eibtρ̂v,w(ib) db = c−1

β

∫ ∞
0

eiσσ−β dσ

∫
Ỹ
v dµ̃

∫
Ỹ
w dµ̃.

A standard calculation shows that Re(c−1
β

∫∞
0 eiσσ−β dσ) = sinβπ. Hence the result follows

from Proposition 6.2.

6.2 The case β = 1

We sketch the differences for β = 1. Here µ(ϕ > t) = `(t)t−1 where
∫∞

1 `(t)t−1 dt =∞. By

Karamata’s Theorem, ˜̀(t) =
∫ t

1 `(s)s
−1 ds is slowly varying and `(t)/˜̀(t)→ 0 as t→∞. In

particular, ˜̀ is monotone increasing and limt→∞ ˜̀(t) =∞.
Many of the basic estimates change in a mild way. The estimates on the imaginary axis

(s = ib) in Section 5 are unchanged except that all occurrences of `(1/b) on the right-hand-
side are replaced by ˜̀(1/b).

The major alteration is that ρ̂(ib) is not integrable near zero. As in [28, Section 6], we
replace

∫∞
−∞ e

ibtρ̂(ib) db by the expression∫ ∞
−∞

eibt Re ρ̂(ib) db = 2

∫ ∞
0

cos bt Re ρ̂(ib) db.
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In addition to the modified estimates for ρ̂(ib) (which are inherited by Re ρ̂(ib)), we have
the improved asymptotics

Re ρ̂(ib) ∼ π

2
`(1/b)˜̀(1/b)−2b−1

∫
Ỹ
v dµ̃

∫
Ỹ
w dµ̃ as b→ 0+,

from which it follows that

lim
t→∞

˜̀(t)

∫ a/t

0
cos tb Re ρ̂(ib) db =

π

2

∫
Ỹ
v dµ̃

∫
Ỹ
w dµ̃.

We omit the details of these last two assertions which follow from straightforward modifi-
cations of the calculations for β ∈ (1

2 , 1) (cf. [28, Section 6]). It now follows exactly as in
Subsection 6.1 that

lim
t→∞

˜̀(t)

∫ ∞
0

cos tb Re ρ̂(ib) db =
π

2

∫
Ỹ
v dµ̃

∫
Ỹ
w dµ̃.

Hence to prove Theorem 2.2(a) for β = 1, it remains to prove the following result.

Proposition 6.6 ρ(t) = 1
π

∫∞
−∞ e

ibt Re ρ̂(ib) db.

Proof Write s = a+ ib. Define g : R→ R to be even with g(t) = e−atρ(t) for t > 0. Then
Re ρ̂(s) = 1

2

∫∞
−∞ e

−ibτg(τ) dτ . By the Fourier inversion formula,∫ ∞
−∞

eibt Re ρ̂(s) db =
1

2

∫ ∞
−∞

eibt
{∫ ∞
−∞

e−ibτg(τ) dτ
}
db = πg(t).

Hence, restricting to t > 0,

ρ(t) = eatg(t) =
1

π

∫ ∞
−∞

est Re ρ̂(s) db =
1

π

∫
Γ1

est Re ρ̂(s) ds,

where Γ1 is the contour Re s = 1 traversed upwards.
As in Proposition 6.2, we can move the contour to the contour Γ0 consisting again

of two segments of the imaginary axis and a semicircle Γδ of radius δ around the origin.
By [28, Proposition 6.1], |

∫ δ
−δ e

ibtρ̂(ib) db| �
∫ δ

0 `(1/b)
˜̀(1/b)−2b−1 db � ˜̀(1/δ)−1 → 0 as

δ → 0. Using the estimates in [28, Lemma 6.4], it can be shown that |
∫

Γδ
eibtρ̂(ib) db| → 0

as δ → 0. Hence the contour can be moved to the imaginary axis completing the proof.

7 Second order asymptotics and rates of mixing

In this section, we prove Theorem 2.2(b). Choose δ > 0 such that λ(ib) is well defined for
b ∈ (0, δ).

Proposition 7.1 There are constants e1, e2 ∈ C such that 1 − λ(ib) = e1b
β(1 − e2b

1−β +
O(bq−β)) for b ∈ (0, δ).
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Proof From the proof of Lemma 5.5, we recall that λ(ib) =
∫
Y e
−ibϕ dµ + V (ib), where

|V (ib)| = O(b2β−ε). Here, ε > 0 is arbitrarily small so |V (ib)| = O(bq). By [28, Lemma 3.2],∫
Y e
−ibϕ dµ = 1− e1b

β + e1e2b+O(bq) and the result follows. (Note that much of the proof
of [28, Lemma 3.2] is not required. The functions H and H1 introduced there coincide in
the continuous time case. Moreover, the four terms involving vsθ in [28, Lemma 3.2] have
been subsumed into the V (ib) term.)

Corollary 7.2 There are constants cj ∈ C such that

ρ̂(ib) =
∑
j

cjb
−((j+1)β−j)

∫
Ỹ
v dµ̃

∫
Ỹ
w dµ̃+O(b−(2β−q))‖v‖θ |w|∞,

for b ∈ (0, δ), v ∈ Fθ(Ỹ ), w ∈ L∞(Ỹ ), where the sum is over those j ≥ 0 with (j+1)β−j ≥
2β − q.

Proof Recall that

(I − R̂0(ib))−1 = (1− λ(ib))−1P (0)− (1− λ(ib))−1(P (ib)− P (0)) + (I − R̂0(ib))−1Q(ib),

for b ∈ (0, δ). It follows from Proposition 7.1 that

(1− λ(ib))−1 =
∑
j

cjb
−((j+1)β−j) +O(b−(2β−q)),

for constants c0, c1, . . . ∈ C. By Proposition 3.5(a), ‖(I − R̂0(ib))−1Q(ib)‖θ = O(1). By
Lemma 5.2, ‖R̂0(ib)−R‖θ � bβ and it follows that ‖P (ib)− P (0)‖θ � bβ. Hence

(I − R̂0(ib))−1v0 =
∑
j

cjb
−((j+1)β−j)

∫
Y
v0 dµ+O(b−(2β−q))‖v0‖θ,

for all v0 ∈ Fθ(Y ). By Lemma 5.8(a),

Û(0)(I − R̂(ib))−1v =
∑
j

cjb
−((j+1)β−j)

∫
Ỹ
v dµ̃+O(b−(2β−q))‖v‖θ,

By Lemma 5.8(b), ‖Û(ib)− Û(0)‖θ � bβ and so

T̂ (ib)v = Û(ib)(I − R̂(ib))−1v =
∑
j

cjb
−((j+1)β−j)

∫
Ỹ
v dµ̃+O(b−(2β−q))‖v‖θ.

The result follows from Proposition 3.2.

Proof of Theorem 2.2(b) By Proposition 6.4, for all β′ ∈ (1
2 , β),

∫ 1
a/t e

ibtρ̂v,w(ib) db =

O(t−(1−β)a−(2β′−1)) where β − β′ is arbitrarily small.
A calculation (see for example [28, Proposition 9.5]) shows that∫ a/t

0 b−((j+1)β−j)e−itbdb = const t−(j+1)(1−β)(1 + O(a−((j+1)β−j))). Also, 2β − q ∈ (0, 1) so

that
∫ a/t

0 b−(2β−q) db = O((a/t)1−2β+q).
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Choosing a = t1−q
−1β−ε′ , we obtain from Corollary 7.2 that∫ 1

0
eibtρ̂v,w(ib) db =

∑
j

djt
−j(1−β)

∫
Ỹ
v dµ̃

∫
Ỹ
w dµ̃+O(t−β(1−q−1(2β−1)−ε)).

Also, by Proposition 6.5,
∫∞

1 eibtρ̂v,w(ib) db = O(t−(β−ε)). Hence the result follows from
Proposition 6.2.

Part III

Finite measure systems

In this part of the paper, we prove our main results in the finite measure context. Through-
out, we continue to assume the setup from Section 2, so F : Y → Y is a full branch
Gibbs-Markov map and ϕ : Y → Z+ is a roof function satisfying assumptions (A1) and
(A2). In addition, we make the standing assumption throughout this part of the paper that
µ(ϕ > t) = O(t−β) where β > 1.

In Section 8, we decompose the family of operators T̂0(s) into various pieces and for-
mulate Lemmas 8.4, 8.5, 8.6 that provide estimates for each of the pieces. Theorem 2.4(a)
thereby reduces to proving these lemmas.

In Section 9, we prove Lemma 8.4. Section 10 contains an operator-theoretic estimate,
and in Section 11, we prove Lemma 8.5. Section 12 contains estimates on derivatives of
various families of operators. In Section 13, we derive a continuous time version of the “first
main lemma” that was crucial in [17, 33]. In Section 14, we prove Lemma 8.6 completing
the proof of Theorem 2.4(a). In Section 15, we prove Theorem 2.4(b).

In this part of the paper, k ≥ 1 is fixed but chosen sufficiently large. All implied
constants are allowed to depend on k unless stated otherwise.

8 Decomposition for T̂0

Let k ≥ 1 and define ϕ∗ = ϕ ∧ k, ϕ̄∗ =
∫
Y ϕ
∗ dµ. Recall that P (0) : L1(Y )→ L1(Y ) is the

projection P (0)v =
∫
Y v dµ and define

Pϕ = (1/ϕ̄)P (0), P ∗ϕ = (1/ϕ̄∗)P (0), R̂∗0(s)v = R(e−sϕ
∗
v),

T̂ ∗0 (s) = (I − R̂∗0(s))−1 = s−1P ∗ϕ + Ĥ∗(s), B̂(s) = sT̂0(s).

Also define

Ĉ∗(s) = s−1(R̂∗0(s)− R̂0(s)), D̂∗(s) = Ĉ∗(0)− Ĉ∗(s).

We note that Ĉ∗(0)v = R((ϕ− ϕ∗)v) and hence
∫
Y Ĉ

∗(0)1Y dµ = ϕ̄− ϕ̄∗.

Proposition 8.1 Let c2 = (C2+1)−1 where C2 is as in (A1). If a ∈ α such that |1aϕ|∞ > t,
then ϕ(y) > c2t for all y ∈ a.
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Proof Choose y0 ∈ a with ϕ(y0) > t. By assumption (A1), for all y ∈ a,

t− ϕ(y) < ϕ(y0)− ϕ(y) ≤ |1aϕ|θ0dθ0(y, y0) < |1aϕ|θ0 ≤ C2ϕ(y),

and the result follows.

Proposition 8.2 ‖Ĉ∗(s)‖∞ ≤ C1

∫
{ϕ>c2k} ϕdµ for s ∈ H. In particular, if ϕ ∈ L1, then

Ĉ∗ extends continuously to H and ‖Ĉ∗(s)‖∞ → 0 as k →∞ uniformly on H.

Proof Recalling (4.1), we have

(Ĉ∗(s)v)(y) =s−1
∑

a∈α:|1aϕ|∞≥k

eg(ya)v(ya)(e
−sϕ∗(ya) − e−sϕ(ya)), (8.1)

so by (2.1) and Proposition 8.1,

|(Ĉ∗(s)v)(y)| ≤ C1|v|∞
∑

a:|1aϕ|∞≥k

µ(a)(ϕ(ya)− ϕ∗(ya))

≤ C1|v|∞
∑

a:|1aϕ|∞≥k

µ(a)ϕ(ya) ≤ C1|v|∞
∫
{ϕ>c2k}

ϕdµ,

as required.

Proposition 8.3 For k sufficiently large, T̂0(s) = T̂0,1(s) + T̂0,2(s) + T̂0,3(s) + T̂0,4(s) for
all s ∈ H, where

T̂0,1(s) = s−1Pϕ, T̂0,2(s) = s−1PϕD̂
∗Pϕ, T̂0,3(s) = s−1(I − PϕD̂∗)−1(PϕD̂

∗)2Pϕ,

T̂0,4(s) = (I − PϕD̂∗)−1(I − PϕĈ∗(0))Ĥ∗(I − Ĉ∗B̂).

Proof Since
∫
Y Ĉ

∗(0)1Y dµ = ϕ̄− ϕ̄∗, it follows that

(I − PϕĈ∗(0))P ∗ϕ = Pϕ, (I − PϕĈ∗(0))(I + P ∗ϕĈ
∗) = I − PϕD̂∗. (8.2)

Using the identity T̂0 = T̂ ∗0 − T̂ ∗0 (R̂∗0 − R̂0)T̂0, it follows that

T̂0 = T̂ ∗0 − T̂ ∗0 Ĉ∗B̂ = s−1P ∗ϕ + Ĥ∗ − s−1P ∗ϕĈ
∗B̂ − Ĥ∗Ĉ∗B̂

= s−1P ∗ϕ − P ∗ϕĈ∗T̂0 + Ĥ∗(I − Ĉ∗B̂).

Hence (I + P ∗ϕĈ
∗)T̂0 = s−1P ∗ϕ + Ĥ∗(I − Ĉ∗B̂). Multiplying throughout by (I − PϕĈ∗(0)),

and using (8.2), we obtain

(I − PϕD̂∗)T̂0 = s−1Pϕ + (I − PϕĈ∗(0))Ĥ∗(I − Ĉ∗B̂).

For k sufficiently large, we can invert I − PϕD̂∗ by Proposition 8.2 and the result follows.

28



Substituting into (3.2), we obtain that ρ̂(s) =
∑4

i=1 ρ̂i(s), where

ρ̂i(s) =

∫
Ỹ
Û(s)T̂i(s)v w dµ

ϕ = (1/ϕ̄)

∫
Ỹ
Û(s)T̂i(s)v w dµ̃, (8.3)

(T̂i(s)v)(y, u) = (T̂0,i(s)v
u)(y), i = 1, 2, 3, 4.

Theorem 2.4 is an immediate consequence of the next three lemmas. We recall that ζ(t)
and ξβ,ε(t) were defined in (2.2).

Lemma 8.4 Suppose that µ(ϕ > t) = O(1/tβ) for some β > 1. Then

(a) ρ1(t)− v̄w̄ = O
(
|v|∞|w|∞t−β

)
, and

(b) ρ2(t) = (1/ϕ̄)ζ(t)v̄w̄ +O
(
v|∞|w|∞t−β

)
,

for all v, w ∈ L∞(Ỹ ), t > 0, k ≥ 1.

Lemma 8.5 Suppose that µ(ϕ > t) = O(1/tβ) for some β > 1. Then for any ε > 0 and
for all k sufficiently large, there is a constant C > 0 such that

|ρ3(t)| ≤ C|v|∞|w|∞ξβ,ε(t),

for all v, w ∈ L∞(Ỹ ), t > 0.

Lemma 8.6 Assume conditions (A1) and (A2) and suppose that µ(ϕ > t) = O(t−β) where
β > 1. Then for any ε > 0 and for all k sufficiently large, there exists θ ∈ (0, 1), m ≥ 1,
C > 0, such that

|ρ4(t)| ≤ C‖v‖θ|w|∞,mt−(β−ε),

for all v ∈ Fθ(Ỹ ), w ∈ L∞,m(Ỹ ), t > 0.

9 Proof of Lemma 8.4

We require the following preliminary result.

Proposition 9.1 Let r̂(s) = s−1
∫
Ỹ Û(s)v w dµ̃. Then

r(t) =

∫
Ỹ

∫ u

0
v(y, τ) dτ w(y, u) dµ̃+

∫
Ỹ

∫ 1

u
v(y, τ) dτ w(Fy, u) dµ̃+O(|v|∞|w|∞µ(ϕ > t)).

Proof By Proposition 3.4,

s−1(Û(s)v)(y, u) = s−1

∫ 1

0
e−sτv(y, u− τ)1[τ,1](u) dτ + s−1

∫ ∞
1

e−sτ (R̃vτ )(y, u) dτ,

with inverse Laplace transform∫ u

0
1[τ,∞)(t)v(y, u− τ) dτ +

∫ ∞
1

1[τ,∞)(t)(R̃vτ )(y, u) dτ.
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Hence r(t) = r1(t) + r2(t) where

r1(t) =

∫
Ỹ

∫ u

0
1[τ,∞)(t)v(y, u− τ) dτ w dµ̃, r2(t) =

∫
Ỹ

∫ ∞
1

1[τ,∞)(t)(R̃vτ )(y, u) dτ w dµ̃.

For t > 1,

r1(t) =

∫
Ỹ

∫ u

0
v(y, u− τ) dτ w dµ̃ =

∫
Ỹ

∫ u

0
v(y, τ) dτ w dµ̃.

Also,

r2(t) =

∫
Ỹ

∫ ∞
1

1[τ,∞)(t)1{τ<ϕ<τ+1−u}v(y, u− τ + ϕ) dτ w ◦ F̃ dµ̃

=

∫
Ỹ

∫ ϕ

ϕ−1+u
1[τ,∞)(t)v(y, u− τ + ϕ) dτ w ◦ F̃ dµ̃

=

∫
Ỹ

∫ 1

u
1[u−τ+ϕ,∞)(t)v(y, τ) dτ w ◦ F̃ dµ̃

=

∫
Ỹ

∫ 1

u
v(y, τ) dτ w ◦ F̃ dµ̃− E(t),

where

E(t) =

∫
Ỹ

∫ 1

u
1[0,u−τ+ϕ](t)v(y, τ) dτ w ◦ F̃ dµ̃ =

∫
Ỹ

∫ 1

u
1{ϕ>t+τ−u}v(y, τ) dτ w ◦ F̃ dµ̃.

Finally, note that |E(t)| ≤ |v|∞|w|∞µ(ϕ > t).

Proof of Lemma 8.4(a) We have ρ̂1(s) = (1/ϕ̄)
∫
Ỹ Û(s)T̂1(s)v w dµ̃, where

(T̂1(s)v)(y, u) = (T̂0,1(s)vu)(y) = (1/ϕ̄)s−1

∫
Y
vu dµ.

By Proposition 9.1,

ρ1(t) = (1/ϕ̄)2

∫
Ỹ

∫ u

0

(∫
Y
vτ dµ

)
dτ w(y, u) dµ̃

+ (1/ϕ̄)2

∫
Ỹ

∫ 1

u

(∫
Y
vτ dµ

)
dτ w(Fy, u) dµ̃+O(µ(ϕ > t)).

Note that
∫
Y v

τ dµ is independent of y and F̃ acts trivially on the second coordinate, so the
second term reduces to

(1/ϕ̄)2

∫
Ỹ

{∫ 1

u

(∫
Y
vτ dµ

)
dτ w

}
◦ F̃ dµ̃ = (1/ϕ̄)2

∫
Ỹ

∫ 1

u

(∫
Y
vτ dµ

)
dτ w dµ̃.

Hence

ρ1(t) = (1/ϕ̄)

∫
Ỹ

∫ 1

0

(∫
Y
vτ dµ

)
dτ w(y, u) dµϕ +O(µ(ϕ > t)).

30



But ∫ 1

0

(∫
Y
vτ dµ

)
dτ =

∫
Y

∫ 1

0
v(y, τ) dτ dµ =

∫
Ỹ
v dµ̃ = ϕ̄

∫
Ỹ
v dµϕ,

and the result follows.

Recall that C∗(t) is the inverse Laplace transform of Ĉ∗(s).

Proposition 9.2
∫
Y Ĉ

∗(0)1Y dµ = ϕ̄− ϕ̄∗ = ζ(k) and
∫
Y C

∗(t)1Y dµ = 1{t>k}µ(ϕ > t).

Proof Let G(x) = µ(ϕ < x) denote the distribution function of ϕ. For the first statement,∫
Y
Ĉ∗(0)1Y dµ =

∫
Y

(ϕ− ϕ∗) dµ =

∫ ∞
0

x dG−
∫ k

0
x dG∗ =

∫ ∞
k

x dG− kµ(ϕ > k)

= −
∫ ∞
k

x d(1−G(x))− kµ(ϕ > k)

= −x(1−G(x))
∣∣∣x=∞

x=k
+

∫ ∞
k

(1−G(x)) dx− kµ(ϕ > k) =

∫ ∞
k

µ(ϕ > x) dx.

For the second statement,
∫
Y Ĉ

∗(s)1Y dµ =
∫
Y s
−1(e−sϕ

∗ − e−sϕ) dµ, so∫
Y
C∗(t)1Y dµ =

∫
Y

(1[ϕ∗,∞)(t)− 1[ϕ,∞)(t)) dµ = µ(ϕ∗ < t)− µ(ϕ < t)

= µ(ϕ > t)− µ(ϕ∗ > t) = µ(ϕ > t)− µ(ϕ ∧ k > t).

But µ(ϕ ∧ k > t) = 0 if k < t and µ(ϕ ∧ k > t) = µ(ϕ > t) if k > t.

In the next proof, a ? b denotes the convolution (a ? b)(t) =
∫ t

0 a(τ)b(t − τ) dτ of real-
valued functions of t ∈ [0,∞). (In subsequent sections, we speak also of the convolution of
operator-valued functions of t.)

Proof of Lemma 8.4(b) We have ρ̂2(s) = (1/ϕ̄)
∫
Ỹ Û(s)T̂2(s)v w dµ̃, where

(T̂2(s)v)(y, u) = (T̂0,2(s)vu)(y) = (1/ϕ̄)2s−1PD̂∗(s)P (0)vu

= (1/ϕ̄)2s−1

∫
Y
D̂∗(s)1Y dµ

∫
Y
vu dµ.

Comparing with the proof of part (a), we observe that

ϕ̄ρ̂2(s) = ρ̂1(s)

∫
Y
D̂∗(s)1Y dµ = ρ̂1(s)

∫
Y
Ĉ∗(0)1Y dµ− ρ̂1(s)

∫
Y
Ĉ∗(s)1Y dµ.

By Proposition 9.2, for t > k,

ϕ̄ρ2(t) = ζ(k) ρ1(t)− (1{t>k}µ(ϕ > t)) ? (ρ1(t))

= ζ(k)
(
v̄w̄ +O(µ(ϕ > t))

)
−
∫ t

k
µ(ϕ > τ)ρ1(t− τ) dτ

= ζ(k)v̄w̄ +O
(
ζ(k)µ(ϕ > t)

)
− v̄w̄(ζ(k)− ζ(t))

+O
(∫ t

k
µ(ϕ > τ)µ(ϕ > t− τ) dτ

)
= ζ(t)v̄w̄ +O

(
ζ(k)µ(ϕ > t)

)
+O

(
µ(ϕ > t) ? µ(ϕ > t)

)
.

The result follows.

31



10 An estimate for (I − PϕD̂∗)−1

In Proposition 8.2, we showed that for k sufficiently large the family of operators (I −
PϕD̂

∗(s))−1 on L∞(Y ) is analytic on H with a continuous extension to H. Moreover,
‖D̂∗‖∞ is uniformly small on H for k large.

In this section, we obtain an estimate on the decay of its inverse Laplace transform.
This is required in a diluted form in Section 11 and in its full strength in Section 14.

Let B be a Banach space and suppose that S : [0,∞) → B lies in L1 with Laplace
transform Ŝ : H→ B. We write Ŝ ∈ R(a(t)) if ‖S(t)‖ ≤ Ca(t) for all t ≥ 0.

Proposition 10.1 ‖C∗(t)‖∞ ≤ C11{t≥k}µ(ϕ > c2t), for all k ≥ 1. In particular, Ĉ∗ ∈
R(µ(ϕ > c2t)).

Proof Starting from formula (8.1) for Ĉ∗, the inverse Laplace transform is given by

(C∗(t)v)(y) =
∑
a∈α

eg(ya)v(ya)1[ϕ∗(ya),ϕ(ya)](t) =
∑
a∈α

eg(ya)v(ya)1{ϕ(ya)>k}1[k,ϕ(ya)](t)

= 1{t≥k}
∑
a∈α

eg(ya)v(ya)1[0,ϕ(ya)](t).

Hence by Proposition 8.1,

|(C∗(t)v)(y)| ≤ C11{t≥k}|v|∞
∑

a∈α:|1aϕ|∞>t

µ(a) ≤ C11{t≥k}|v|∞µ(ϕ > c2t),

as required.

Remark 10.2 Since D̂∗(s) = Ĉ∗(0)− Ĉ∗(s), it follows from Proposition 10.1 that formally
we have D∗(t) = C∗(0)δ0(t)− C∗(t) where ‖C∗(t)‖∞ ≤ C11{t≥k}µ(ϕ > c2t). To avoid such

formal expressions, we restrict to estimating expressions like D̂∗(s)Ê(s) where Ê(s) has no
constant terms.

Corollary 10.3 Let B be a Banach space. Let β > 1. Suppose that µ(ϕ > t) = O(1/tβ)
and that Ê : B → L∞(Y ) lies in R(1/tβ). Then D̂∗(s)Ê(s) : B → L∞(Y ) lies in R(1/tβ).

Proof We have D̂∗(s)Ê(s) = Ĉ∗(0)Ê(s) − Ĉ∗(s)Ê(s) with inverse Laplace transform
Ĉ∗(0)E(t)− (C∗ ? E)(t) ∈ R(1/tβ).

Proposition 10.4 Let B be a Banach space. Let β > 1, ε > 0 such that β−ε > 1. Suppose
that µ(ϕ > t) = O(1/tβ) and that Ê : B → L∞(Y ) lies in R(1/tβ−ε). Then for k sufficiently
large, (I − PϕD̂∗(s))−1Ê(s) : B → L∞(Y ) lies in R(1/tβ−ε).

Proof By Proposition 8.2, we can choose k so large that ‖PϕĈ∗(s)‖∞ ≤ 1
3 for all s ∈ H

and hence we can write

Q̂(s) = (1− PϕD̂∗(s))−1Ê(s) =
∞∑
n=0

Q̂n(s), Q̂n(s) = (PϕĈ
∗(0)− PϕĈ∗(s))nÊ(s).
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Given Ŝ ∈ R(1/tβ), β > 1, we define ‖Ŝ‖Rβ =
∫∞

0 ‖S(t)‖∞ dt+ supt≥0 ‖S(t)‖∞tβ. This

makes R(1/tβ) into a Banach algebra under composition and we can rescale the norm so
that ‖Ŝ1Ŝ2‖Rβ ≤ ‖Ŝ1‖Rβ‖Ŝ2‖Rβ . In particular,

‖Q̂n‖Rβ−ε ≤
n∑
j=0

(
n

j

)
‖PϕĈ∗(0)‖j

(
‖PϕĈ∗‖Rβ−ε

)n−j‖Ê‖Rβ−ε
≤

n∑
j=0

(
n

j

)(1

3

)j(
‖PϕĈ∗‖Rβ−ε

)n−j‖Ê‖Rβ−ε .
By Proposition 10.1,

‖PϕĈ∗‖Rβ−ε ≤ C1

∫ ∞
k

µ(ϕ > c2t) dt+ C1 sup
t>k

µ(ϕ > c2t)t
β−ε � k−(β−ε−1) + k−ε,

so we can ensure that ‖PϕĈ∗‖Rβ−ε < 1
3 by choosing k sufficiently large. Then

‖Q̂n‖Rβ−ε ≤
n∑
j=0

(
n

j

)(1

3

)j(1

3

)n−j
‖Ê‖Rβ−ε =

(2

3

)n
‖Ê‖Rβ−ε .

Hence Q̂ = (I − PϕD̂∗)−1Ê ∈ R(1/tβ) as required.

Remark 10.5 Equally we can consider products of the form Ê(s)(I − PϕD̂
∗(s))−1 :

L∞(Y )→ B where Ê : L∞(Y )→ B lies in R(1/tβ−ε) and the conclusion of Proposition 10.4
is unchanged.

11 Proof of Lemma 8.5

We have ρ̂3(s) = (1/ϕ̄)
∫
Ỹ Û(s)T̂3(s)v w dµ̃, where

(T̂3(s)v)(y, u) = (T̂0,3(s)vu)(y)

= (1/ϕ̄)3s−1
(

1− (1/ϕ̄)

∫
Y
D̂∗(s)1Y dµ

)−1(∫
Y
D̂∗(s)1Y dµ

)2
∫
Y
vu dµ.

Proposition 11.1
∫
Y D̂

∗(s)1Y dµ extends continuously to H and
∫
Y D̂

∗(s)1Y dµ =
∫∞
k (1−

e−sx)µ(ϕ > x) dx ≤ ζ(k) for s ∈ H.

Proof Let G(x) = µ(ϕ < x) and G∗(x) = µ(ϕ∗ < x) denote the distribution functions of
ϕ and ϕ∗. Then

s

∫
Y
Ĉ∗(s)1Y dµ =

∫
Y

(e−sϕ
∗ − e−sϕ) dµ =

∫ k

0
e−sx dG∗ −

∫ ∞
0

e−sx dG

= e−skµ(ϕ > k)−
∫ ∞
k

e−sx dG = e−skµ(ϕ > k) +

∫ ∞
k

e−sx d(1−G(x))

= e−skµ(ϕ > k) + e−sx(1−G(x))
∣∣∣x=∞

x=k
+ s

∫ ∞
k

e−sx(1−G(x)) dx

= s

∫ ∞
k

e−sxµ(ϕ > x) dx.
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Hence
∫
Y Ĉ

∗(s)1Y dµ =
∫∞
k e−sxµ(ϕ > x) dx and the formula for

∫
Y D̂

∗(s)1Y dµ follows

since D̂∗(s) = Ĉ∗(0)− Ĉ∗(s).

Proposition 11.2 Suppose that µ(ϕ > t) = O(1/tβ) for some β > 1. Define ξβ(t) as
in (1.2). Then

(a) s−1
∫
Y D̂

∗(s)1Y dµ ∈ R(1/tβ−1).

(b) s−1(
∫
Y D̂

∗(s)1Y dµ)2 ∈ R(ξβ(t)).

Proof (a) Let q̂(s) = s−1
∫
Y D̂

∗(s)1Y dµ = s−1
∫
Y Ĉ

∗(0)1Y dµ − s−1
∫
Y Ĉ

∗(s)1Y dµ with

inverse Laplace transform q(t) =
∫
Y Ĉ

∗(0)1Y dµ+
∫ t

0

∫
Y C

∗(τ)1Y dµ dτ . By Proposition 9.2,
for t > k,

q(t) = ζ(k) +

∫ t

0
1{τ>k}µ(ϕ > τ) dτ = ζ(k) +

∫ t

k
µ(ϕ > τ) dτ = ζ(t).

(b) Let ′ denote d
ds . By Proposition 9.2,

∫
Y C

∗(t)1Y dµ = 1{t>k}µ(ϕ > t) = O(t−β) and

hence
∫
Y D̂

∗′(s)1Y dµ = −
∫
Y Ĉ

∗′(s)1Y dµ ∈ R(1/tβ−1).

Let q̂(s) = s−1(
∫
Y D̂

∗(s)1Y dµ)2. Then

q̂′(s) = −
(
s−1

∫
Y
D̂∗(s)1Y dµ

)2
+ 2
(∫

Y
D̂∗′(s)1Y dµ

)(
s−1

∫
Y
D̂∗(s)1Y dµ

)
.

Each term is a product of two elements of R(1/tβ−1). Hence q̂′ ∈ R({1/tβ−1} ? {1/tβ−1}).
But q̂′(s) is the Laplace transform of tq(t) so we obtain that

tq(t) = O({1/tβ−1} ? {1/tβ−1}) = tξβ(t),

as required.

Proposition 11.3 Û : L∞(Ỹ )→ L1(Ỹ ) lies in R(µ(ϕ > t)).

Proof Directly from the definition of U(t), we have

|U(t)v|1 = |Tt(1{ϕ̃>t}v)|1 = |1{ϕ̃>t}v|1 ≤ µ̃(ϕ̃ > t)|v|∞ = µ(ϕ > t)|v|∞.

Proof of Lemma 8.5 By Propositions 10.4 and 11.2(b), T̂3 : L∞(Ỹ ) → L∞(Ỹ ) lies in
R(ξβ,ε(t)). By Proposition 11.3, Û ∈ R(1/tβ). Hence ρ̂3 ∈ R(ξβ,ε(t)).

12 Smoothness of some families of operators

Let s 7→ Ŝ(s) be an analytic family of operators, s ∈ H, such that the family extends
continuously to H. If p ≥ 0 is an integer, define

dpŜ(ib) = max
j=0,...,p

‖Ŝ(j)(ib)‖.

If p > 0 is not an integer, define

dpŜ(ib) = d[p]Ŝ(ib) + sup
h6=0
‖Ŝ([p])(i(b+ h)))− Ŝ([p])(ib)‖/|h|p−[p].
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Proposition 12.1 Suppose that ϕ ∈ Lp for some p > 0, and let ε ∈ (0, p).

(a) Viewed as a family of operators on L∞(Y ), b 7→ R̂0(ib) is Cp and there exists a
constant C > 0 such that dpR̂0(ib) ≤ C for all b ∈ R.

(b) There exists θ ∈ (0, 1) such that viewed as a family of operators on Fθ(Y ), b 7→ R̂0(ib)
is Cp−ε and dp−εR̂0(ib) ≤ C(1 + |b|ε) for all b ∈ R.

Proof (a) By (4.1),

(R̂
(j)
0 (ib)v)(y) =

∑
a∈α

eg(ya)v(ya)(iϕ(ya))
jeibϕ(ya)

and hence by (2.1) and assumption (A1),

|(R̂(j)
0 (ib)v)(y)| ≤ C1

∑
a∈α

µ(a)|v|∞ϕ(ya)
j ≤ C1(C2 + 1)j |v|∞

∑
a∈α

µ(a) inf
a
ϕj

≤ C1(C2 + 1)j |v|∞|ϕ|jj .

Also, for p not an integer,

({R̂([p])
0 (i(b+ h))− R̂([p])

0 (ib)}v)(y) =
∑
a∈α

eg(ya)v(ya)(iϕ(ya))
[p]eibϕ(ya)(eihϕ(ya) − 1)

and hence using the inequality |eix − 1| ≤ |x|δ for all x ∈ R, δ ∈ [0, 1],

|({R̂([p])
0 (i(b+ h))− R̂([p])

0 (ib)}v)(y)| ≤ C1

∑
a∈α

µ(a)|v|∞ϕ(ya)
[p]|eihϕ(ya) − 1|

≤ C1|v|∞
∑
a∈α

µ(a)ϕ(ya)
[p]|h|p−[p]ϕ(ya)

p−[p] = C1|v|∞|h|p−[p]
∑
a∈α

µ(a)ϕ(ya)
p

≤ C1(C2 + 1)p|v|∞|h|p−[p]|ϕ|pp.

Hence dpR̂0(ib)� |ϕ|pp.
(b) We give the details for p not an integer, and ε < p−[p]. Set θ = θε0. Let j ∈ {0, 1, . . . , [p]}
and write (R̂

(j)
0 (ib)v)(y)− (R̂

(j)
0 (ib)v)(y′) = I + II + III + IV , where

I =
∑
a∈α

(eg(ya) − eg(y′a))v(ya)(iϕ(ya))
jeibϕ(ya),

II =
∑
a∈α

eg(y
′
a)(v(ya)− v(y′a))(iϕ(ya))

jeibϕ(ya),

III =
∑
a∈α

eg(y
′
a)v(y′a)i

j(ϕ(ya)
j − ϕ(y′a)

j)eibϕ(ya),

IV =
∑
a∈α

eg(y
′
a)v(y′a)(iϕ(y′a))

j(eibϕ(ya) − eibϕ(y′a)).
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We have

|I| ≤ C1

∑
a∈α

µ(a)dθ(y, y
′)|v|∞ϕ(ya)

j ≤ C1(C2 + 1)j |v|∞|ϕ|jjdθ(y, y
′),

|II| ≤ C1

∑
a∈α

µ(a)|v|θdθ(y, y′)ϕ(ya)
j ≤ C1(C2 + 1)j |v|θ|ϕ|jjdθ(y, y

′),

|III| ≤ C1j
∑
a∈α

µ(a)|v|∞ϕ(ya)
j−1|1aϕ|θdθ(y, y′) ≤ C1(C2 + 1)jj|v|∞|ϕ|jjdθ(y, y

′),

|IV | ≤ C1

∑
a∈α

µ(a)|v|∞ϕ(y′a)
j |b|ε|1aϕ|εθ0dθ0(y, y′)ε ≤ C1(C2 + 1)j+ε|b|ε|v|∞|ϕ|j+εj+εdθ(y, y

′),

so that

|R̂(j)
0 (ib)v|θ � (1 + |b|ε)|ϕ|pp‖v‖θ. (12.1)

Finally,

({R̂([p])
0 (i(b+ h))− R̂([p])

0 (ib)}v)(y)− ({R̂([p])
0 (i(b+ h))− R̂([p])

0 (ib)}v)(y′)

=
∑
a∈α

eg(ya)v(ya)(iϕ(ya))
[p]eibϕ(ya)(eihϕ(ya) − 1)

−
∑
a∈α

eg(y
′
a)v(y′a)(iϕ(y′a))

[p]eibϕ(y′a)(eihϕ(y′a) − 1)

= I + II + III + IV + V,

where

I =
∑
a∈α

(eg(ya) − eg(y′a))v(ya)(iϕ(ya))
[p]eibϕ(ya)(eihϕ(ya) − 1),

II =
∑
a∈α

eg(y
′
a)(v(ya)− v(y′a))(iϕ(ya))

[p]eibϕ(ya)(eihϕ(ya) − 1),

III =
∑
a∈α

eg(y
′
a)v(y′a)i

[p](ϕ(ya)
[p] − ϕ(y′a)

[p])eibϕ(ya)(eihϕ(ya) − 1),

IV =
∑
a∈α

eg(y
′
a)v(y′a)(iϕ(y′a))

[p](eibϕ(ya) − eibϕ(y′a))(eihϕ(ya) − 1),

V =
∑
a∈α

eg(y
′
a)v(y′a)(iϕ(y′a))

[p]eibϕ(y′a)(eihϕ(ya) − eihϕ(y′a)).

These terms are estimated using the same techniques as the previous ones that
arose in this proof. For example, we use the inequalities |eibϕ(ya) − eibϕ(y′a)| ≤
|b|ε|1aϕ|εθ0dθ(y, y

′) and |eihϕ(ya) − 1| ≤ |h|p−[p]−εϕ(ya)
p−[p]−ε to obtain |IV | ≤ C1(C2 +

1)p|b|ε|v|∞|ϕ|pp|h|p−[p]−εdθ(y, y
′), and we use the inequality |eihϕ(ya) − eihϕ(y′a)| ≤

|h|p−[p]|1aϕ|p−[p]
θ0

dθ(y, y
′) to obtain |V | ≤ C1(C2 + 1)p|v|∞|ϕ|pp|h|p−[p]dθ(y, y

′). Altogether,
we obtain

|{R̂([p])
0 (i(b+ h))− R̂([p])

0 (ib)}v|θ � (1 + |b|ε)‖v‖θ|ϕ|pp|hp−[p]−ε. (12.2)

The estimates (12.1) and (12.2) combined with the estimates in (a) yield the required
result.
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Proposition 12.2 Suppose that ϕ ∈ Lp for some p > 0, and let ε > 0. Viewed as a family
of operators on Fθ(Y ), b 7→ (I − R̂0(ib))−1 is Cp−ε and there exist C,A > 0 such that
dp−ε(I − R̂0(ib))−1 ≤ C|b|A for all |b| > 1.

Proof Again, we give the details for p not an integer, and ε < p− [p].

A straightforward induction argument shows that dj

dbj
(I − R̂0(ib))−1 is a finite linear

combination of finite products of factors F̂ where

F̂ ∈ {(I − R̂0)−1, R̂
(k)
0 , k = 1, . . . , j},

for each j ≤ p. For each choice of F̂ , there exists A1 > 0 such that ‖F̂ (ib)‖ � |b|A1 , and
moreover dp−[p]−εF̂ (ib)� |b|A1 , by Proposition 12.1 and Lemma 4.4. The required estimate
is an immediate consequence.

13 First main lemma

In this section we prove the following counterpart of the “first main lemma” of [33, 17]. We
view B̂(s) = s(I − R̂0(s))−1 as a family of operators on Fθ(Y ) . Inverse Laplace transforms
will be computed by moving the contour of integration to the imaginary axis (the functions
in question are nonsingular on H) and hence can be viewed as inverse Fourier transforms.
Recall that we defined R(a(t)) to be the space of Laplace transforms of maps S : [0,∞)→ B
with ‖S(t)‖ ≤ Ca(t). We now enlarge the definition of R(a(t)) to include (operator-valued)
functions defined on the imaginary axis with inverse Fourier transform dominated by a(t).

Also, we write R(1/tp−) to denote domination by 1/tq for all q < p. Similarly, an
(operator-valued) function is Cp− if it is Cq for all q < p.

Lemma 13.1 Suppose that ϕ ∈ Lp for some p > 1. Let ψ : R → R be C∞ with suppψ ⊂
[−r, r] where r ∈ (0, 1) is sufficiently small and such that ψ ≡ 1 on a neighborhood of 0.
Then ψB̂ ∈ R(1/tp−).

First we derive an elementary calculus estimate.

Proposition 13.2 Let s(y) = (eiy − 1)/y. For any n ≥ 0, there exists a constant C > 0
such that |s(n)(y)| ≤ C and |s(n)(y)| ≤ C/|y| for all y ∈ R.

Proof Define the analytic functions qn, rn : C→ C for n ≥ 1,

qn(z) = ez −
n−1∑
j=0

zj

j!
, rn(z) =

qn(z)

zn
.

By Taylor’s theorem, there exists ξ between 0 and z such that

qn(z) =
n−1∑
j=0

q(j)
n (0)zj/j! + q(n)

n (ξ)zn/n! = eξzn/n!,
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so that |qn(iy)| ≤ |y|n/n! Similarly,

qn(z) =

n−2∑
j=0

q(j)
n (0)zj/j! + q(n−1)

n (ξ)zn−1/(n− 1)! = (eξ − 1)zn−1/(n− 1)!,

so that |qn(iy)| ≤ |y|n−1/(n− 1)!
Next, note by induction that

r
(n)
1 ∈ R{ez/z, ez/z2, . . . , ez/zn, (ez − 1)/zn+1}.

But ez/zk − rk ∈ R{1/z, . . . , 1/zk}. Hence there exist constants a1, . . . , an+1 and a polyno-
mial p of degree at most n such that

r
(n)
1 (z) =

n+1∑
k=1

akrk(z) + p(z)/zn+1.

Since all terms in this identity are analytic with the possible exception of the last one, we
deduce that p ≡ 0. Hence

r
(n)
1 (z) =

n+1∑
k=1

akrk(z) =

n+1∑
k=1

akqk(z)/z
k.

Since s(y) = ir1(iy), the result follows for each fixed n by substituting in the estimates
for qk.

Lemma 13.3 Suppose that ϕ ∈ Lp for some p > 0, and let ε > 0. Then there exists
θ ∈ (0, 1) such that viewed as an operator on Fθ(Y ),

χ(b)
R̂0(ib)− R̂0(0)

b
∈ R(1/tp−ε),

for all C∞ functions χ : R→ [0, 1] with suppχ ⊂ [−3, 3].

Proof Let k ≥ 0 such that p ∈ (k, k + 1] and let ε ∈ (0, p− k). Set θ = θε0.
Let S(t) denote the inverse Fourier transform of χ(b)(R̂0(ib)− R̂0(0))/b. We show that

‖S(t)‖θ � |ϕ|pp|t|−(p−ε). Let v ∈ Fθ(Y ). By (4.1),

((R̂0(ib)− R̂0(0))v)(y) =
∑
a∈α

eg(ya)v(ya)(e
ibϕ(ya) − 1).

Hence

(S(t)v)(y) =
∑
a∈α

eg(ya)v(ya)

∫ 3

−3
r(b, ϕ(ya))e

ibt db

where
r(b, x) = χ(b)(eibx − 1)/b = χ(b)xs(xb), s(y) = (eiy − 1)/y.
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Let n ≥ 0. By Proposition 13.2, |s(n)(y)| � 1 and |s(n)(y)| � |y|−1. Hence

|s(n)(y)| � |y|−1 min{1, |y|} ≤ |y|−(1−ε), (13.1)

for all y ∈ R. It follows from (13.1) that |∂nr(b, x)/∂bn| � xn+ε|b|−(1−ε) for all x ≥ 1, b ∈ R.
Integrating by parts n times,∣∣∣∫ 3

−3
r(b, x)eibt db

∣∣∣ = |t|−n
∣∣∣∫ 3

−3
∂nr(b, x)/∂bn eibt db

∣∣∣
� xn+ε|t|−n

∫ 3

−3
|b|−(1−ε) db� xn+ε|t|−n.

Applying this with n = k and n = k + 1,∣∣∣∫ 3

−3
r(b, x)eibt db

∣∣∣� min{xk+ε|t|−k, xk+1+ε|t|−(k+1)} = xk+ε|t|−k min{1, x|t|−1}

≤ xk+ε+δ|t|−(k+δ),

for all δ ∈ [0, 1]. Taking δ = p − k − ε, we obtain |
∫ 3
−3 r(b, x)eibt db| ≤ xp|t|−(p−ε). In

particular, ∣∣∣∫ 3

−3
r(b, ϕ(ya))e

ibt db
∣∣∣� ϕ(ya)

p|t|−(p−ε). (13.2)

Also, r(b, x)− r(b, x′) = χ(b)eibx(x− x′)s(b(x′ − x)) and it follows from (13.1) that

|(∂nr(b, x)/∂bn − (∂nr(b, x′)/∂bn| �
n∑
j=0

xn−j |x− x′|j+ε|b|−(1−ε),

for all x, x′ ≥ 1, b ∈ R. Hence using the estimate |1aϕ|θ ≤ C2 infa ϕ ≤ C2|1aϕ|∞ from
assumption (A1),

|(∂nr(b, ϕ(ya))/∂b
n − (∂nr(b, ϕ(y′a))/∂b

n| � |1aϕ|n+ε
∞ dθ0(y, y′)ε|b|−(1−ε)

= |1aϕ|n+ε
∞ dθ(y, y

′)|b|−(1−ε).

Integrating by parts k and k + 1 times,∣∣∣∫ 3

−3
(r(b, ϕ(ya))− r(b, ϕ(y′a)))e

ibt db
∣∣∣� |1aϕ|k+ε

∞ dθ(y, y
′)|t|−k min{1, |1aϕ|∞|t|−1}

≤ |1aϕ|p∞dθ(y, y′)|t|−(p−ε). (13.3)

We are now ready to estimate ‖S(t)‖. Using (13.2), we obtain that

|S(t)v)(y)| �
∑
a∈α

µ(a)|v|∞
∣∣∣∫ 3

−3
r(b, ϕ(ya))e

ibt db
∣∣∣� |v|∞∑

a∈α
µ(a)ϕ(ya)

p|t|−(p−ε),
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and so

|S(t)|∞ � |ϕ|pp|t|−(p−ε)|v|∞. (13.4)

Next,

(S(t)v)(y)− (S(t)v)(y′) = I + II + III,

where

I =
∑
a∈α

(eg(ya) − eg(y′a))v(ya)

∫ 3

−3
r(b, ϕ(ya))e

ibt db,

II =
∑
a∈α

eg(y
′
a)(v(ya)− v(y′a))

∫ 3

−3
r(b, ϕ(ya))e

ibt db,

III =
∑
a∈α

eg(y
′
a)v(y′a)

∫ 3

−3
(r(b, ϕ(ya))− r(b, ϕ(y′a))e

ibt db.

The first two terms are estimated using (13.2):

|I| �
∑
a∈α

µ(a)dθ(y, y
′)|v|∞ϕ(ya)

p|t|−(p−ε) � |ϕ|pp|t|−(p−ε)|v|∞dθ(y, y′),

|II| �
∑
a∈α

µ(a)|v|θdθ(y, y′)ϕ(ya)
p|t|−(p−ε) � |ϕ|pp|t|−(p−ε)|v|θdθ(y, y′).

The third term is estimated using (13.3):

|III| �
∑
a∈α

µ(a)|v|∞|1aϕ|p∞dθ(y, y′)|t|−(p−ε) � |ϕ|pp|t|−(p−ε)|v|∞dθ(y, y′).

Combining the estimates for I, II, III we obtain

|S(t)v|θ � |ϕ|pp|t|−(p−ε)‖v‖θ. (13.5)

By (13.4) and (13.5), ‖S(t)‖θ � |ϕ|pp|t|−(p−ε) as required.

Proposition 13.4 Suppose that ϕ ∈ Lp for some p > 0, and let ε > 0. Let δ > 0. For all
r > 0 sufficiently small, there exists a Cp−ε family b 7→ R̃0(b) with a Cp−ε family of simple
eigenvalues λ̃(b) ∈ {z ∈ C : |z − 1| < δ} such that

(a) R̃0(b) ≡ R̂0(ib) for |b| ≤ r.

(b) R̃0(b) ≡ R̂0(0) and λ̃(b) ≡ 1 for |b| ≥ 2.

(c) ‖R̃0(b)− R̂0(0)‖θ < δ for all b ∈ R.

(d) For all b ∈ R, the spectrum of R̃0(b) consists of λ̃(b) together with a subset of {z :
|z − 1| ≥ 3δ}.

(e) (1− λ̃(b))/b is bounded away from zero on [−r, r].
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Proof Recall that R̂0(0) has a simple eigenvalue at 1. Also there exists δ0 > 0 such that
the remainder of the spectrum lies outside the disk {|z− 1| < δ0}. We suppose without loss
that δ < δ0/3.

Choose δ1 ∈ (0, δ) with the property that ifA is an operator on Fθ(Y ) and ‖A−R̂0(0)‖θ <
δ1, then the spectrum of A consists of a simple eigenvalue within distance δ of 1 and the
remainder of the spectrum lies outside the disk {|z − 1| < 3δ}.

By Proposition 12.1 there is a Cp− family b 7→ λ(b), defined for b sufficiently small,
consisting of simple eigenvalues for R̂0(ib) with λ(0) = 1. Moreover, λ(b) = 1 + ibϕ̄ + o(b)
as b→ 0.

Choose r0 ∈ (0, 1) small so that [−r0, r0] lies inside the domain of definition of this Cp−

family and such that (1− λ(b))/b is bounded away from zero on [−r0, r0]. Fix r ∈ (0, r0).
Let ψ1, ψ2, ψ3 : R → [0, 1] be even C∞ functions such that ψ1 + ψ2 + ψ3 ≡ 1 and such

that restricted to [0,∞),

ψ1 ≡ 1 on [0, r], suppψ1 ⊂ [0, r0].

ψ2 ≡ 1 on [r0, 1], suppψ2 ⊂ [r, 2].

ψ3 ≡ 1 on [2,∞), suppψ2 ⊂ [1,∞).

Define the Cp− family of operators

R̃0(b) = ψ1(b)R̂0(ib) + ψ2(b)R̂0(i sgn(b)r0) + ψ3(b)R̂0(0).

For b ≥ 0 we have

R̃0(b) =



R̂0(ib), b ∈ [0, r]

R̂0(ir0) + ψ1(b)(R̂0(ib)− R̂0(ir0)), b ∈ [r, r0]

R̂0(ir0), b ∈ [r0, 1]

R̂0(0) + ψ2(b)(R̂0(ir0)− R̂0(0)), b ∈ [1, 2]

R̂0(0), b ∈ [2,∞)

.

Shrinking r0 if necessary, we can ensure that

‖R̂0(ib)− R̂0(0)‖θ < δ1/2 for all b ∈ [0, r0], ‖R̃0(b)− R̂0(0)‖θ < δ1 for all b ∈ [1, 2].

Then choosing r sufficiently close to r0, we can ensure that ‖R̃0(b)−R̂0(ir0)‖θ < δ1/2 for all
b ∈ [r, r0]. Altogether, we have that ‖R̃0(b)− R̂0(0)‖θ < δ1 for all b ≥ 0. A similar picture
holds for b ≤ 0 and so we obtain that

‖R̃0(b)− R̂0(0)‖θ < δ1 < δ, for all b ∈ R.

This verifies condition (c). Moreover, by definition of δ1 we obtain the required spectral
properties for R̃0, namely the family of simple eigenvalues λ̃ (which is Cp− by standard
perturbation theory) together with the estimate in condition (d). Finally, we observe that
properties (a,b,e) are immediate consequences of the construction.

Let P̃ be the spectral projection corresponding to λ̃. By Proposition 13.4, b 7→ P̃ (b) is
Cp−.
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Proposition 13.5 Suppose that ϕ ∈ Lp for some p > 0, and let ε > 0. For δ > 0 small

enough in Proposition 13.4,
1− λ̃(b)

b
∈ R(1/tp−ε).

Proof Recall the formula

1− λ̃(b)

b
P̃ (b) =

R̃0(0)− R̃0(b)

b
P̃ (b) + (I − R̃0(0))

P̃ (b)− P̃ (0)

b
. (13.6)

Let χ : R → [0, 1] be a C∞ function supported in [−3, 3] with χ ≡ 1 on [−2, 2]. By
Proposition 13.4(a,b),

R̃0(b)− R̃0(0)

b
= χ(b)

R̃0(b)− R̂0(0)

b
= χ(b)

R̃0(b)− R̂0(ib)

b
+ χ(b)

R̂0(ib)− R̂0(0)

b
.

The first term on the RHS vanishes near zero by Proposition 13.4(a) and hence is Cp−.
Also it is compactly supported and so lies in R(1/tp−). The second term on the RHS lies

in R(1/tp−) by Lemma 13.3. We deduce that
R̃0(b)− R̃0(0)

b
∈ R(1/tp−). Moreover,

R̃0(b)− R̃0(0)

b
P̃ (b) =

R̃0(b)− R̃0(0)

b
χ(b)P̃ (b),

where χP̃ is Cp− and compactly supported. It follows that
R̃0(b)− R̃0(0)

b
P̃ (b) ∈ R(1/tp−).

Let Γ be the circle of radius 2δ around 1. By Proposition 13.4(d), P̃ (b) = (1/2πi)
∫

Γ(ξ−
R̃0(b))−1 dξ. By Proposition 13.4(b), P̃ (b) = P̃ (0) for |b| ≥ 2. Hence

P̃ (b)− P̃ (0)

b
= χ(b)

P̃ (b)− P̃ (0)

b
=

1

2πi

∫
Γ
G1(b, ξ)G2(b)G3(ξ) db,

where

G1(b, ξ) = χ(b)(ξ − R̃0(b))−1, G2(b) =
R̃0(b)− R̃0(0)

b
, G3(ξ) = (ξ − R̃0(0))−1.

We already showed that G2 ∈ R(1/tp−). Also b 7→ G1(b, ξ) is compactly supported and
Cp− uniformly in ξ. Hence G1(b, ξ)G2(b)G3(ξ) ∈ R(1/tp−) with norms uniform in ξ and so

P̃ (b)− P̃ (0)

b
∈ R(1/tp−).

The above arguments together with (13.6) imply that
1− λ̃(b)

b
P̃ (b) ∈ R(1/tp−). Hence

1− λ̃(b)

b
u(P̃ (b)) ∈ R(1/tp−) for any bounded linear functional u : Fθ(Y ) → R. Choose u

so that u(P̃ (0)) 6= 0. By Proposition 13.4(c), we can ensure that u(P̃ (b)) is bounded away
from zero for all b. Then χ/u(P̃ ) is compactly supported and Cp−, so χ/u(P̃ ) ∈ R(1/tp−).
By Proposition 13.4(b),

1− λ̃(b)

b
=

1− λ̃(b)

b
χ(b) =

1− λ̃(b)

b
u(P̃ (b))

χ(b)

u(P̃ (b))
.
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Hence
1− λ̃(b)

b
∈ R(1/tp−) as required.

Proof of Lemma 13.1 By Proposition 13.4(a), ψB̂ = ψB̃ where B̃(b) = b(I − R̃0(b))−1.
Write

B̃(b) = ((1− λ̃(b))/b)−1P̃ (b) + b(I − R̃0(b))−1(I − P̃ (b)).

The second term is Cp− and so lies in R(1/tp−) when multiplied by ψ. Hence it remains to
show that ψ(b)((1− λ̃(b))/b)−1P̃ (b) ∈ R(1/tp−).

Let χ be a compactly supported C∞ function with χ ≡ 1 on the support of ψ. Then

ψ(b)((1− λ̃(b))/b)−1P̃ (b) = ψ(b)((1− λ̃(b))/b)−1χ(b)P̃ (b),

and χP̃ ∈ R(1/tp−). Hence it remains to show that ψ(b)((1− λ̃(b))/b)−1 ∈ R(1/tp−).
Now ψ is a compactly supported element of R(1/tp−). By Proposition 13.5, (1 −

λ̃(b))/b ∈ R(1/tp−). Moreover, (1 − λ̃(b))/b is bounded away from zero on the sup-
port of ψ by Proposition 13.4(e). By Lemma A.2, there exists g ∈ R(1/tp−) such that
ψ(b) = g(b)(1− λ̃(b))/b. Hence ψ(b)((1− λ̃(b))/b)−1 = g(b) ∈ R(1/tp−), as required.

14 Proof of Lemma 8.6

Finally, we deal with the term

ρ̂4 = (1/ϕ̄)

∫
Ỹ
Û T̂4v w dµ, (T̂4v)(y, u) = (T̂0,4v

u)(y),

T̂0,4 = (I − PϕD̂∗)−1(I − PϕĈ∗(0))K̂∗, K̂∗ = Ĥ∗(I − Ĉ∗B̂).

In Section 12, we introduced the notation dpŜ. We recall the following basic result.

Proposition 14.1 (a) Suppose that the family b 7→ Ŝ(ib) is Cp for some p > 0 and that
there is a constant C > 0 such that dpŜ(ib) ≤ C|b|−2 for |b| > 1. Then Ŝ ∈ R(1/tp).

(b) Suppose that g : R→ R is C∞, such that g ≡ 0 in a neighborhood of 0, and g(b) ≡ 1
for |b| sufficiently large. Let m ≥ 1. Then g(b)/bm ∈ R(1/tp) for all p > 0.

Proof (a) For p an integer, S(t) =
∫∞
−∞ e

ibtŜ(ib) db = t−p
∫∞
−∞ e

ibtŜ(p)(ib) db so that

|S(t)| � t−p
∫∞
−∞(1 + |b|−2) db� t−p.

For p not an integer, we still have S(t) = t−[p]
∫∞
−∞ e

ibtŜ([p])(ib) db =

−t−[p]
∫∞
−∞ e

ibtŜ([p])(i(b+ π/t)) db and so

2|S(t)| ≤ t−[p]

∫ ∞
−∞
|Ŝ([p])(i(b+ π/t))− Ŝ([p])(ib)| db

� t−[p]

∫ ∞
−∞

dpŜ(ib)|t|−(p−[p]) db� |t|−p
∫ ∞
−∞

(1 + |b|)−2 � |t|−p,

as required.
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(b) If m ≥ 2, then this is immediate from part (a). For m = 1, note that∣∣∣ lim
L→∞

∫ L

−L
eibtg(b)/b db

∣∣∣ = t−1
∣∣∣∫ ∞
−∞

eibth(b) db
∣∣∣,

where h(b) = (g(b)/b)′ = (bg′(b)− g(b))/b2 satisfies the conditions of part (a). (Recall that
g′ ≡ 0 for b large.)

Proposition 14.2 Ĥ∗ : Fθ(Y )→ Fθ(Y ) is analytic on a neighborhood of H.

Proof This is standard since the flow under the truncated roof function ϕ∗ is uniformly
expanding: T̂ ∗0 has a meromorphic extension across the imaginary axis with a simple pole
at zero, and Ĥ∗(s) = T̂ ∗0 (s)− s−1P ∗ϕ is analytic on a neighborhood of H.

Let ψ : R→ [0, 1] be as in Lemma 13.1. Recall that ψ is C∞ with suppψ ∈ [−1, 1], and
ψ ≡ 1 on a neighborhood of 0. We have the following consequence of Lemma 13.3.

Corollary 14.3 Suppose that ϕ ∈ Lp for some p > 0, and let ε > 0. Then ψĈ∗ ∈
R(1/tp−ε).

Proof By Lemma 13.3, ψ(b)
R̂0(ib)− R̂0(0)

b
∈ R(1/tp−). Since ϕ∗ ∈ L∞, it follows from

Lemma 13.3 that ψ(b)
R̂∗0(ib)− R̂∗0(0)

b
∈ R(1/tq) for all q. But Ĉ∗(ib) =

R̂∗0(ib)− R̂∗0(0)

b
−

R̂0(ib)− R̂0(0)

b
so the result follows.

Proposition 14.4 ψ(b)3ρ̂4(ib) ∈ R(‖v‖θ|w|∞1/tβ−).

Proof Regard the operators Ĥ∗, Ĉ∗, B̂ in the expression K̂∗ = Ĥ∗(I − Ĉ∗B̂) as operators
on Fθ(Y ). By Lemma 13.1, ψB̂ ∈ R(1/tβ−). Also, ψĈ∗ ∈ R(1/tβ−) by Corollary 14.3.
By Proposition 14.2, ψĤ∗ is C∞ and this together with Proposition 14.1(a) implies that
ψĤ∗ ∈ R(1/tp) for all p. Hence ψ3K̂∗ = ψ3Ĥ∗ − (ψĤ∗)(ψĈ∗)(ψB̂) ∈ R(1/tβ−). It follows
that ψ3K̂∗ : Fθ(Y )→ L∞(Y ) lies in R(1/tβ−).

By Proposition 8.2, Ĉ∗(0) is a bounded operator on L∞(Y ). Hence by Proposition 10.4,
ψ3T̂0,4 = ψ3(I − PϕD̂∗)−1(I − Ĉ∗(0))K̂∗ : Fθ(Y )→ L∞(Y ) lies in R(1/tβ−). Hence ψ3T̂4 :
Fθ(Ỹ )→ L∞(Ỹ ) lies in R(1/tβ−).

By Proposition 11.3, Û : L∞(Ỹ )→ L1(Ỹ ) lies in R(1/tβ) and the result follows.

Proposition 14.5 (1− ψ(b)3)(ρ̂(ib)− ρ̂4(ib)) ∈ R(|v|∞|w|∞1/tβ−).

Proof Using (8.3), write (1−ψ3)(ρ̂−ρ̂4) = (1−ψ3)(ρ̂1+ρ̂2+ρ̂3) = b−1(1−ψ3)
∫
Ỹ ÛQ̂v w dµ̃

where Q̂(s) = s(T̂0,1 + T̂0,2 + T̂0,3) = (I − PϕD̂∗)−1.
Now Û : L∞(Ỹ ) → L1(Ỹ ) lies in R(1/tβ) by Proposition 11.3. Hence ÛQ̂ ∈ R(1/tβ−)

by Proposition 10.4 and Remark 10.5. Also b−1(1 − ψ3) ∈ R(1/tp) for all p by Proposi-
tion 14.1(b), so the result follows.
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Proposition 14.6 For w ∈ L∞,m(Ỹ ), m sufficiently large, we have that (1−ψ(b)3)ρ̂(ib) ∈
R(‖v‖θ|w|∞,m1/tβ−).

Proof Write ρv,w to stress the dependence on v, w and similarly for ρ̂v,w. By Proposi-
tion 3.7, ρ̂v,w(s) = P̂m(s)+Ĥm(s), where P̂m(s) is a linear combination of s−j , j = 1, . . . ,m,
and Ĥm(s) = s−mρ̂v,∂mt w(s).

By Proposition 14.1(b), (1− ψ(b)3)P̂m(ib) ∈ R(1/tp) for all p > 0. Next,

ρ̂v,∂mt w =

∫
Ỹ
Û(I − R̂)−1v ∂mt w dµ̃,

where Û : L∞(Ỹ ) → L1(Ỹ ) lies in R(1/tβ) by Proposition 11.3. It remains to show that
Z(b) = b−m(1− ψ(b)3)(I − R̂0(ib))−1 : Fθ(Y )→ Fθ(Y ) lies in R(1/tβ−).

By Proposition 12.1(b), R̂0 is Cβ−. Hence (I − R̂0)−1 is Cβ− on R \ {0} and Z is
Cβ− on R. Moreover, by Proposition 12.2 and Lemma 4.4, there exists C,A > 0 such that
dβ−(I − R̂0(ib))−1 ≤ C|b|A for |b| > 1. Hence for m sufficiently large, dβ−Z(ib)� |b|−2 for
|b| > 1. We conclude from Proposition 14.1(a) that Z ∈ R(1/tβ−) as required.

Proof of Lemma 8.6 This is immediate by Propositions 14.4, 14.5 and 14.6.

15 Proof of Theorem 2.4(b)

In this section, we complete the proof of Theorem 2.4(b). For this it suffices to replace the
estimate for ρ3(t) in Lemma 8.5 by the improved estimate in Lemma 15.2 below.

Define ζ̂j(s) = s−1(
∫
Y D̂

∗(s)1Y dµ)j . Then ζ0 ≡ 1 and it follows from the proof of
Proposition 11.2(a) that ζ1(t) = ζ(t) for t > k.

Proposition 15.1 Let β > 1, j ≥ 0. Then ζ̂j ∈ R(1/tj(β−1)) if j(β − 1) < β and ζ̂j ∈
R(1/tβ) if j(β − 1) > β.

Proof This is proved by continuing inductively the argument in Proposition 11.2(b). The
details are the same as in [17, Lemma 5.1] (with the simplification that there are no non-
commutativity issues).

Lemma 15.2 Let 1 < β < 2 and choose m ≥ 3 least such that m(β − 1) > β. Then

ρ3(t) = v̄w̄

m−1∑
j=2

(1/ϕ̄)jζj(t) +O(|v|∞|w|∞1/tβ−).

Proof Recall that

ρ̂j = (1/ϕ̄)

∫
Ỹ
Û T̂jv w dµ̃, (T̂jv)(y, u) = (T̂0,jv

u)(y),

where

T̂0,1 = (1/ϕ̄)s−1P (0), T̂0,3 = (1/ϕ̄)3s−1
(

1− (1/ϕ̄)

∫
Y
D̂∗1Y dµY

)−1(∫
Y
D̂∗1Y dµ

)2
P (0).
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Hence

ρ̂3 = (1/ϕ̄)2ρ̂1

(
1− (1/ϕ̄)

∫
Y
D̂∗1Y dµY

)−1(∫
Y
D̂∗1Y dµ

)2

=

m−1∑
j=2

(1/ϕ̄)j
(∫

Y
D̂∗1Y dµ

)j
ρ̂1 + (1/ϕ̄)mq̂

(∫
Y
D̂∗1Y dµ

)m
ρ̂1,

where q̂ =
(
1 − (1/ϕ̄)

∫
Y D̂

∗1Y dµY
)−1

. By Lemma 8.4(a), ρ̂1(s) = s−1v̄w̄ + ĥ(s) where

ĥ ∈ R(1/tβ). Hence

ρ̂3 = v̄w̄

m−1∑
j=2

(1/ϕ̄)j ζ̂j + v̄w̄(1/ϕ̄)mq̂ζ̂m

+
m−1∑
j=2

(1/ϕ̄)j
(∫

Y
D̂∗1Y dµ

)j
ĥ+ (1/ϕ̄)mq̂

(∫
Y
D̂∗1Y dµ

)m
ĥ.

Now apply Corollary 10.3 and Propositions 10.4 and 15.1.

A Wiener lemma

This appendix contains material about a version of the Wiener lemma that is required in
Section 13. We have chosen the notation here to conform with standard conventions in
Fourier analysis. (In the application of this material, the roles of f : R→ C and its Fourier
transform f̂ is reversed, with b and t playing the role of x and ξ respectively.)

Let A be the Banach algebra of 2π-periodic continuous functions f : R → C such
that their Fourier coefficients f̂n are absolutely summable, with norm ‖f‖A =

∑
n∈Z |f̂n|.

Similarly, let R be the Banach algebra of continuous functions f : R → C such that their
Fourier transform f̂ : R→ C lies in L1(R), with norm ‖f‖R =

∫∞
−∞ |f̂(ξ)| dξ.

Given β > 1, we define the Banach algebra Aβ = {f ∈ A : supn∈Z |n|β|f̂n| < ∞}
with norm ‖f‖Aβ =

∑
n∈Z |f̂n| + supn∈Z |n|β|f̂n|. Similarly, we define the Banach algebra

Rβ = {f ∈ R : supξ∈R |ξ|β|f̂(ξ)| <∞} with norm ‖f‖Rβ =
∫∞
−∞ |f̂(ξ)| dξ+supξ∈R |ξ|β|f̂(ξ)|.

The following Wiener lemmas are standard.

Lemma A.1 Let β > 1 and let f, f1 ∈ Aβ. Suppose that f is bounded away from zero on
the support of f1.

Then there exists g ∈ Aβ such that f1 = fg.

Lemma A.2 Let β > 1 and let f, f1 ∈ Rβ. Suppose f1 is compactly supported and that f
is bounded away from zero on the support of f1.

Then there exists g ∈ Rβ such that f1 = fg.

A statement and proof of Lemma A.1 can be found in [13, Theorem 1.2.12]. In this
paper, we require Lemma A.2, but we could not find it stated in the literature. Hence we
provide here a proof of Lemma A.2, using a standard argument to reduce to Lemma A.1.
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Lemma A.3 Let ε > 0. Suppose that f : R → C is a continuous function with supp f ⊂
[−π + ε, π − ε]. Let h : R → C denote the 2π-periodic continuous function such that
h|[−π,π] = f |[−π,π]. Then f ∈ Rβ if and only if h ∈ Aβ.

Proof (cf. [21, Theorem 6.2, Ch. VIII, p. 242]) Fix a C∞ function ψ : R→ R supported in
[−π+ε/2, π−ε/2] and such that ψ ≡ 1 on [−π+ε, π−ε]. For α ∈ [−1, 1] let ψα(x) = eiαxψ(x).
Then there is a constant K0 > 0 such that

|(ψ̂α)n| ≤ K0n
−β, for all α ∈ [−1, 1], n ∈ Z.

In particular, ψα ∈ Aβ for all α and sup|α|≤1 ‖ψα‖Aβ <∞.

Define hα(x) = eiαxh(x). If h ∈ Aβ, then hα = hψα ∈ Aβ and there is a constant K > 0
such that ‖hα‖Aβ ≤ K‖h‖Aβ for all α ∈ [−1, 1].

Now,

(ĥα)n =
1

2π

∫ π

−π
eiαxh(x)e−inx dx =

1

2π

∫ ∞
−∞

f(x)e−i(n−α)x dx =
1

2π
f̂(n− α).

Hence
∫ n
n−1 |f̂(ξ)| dξ =

∫ 1
0 |f̂(n− α)| dα = 2π

∫ 1
0 |(ĥα)n| dα. It follows that

‖f‖R = 2π

∞∑
n=−∞

∫ 1

0
|(ĥα)n| dα = 2π

∫ 1

0
‖hα‖A dα ≤ 2πK‖h‖Aβ . (A.1)

Next, we observe that any ξ ∈ R can be expressed as ξ = (n − α) sgn ξ where n ≥ 1,
α ∈ [0, 1]. Hence

sup
ξ∈R
|ξ|β|f̂(ξ)| = sup

n≥1, α∈[0,1]
(n− α)β|f̂((n− α) sgn ξ)| ≤ sup

n≥1, α∈[0,1]
nβ|f̂((n− α) sgn ξ)|

≤ sup
n∈Z, α∈[−1,1]

|n|β|f̂(n− α)| = 2π sup
n∈Z, α∈[−1,1]

|n|β|(ĥα)n|

≤ 2π sup
α∈[−1,1]

‖hα‖Aβ ≤ 2πK‖h‖Aβ . (A.2)

Combining (A.1) and (A.2), we obtain that ‖f‖Rβ ≤ 4πK‖h‖Aβ . Hence we have shown
that h ∈ Aβ implies that f ∈ Rβ.

Conversely, suppose f ∈ Rβ. Then
∑

n∈Z
∫ 1

0 |f̂(n − α)| dα =
∫∞
−∞ |f̂(ξ)| dξ < ∞ and it

follows from Fubini that
∑

n∈Z |f̂(n − α)| < ∞ for almost every α. Fix such an α. Then∑
n∈Z |(ĥα)n| = (1/2π)

∑
n∈Z |f̂(n − α)| < ∞ so that hα ∈ A. Hence h = (hα)−α ∈ A.

Moreover,

sup
n∈Z
|n|β|ĥn| = (1/2π) sup

n∈Z
|n|β|f̂(n)| ≤ (1/2π) sup

ξ∈R
|ξ|β|f̂(ξ)| <∞,

so that h ∈ Aβ.

Proof of Lemma A.2 (cf. [21, Lemma 6.3, Ch. VIII, p. 242]) We make the standard abuse
of notation that functions on R supported on a closed subset of (−π, π) can be identified
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with 2π-periodic functions on R. In particular, the conclusion of Lemma A.3 becomes
f ∈ Rβ if and only if f ∈ Aβ.

Without loss, we can suppose that supp f1 ⊂ [−2, 2]. By Lemma A.3, f1 ∈ Aβ.
Choose a C∞ function χ : R→ R such that suppχ ⊂ [−3, 3] and χ ≡ 1 on [−2, 2]. Then

χ ∈ Aβ and χ ∈ Rβ. In particular χf ∈ Rβ, and by Lemma A.3 χf ∈ Aβ.
Moreover χf = f on supp f1 and hence is bounded away from zero on supp f1. By

Lemma A.1, there exists g0 ∈ Aβ such that f1 = g0(χf) = (g0χ)f .
Since g0, χ ∈ Aβ, we deduce that g = g0χ ∈ Aβ. By Lemma A.3, g ∈ Rβ. Hence f1 = gf

with g ∈ Rβ as required.
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