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Suppose that A is a topologically transitive set for a discrete dynamical
system f : R" — R". If A possesses a (strong) shadowing property, then it is
well known (see for example Shub [20] or Pollicott [19]) that periodic points
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Abstract

A standard use of shadowing lemmas in dynamical systems the-
ory is to prove density of periodic points. When there is symmetry
present it is natural to investigate the density of periodic points of
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are dense in A. Suitable versions of the shadowing lemma hold for hyperbolic
sets [1, 20] and more generally for nonuniformly hyperbolic sets [10, 19].

When there is symmetry present, we can ask whether periodic orbits
with a given amount of symmetry are dense. More precisely, suppose that
[ is a finite group acting on R™ and that f : R® — R" is a ['-equivariant
homeomorphism with A C R" a topologically transitive set. Following [6, 14]
we define the symmetry group of A to be the subgroup

ZA:{’}’EF,’YAZA}

Thus elements of ¥ 4 fix A as a set. We say that A is X-symmetricif X4 =X
and A contains at least one point of trivial isotropy. (It follows that the
points in R" with trivial isotropy form an open dense subset [2] and hence
that the set of points in A with trivial isotropy is open and dense in A.)

If a periodic orbit is »-symmetric, then it is easily shown that X is a
cyclic subgroup of I' (see, for example, [14, Corollary 4.4]). From now on we
assume (without loss of generality) that A is [-symmetric. We are interested
in determining those cyclic subgroups ¥ C I for which ¥-symmetric periodic
orbits are dense in A.

In Section 2, we review the definition(s) of shadowing. We prove that if
A is a topologically transitive set satisfying the (strong) shadowing property
then periodic orbits with mazimal cyclic symmetry are dense. For example,
if A is Zj-symmetric, we deduce that Z;-symmetric periodic orbits are dense
in A. However we cannot, in this generality, make a statement about periodic
orbits in A that have less (or no) symmetry. In Section 3, we show that if
in addition A is topologically mixing then Y-symmetric periodic orbits are
indeed dense in A for all cyclic subgroups ¥ C I'. In Section 4, we make
the nontrivial extension to sets that are topologically mixing up to a cycle.
In particular, our results are valid for topologically transitive sets that are
hyperbolic [1, 20] or nonuniformly hyperbolic [18]. Our results generalize to
the case when there are continuous symmetries present, see Section 5.

An important consequence of our work is that we obtain sufficient condi-
tions for density of asymmetric periodic orbits (that is, periodic orbits with
no symmetry). This is of significance for problems involving compact group
extensions. We discuss these issues in Section 6.



2 Shadowing properties and density of peri-
odic orbits

In this section, we state the shadowing lemma as satisfied by hyperbolic sets
and derive a result on density of periodic orbits with maximal cyclic symme-
try as a consequence. Also we indicate the main differences for nonuniformly
hyperbolic sets.

First, we give the definition of the shadowing property that is satisfied by
hyperbolic topologically transitive sets. For reasons explained in Remark 2.8
below, we call this the strong shadowing property.

Definition 2.1 Suppose that f : R® — R" is a homeomorphism, that A C
R" and that § > 0. A sequence y = {y,,};.> ., of points y,, € A is a
d-pseudoorbit in A if | f(ym) — Ymy1| < 9 for all m.

Given € > 0, x € A is an e-tracing point in A for a pseudoorbit y in A if

|f™(x) — ym| < € for all m.

Definition 2.2 Let f : R® — R" be a homeomorphism. A subset A C R"
has the strong shadowing property if

(i) Given € > 0 there exists 6 > 0 such that every d-pseudoorbit in A has
an e-tracing point in A, and

(ii) There is an €y, > 0 such that the e-tracing points in (i) are unique
provided € < €.

Proposition 2.3 Suppose that A is a topologically transitive set.
(a) If A is hyperbolic, then A satisfies the strong shadowing property.

(b) If A satisfies the strong shadowing property, then periodic points are
dense in A.

Proof Part (a) can be found, for example, in [20, Chapter 8] (combination
of Propositions 8.7, 8.11 and 8.20). Part (b) is also well-known, and is a
special case of Lemma 2.5. |



Remark 2.4 We can drop the transitivity assumption in Proposition 2.3(a)
provided we insist that A has a local product structure. This is a consequence
of Smale’s spectral decomposition theorem [20, 21] which states that a hy-
perbolic set with local product structure is a disjoint union of finitely many
transitive sets each of which is topologically mixing up to a cycle. The cor-
responding result for nonuniformly hyperbolic sets is due to Pesin [18] (there
may now be a countable infinity of transitive sets in the decomposition).

A consequence of the spectral decomposition theorems is that all of the
results stated in this paper are valid more generally for (nonuniformly) hy-
perbolic sets with local product structure

Proposition 2.3(b) has the following analogue in the equivariant context.

Lemma 2.5 Let ' be a finite group acting orthogonally on R" and let
f:R" =5 R" be a I'-equivariant homeomorphism with a I'-symmetric topo-
logically transitive set A. Suppose that A satisfies the strong shadowing prop-
erty. If X 1s a mazimal cyclic subgroup of I, then X-symmetric periodic
orbits are dense in A.

Proof Let ¥ C T' be a maximal cyclic subgroup. Since points of trivial
isotropy are dense in A, it is sufficient to prove that periodic orbits P with
Yp = X are dense in A. Choose o to be a generator of ¥ and let U be a
nonempty open subset of A. We show that there is a point z € U such that
f4z) = ox for some integer g. Then z is a periodic point and o € ¥.p where
P is the corresponding periodic orbit. It follows that > C Xp. Since Xp is
cyclic and ¥ is maximal, we have Xp = 3.

It remains to construct the periodic point . Choose z € U and let €, > 0
be such that every J-pseudoorbit has a unique e-tracing point and such that
Bsic(z) € U. Let V = Bj(z). By topological transitivity, f4(V)NoV # 0
for some integer q.

Let k denote the order of o (so o = 1). Choose yy € V so that fi(y) €
oV and define yo, y1, ... ,Yrq—1 to be the sequence

Yo, f(y0)7 ceey fq_l(y());
oy,  of(w), -,  ofTwo);
F e, oFLf o) s oF L ().



Extend to a kg-periodic bi-infinite sequence y. Since V and hence vV has
diameter ¢ for all v € T', y is a d-pseudoorbit with e-tracing point x say.
In addition yy € Bs(z), and hence x € B(yo) C Bsic(2) C U. Moreover,
o~1f9(z) is also an e-tracing point so by uniqueness o~ ! f9(z) = . |

Remark 2.6 The shadowing property as stated in Definition 2.2 holds for
hyperbolic transitive sets [20] but only in a slightly more complicated form for
nonuniformly hyperbolic transitive sets [19]. The most important difference
is that tracing points are no longer guaranteed to lie in A. However, periodic
tracing points can be shown to lie in A [9] (see also [19, p. 96]) and Lemma 2.5
remains valid for this more complicated notion of shadowing.

Corollary 2.7 Let f : R® — R" be a I'-equivariant diffeomorphism. Sup-
pose that A is a T'-symmetric (nonuniformly) hyperbolic topologically transi-
tive set and that ¥ is a mazimal cyclic subgroup of I'. Then X-symmetric
periodic orbits are dense in A.

We improve substantially upon this result in later sections.

Remark 2.8 As pointed out to us by the referee, the ‘standard’ notion of
shadowing does not require that the tracing point lies in A and, in general,
even tracing points that are periodic need not lie in A. Indeed, there are
are examples such as the Feigenbaum limit set which satisfy the ‘standard’
shadowing property but nonuniform hyperbolicity fails and A contains no
periodic points. In this case, A is contained in the closure of the periodic
points.

We emphasize that the results in this paper are valid only when the
strong shadowing property is satisfied (that is, periodic tracing points lie in
A) and that this property is only known to be valid under the assumption of
hyperbolicity or nonuniformly hyperbolicity. However, many of our results,
in particular, Lemma 2.5, Theorem 3.2 and Theorem 4.3, have an obvious
generalization to the case when the ‘standard’ shadowing property is in force.
For example, the conclusion of Lemma 2.5 becomes: ‘If ¥ is a maximal cyclic
subgroup of I', then A is contained in the closure of the Y-symmetric periodic
points’.

In the remainder of this paper, we shall suppress the adjectives
‘strong/standard’. All of our results are valid in the strong case and the
results in Sections 3 and 4 are valid in the standard case with the slightly



weakened conclusion described in the previous paragraph. However, the re-
sults in Section 5 depend crucially on the density of periodic orbits in A and
hence are valid solely in the strong case.

3 'Topological mixing and the shadowing
property

We continue to assume that [' is a finite group acting orthogonally on R"
and that f : R"™ — R" is a ['-equivariant homeomorphism.

Definition 3.1 An invariant set A is topologically mizing under a homeo-
morphism f if for any nonempty open sets U,V C A there is an integer ¢q
such that f4(U) NV # 0 for all ¢ > go.

Theorem 3.2 Suppose that A is a I'-symmetric topologically mixing set sat-
isfying the shadowing property. Then Y-symmetric periodic orbits are dense
in A for all cyclic subgroups > C I

Proof Fix a cyclic subgroup ¥ C I' and a generator ¢ € X. Let U
be a nonempty open subset of A and choose V C U as in the proof of
Lemma 2.5. Since A is topologically mixing, there is an integer ¢, such that
fA(V)YynoV # 0 for all ¢ > go. Choose ¢ > gy so that ¢ > |T'| is prime. As
in the proof of Lemma 2.5 we have the existence of a periodic point z € U
such that the corresponding periodic orbit P satisfies ¥ C ¥Xp. Moreover
f2%l(x) = 2. In particular,

(i) |X| divides |Xp|, and
(i) |Xp| divides ¢|X|.

Since ¢ is prime and |Xp| < ¢ it follows from (ii) that |Xp| divides |X|. We
deduce from (i) that |Xp| = |X| and so Xp = 3 as required. |
We say that a periodic orbit P is asymmetric if Xp = 1.

Corollary 3.3 Under the hypotheses of Theorem 3.2, asymmetric periodic
orbits are dense.



4 Topologically mixing up to a cycle
In this section, we relax the assumption that A is topologically mixing.

Definition 4.1 A topologically transitive set A is topologically mixing up to
a cycle if A can be written as the disjoint union of closed sets Aq, ..., Ar_1
each of which is invariant and topologically mixing under f".

It follows that if j € {0,...,7 —1} and U C Ay, V C A; are nonempty
open subsets, then there exists an integer g such that f*(U) NV # () for
all ¢ > qo.

Remark 4.2 If A is a hyperbolic topologically transitive set then A is topo-
logically mixing up to a cycle [1, 20, 21]. This property holds also for nonuni-
formly hyperbolic transitive sets, see Pesin [18]. As mentioned in Remark 2.4,
these notions generalize via the spectral decomposition to (nonuniformly) hy-
perbolic sets with local product structure.

Theorem 4.3 Let ' be a finite group acting orthogonally on R" and
let f:R"™ = R" be a I'-equivariant homeomorphism. Suppose that a T'-
symmetric set A satisfies the following conditions:

(i) A possesses the shadowing property,
(i) A is topologically mizing up to a cycle, and
(iii) A is not a periodic orbit.

Then Y-symmetric periodic orbits are dense in A for all cyclic subgroups
Y C I'. In particular, asymmetric periodic orbits are dense in A.

Proof Let Ag,...,A,_1 be the components of A as in Definition 4.1. Sup-
pose that > C I' is a cyclic subgroup and let A be the subgroup of ¥ that
fixes Ag. Then ¥./A = Zj, where k divides r, and Z;, acts fixed-point freely
on the components of A. Since f is I'-equivariant, it follows easily that the
group orbit Zj(Ag) is given by Zy(Ag) = Ao U Apjp U --- U Ag_1)p/k- In
particular, we may choose a generator o € ¥ such that 0 Ay = A, .

Set £ = r/k and let a; > ay > --- > a; > 2 be the distinct primes
appearing in the prime factorization of /. We shall prove the following result.



Lemma 4.4 Given any nonempty open set Uy C Aq there is a point x € Uy
and a positive integer b such that

(a) f*(z) = oz,
(b) foYei(z) ¢ T -z for eachi=1,...,s, and
(c) b> |T| is prime.

It follows from (a) that z is a periodic point and that ¥ C Xp where
P is the corresponding periodic orbit. Moreover, the prime period of P is
given by |P| = bl|X|. Let d = |Xp/X|. Then |Xp| = d|X| divides |P| so
that d divides bf. It follows from (c) that d divides £. Hence we can write
d = a"---al where m; > 0. If d = 1 then we are done so we may
assume that m;, > 1 for some iy. Since |P| = (b//d)|Xp| we have that
fi%d(z) € $p - z for any positive integer j. Taking j = d/a;, we obtain a
contradiction to condition (b). Hence the theorem follows from the lemma. B

Proof of the lemma Set U; = f7(U;) C A; and let U = T'(UpU- - -UU,_1).
Shrinking U if necessary we may assume that Aq— U has nonempty interior.
(It is here that we make use of hypothesis (iii) in Theorem 4.3.) Let z € U,
and choose 2z’ in the interior of Ay — U. Then we can choose €, > 0 so that
every d-pseudoorbit has a unique e-tracing point and so that

BJ-I—e(fj(z)) C Uj7 B6+e(fj(zl)) C Aj - Uj7 .7 = 07 cee T 1.

Let V; = Bs(f7(2)), W; = Bs(f(#)), 5 =0,...,r —1, and set V = Vj U
UV, W=WoUu---UW, 4.

Suppose that f™(Ag) C 0Ay for m a positive integer and let m; = m/a;.
Note that 0 < m; < --- < my; < m. Since A is mixing up to a cycle, it
follows that there is an integer mg such that if m > mg then we can satisfy
the following conditions simultaneously:

V) NW £0, fra=™WHNW #£0,i=1,...,5—1,

J7me (W) NV o# 0 for each j.
Specifically, we have

fml(%) N Wi, 7é (Da mel_mi(W’ﬁli) n Wﬁli+1 7é ®a 1=1,...,5s—1,
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fm_ms (ans) N 0—‘/0 ?é @7

where 7; = m; mod r. Since each W; has diameter J, we can construct a
finite é-pseudoorbit y = {y,}7, such that yy € Vy, y, € 0V} and y,,, € W
fori=1,...,s. Moreover V; has diameter ) and we can extend using equiv-
ariance and periodicity to a bi-infinite d-pseudoorbit y. Let x be an e-tracing
point. Then z € Uy and f™i(z) € A—T(U,) fori =1...,s. It follows from
uniqueness of the tracing point that f™(z) = oz. This establishes parts (a)
and (b).

It remains to check that m can be chosen so that the condition b > |T'|
prime in part (c) is valid. Observe that f™(A4y) C 0 Ay = A,/ if and only if
m = qr +r/k for some integer ¢. We compute that b = kg+ 1. By Dirichlet’s
Theorem, the arithmetic progression kg + 1, ¢ > 0 contains infinitely many
primes. Now choose ¢ > |TI'| such that m > mg and kg + 1 is prime. |

Corollary 4.5 Suppose that f : R" — R" is a I'-equivariant diffeomorphism.
If A is a I'-symmetric (nonuniformly) hyperbolic topologically transitive set
and A is not a periodic orbit, then YX-symmetric pertodic orbits are dense in
A for all cyclic subgroups > C T.

5 Continuous symmetry groups

Suppose now that I' C O(n) is a compact Lie group acting on R™. Our
results for T" finite in the previous sections extend to the case I' compact in
a reasonably obvious way.

Let I'° denote the connected component of I" that contains the identity.
We have the quotient H = I'/T? and the canonical projection 7 : I' — H.
Factoring out the action of '’ we obtain the orbit space X = R"/T'°. Observe
that H acts on X and that a I'-equivariant homeomorphism f : R" — R"
projects down to an H-equivariant homeomorphism f X - X.

Recall that an w-limit set P C R" is a relative periodic orbit if the
projection P C X is a periodic orbit for f. Equivalently, P is contained in
the union of finitely many I'-orbits in R". Now suppose that A C R" is an
invariant set for f and let A denote the corresponding invariant set for f.
We say that A has the relative shadowing property if A has the shadowing
property. Similarly, A is relatively topologically mizing (up to a cycle) if A is
topologically mixing (up to a cycle). We have the following result.



Proposition 5.1 Suppose that A contains some points of trivial isotropy
and satisfies the relative shadowing property.

(a) If A is topologically transitive and K is a mazimal cyclic subgroup of
7w(24), then relative periodic orbits P with m(¥p) = K are dense in A.

(b) If A is relatively topologically mizing up to a cycle and A is not a
relative periodic orbit, then relative periodic orbits P with 7(¥p) = K
are dense in A for each cyclic subgroup K of m(¥4).

Proof Passing to the orbit space, we have a 7(3 4)-symmetric topologically
transitive set satisfying the shadowing property (and topologically mixing up
to a cycle in part (b)). Now apply Lemma 2.5 and Theorem 4.3. |

We end this section by indicating the validity of the hypotheses in Propo-
sition 5.1 under suitable hyperbolicity hypotheses. Recall that a set A is
[-hyperbolic if it is ‘hyperbolic transverse to the continuous group action’.
In other words, at each point € A, there is a uniform splitting of R" into
directions that are stable, unstable and tangent to the group orbit I'-z. The
definition of I'-nonuniform hyperbolicity is also the obvious one.

It seems plausible that I'-(nonuniformly) hyperbolic transitive sets possess
the relative shadowing property and are relatively topologically mixing up
to a cycle. This is certainly the case if the set consists of points of trivial
isotropy. More generally, we say that a point x € R" has discrete isotropy if
Y, NI =1.

Proposition 5.2 Suppose that f : R" — R" is a I'-equivariant diffeomor-
phism and that A is a I'-(nonuniformly) hyperbolic topologically transitive
set consisting entirely of points of discrete isotropy. Then A has the relative
shadowing property and is relatively topologically mizing up to a cycle.

Proof Let U denote the points in R" of discrete isotropy. Then U is open
and invariant under the diffeomorphism f. Moreover, A C U and 'Y acts
fixed-point freely on U. Hence, the orbit space U = U/I'° is a manifold
containing A. Tt is immediate that A is (nonuniformly) hyperbolic for the
diffeomorphism f : U — U. Hence A satisfies the shadowing property and
is topologically mixing up to a cycle. It follows from the definitions that A
has the required properties. |
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6 Compact group extensions of nonuniformly
hyperbolic dynamical systems

An outstanding problem in ergodic theory is the study of smooth compact
group extensions of dynamical systems and the generic lifting of properties
such as ergodicity, mixing and so on. There are a great number of results in
the measurable and continuous contexts, see for example [12, 22]. However,
the smooth context has been largely overlooked until recently. Exceptions to
this can be found in [3, 4, 16].

In this section, we are concerned with lifting transitivity. Let f : R" —
R" be a smooth map commuting with the action of a compact Lie group
[' € O(n). Suppose that A is a topologically transitive set for f. Our aim
is to prove that generically I'° C ¥, under reasonable hypotheses on the
dynamics in A. Genericity is with respect to smooth perturbations along
the continuous group orbits, the dynamics at the orbit space level being
preserved.

The case when T' is abelian is completely understood — it is shown in [15]
that both generically and prevalently, I' C ¥4 regardless of the underlying
dynamics. The situation is much less clear when I' is not abelian though
there are some partial results when I'? is abelian [15]. One problem is that
it is necessary to exclude certain regular dynamics. Recently, there has been
progress when A is assumed to be hyperbolic [8, 17]. The aim of this section
is to point out a very simple approach when I'° is abelian and A is hyperbolic
or even nonuniformly hyperbolic. The main strength of the results of [8, 17]
lies in the case when I is compact and I'° is nonabelian.

The idea behind our approach, following [13], is that provided certain
relative periodic orbits P are dense in A, generically ¥4 contains a maximal
torus in I'°. The previous sections were concerned precisely with deriving
such a density condition.

First, we recall some results of Krupa [11] and Field [7]. Suppose that P
is a relative periodic orbit consisting of points of trivial isotropy. Then ¥p is
an abelian subgroup of I' of the form Xp = TP x Z,. Moreover, generically p
(but not ¢) is maximal with respect to containment. In more sophisticated
language, Y p is topologically cyclic and is generically a Cartan subgroup [5].

It is not always the case that generically p = dimI even when I'° is
abelian. (For example, if ' = O(2) and Xp contains a reflection, then Xp
must be isomorphic to Z,.) However, provided n(Xp) = 1 it is generically
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the case that Yp is a maximal torus in I'°. Of course, the condition that
m(X¥p) = 1 is equivalent to asking that the corresponding periodic orbit

P C X is asymmetric. Hence we deduce the following.

Corollary 6.1 Suppose that A is not a relative periodic orbit and contains
some points with trivial isotropy. Suppose further that A possesses the relative
shadowing property and is relatively topologically mizing up to a cycle. Then
generically ¥4 contains a mazimal torus in I'°. In particular, when Ty is
abelian, generically 'y C X 4.

Combining Corollary 6.1 with Proposition 5.2 we obtain the following
result.

Corollary 6.2 Suppose that T' C O(n) is a compact Lie group acting on R"
with T° abelian and that f : R™ — R™ is a I'-equivariant diffeomorphism.
Let A be a T-(nonuniformly) hyperbolic topologically transitive set, but not
a relative periodic orbit, consisting entirely of points of discrete isotropy and
containing some points of trivial isotropy. Then generically, T° C X 4.
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