
MIXING PROPERTIES AND STATISTICAL LIMIT THEOREMS
FOR SINGULAR HYPERBOLIC FLOWS

WITHOUT A SMOOTH STABLE FOLIATION
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Abstract. Over the last 10 years or so, advanced statistical properties, includ-
ing exponential decay of correlations, have been established for certain classes of
singular hyperbolic flows in three dimensions. The results apply in particular to
the classical Lorenz attractor. However, many of the proofs rely heavily on the
smoothness of the stable foliation for the flow.

In this paper, we show that many statistical properties hold for singular hyper-
bolic flows with no smoothness assumption on the stable foliation. These prop-
erties include existence of SRB measures, central limit theorems and associated
invariance principles, as well as results on mixing and rates of mixing. The prop-
erties hold equally for singular hyperbolic flows in higher dimensions provided the
center-unstable subspaces are two-dimensional.

1. Introduction

Singular hyperbolicity is a far-reaching generalization of Smale’s notion of Ax-
iom A [51] that allows for the inclusion of equilibria (also known as singular points
or steady-states) and incorporates the classical Lorenz attractor [31] as well as the
geometric Lorenz attractors of [1, 24]. For three-dimensional flows, singular hyper-
bolic attractors are precisely the ones that are robustly transitive, and they reduce
to Axiom A attractors when there are no equilibria [40].

For the classical Lorenz attractor, strong statistical properties such as exponential
decay of correlations, the central limit theorem (CLT), and associated invariance
principles have been established in [6, 7, 8, 27]. However the proofs rely heavily
on the existence of a smooth stable foliation for the flow. Various issues regarding
the existence and smoothness of the stable foliation are clarified in [7]; a topological
foliation always exists, and an analytic proof of smoothness of the foliation for the
classical Lorenz attractor (and nearby attractors) is given in [7, 8].
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Even for three-dimensional flows, the stable foliation for a singular hyperbolic at-
tractor need not be better than Hölder. In this paper, we consider statistical prop-
erties for singular hyperbolic attractors that do not have a smooth stable foliation.
We do not restrict to three-dimensional flows, but our main results assume that the
stable foliation has codimension two.

Main results. For codimension two singular hyperbolic attracting sets, we prove that
the stable foliation is at least Hölder continuous (Theorem 6.2), and using Pesin
theory [14] we deduce that the stable holonomies are absolutely continuous with
Hölder Jacobians (Theorem 6.3). As a consequence of this, we obtain that the stable
holonomies for the associated Poincaré map are C1+ε (since they are one-dimensional
with Hölder Jacobians). This extends results of [1, 48, 50] who obtain a C1 result for
geometric Lorenz attractors (see the discussion after equation (6) in [43]). Quotienting
out by the stable foliation, we obtain a C1+ε one-dimensional expanding map. We
can now proceed following [10] to obtain a spectral decomposition for the singular
hyperbolic attracting set (Theorem 9.2).

To study statistical properties, we focus attention on the transitive components of
a singular hyperbolic attracting set; these are called singular hyperbolic attractors. In
the Axiom A case, the CLT and associated invariance principles are well-known [17,
38, 46] and we extend these results to general (codimension two) singular hyperbolic
attractors. In particular, as described in Section 9.1, the (functional) CLT and related
results follow from [13] using the results in this paper. Moreover, many strong limit
laws are obtained for the associated Poincaré maps in Theorem 8.7.

Mixing and rates of mixing for Axiom A attractors are less well-understood even
today, but an open and dense set of Axiom A attractors have superpolynomial decay
of correlations [18, 20]. Theorem 9.5 shows that the same result holds for singular
hyperbolic attractors. As a consequence, Corollary 9.6, we obtain the CLT and almost
sure invariance principle for the time-one map of the flow for this open and dense set
of singular hyperbolic attractors and sufficiently smooth observables. (We note that
such results are much more delicate for time-one maps than for the flow and for
Poincaré maps.)

In fact, for singular hyperbolic attractors containing at least one equilibrium and
with a smooth stable foliation, mixing [32], superpolynomial decay of correlations [8],
and exponential decay of correlations [6] are automatic subject to a certain indecom-
posability condition (locally eventually onto). Theorem 9.7 yields a similar result on
automatic mixing when there is not a smooth stable foliation. However, automatic
rates of mixing, or any results on exponential decay of correlations, seems beyond
current techniques when the stable foliation is not smooth.

Example. In a recent paper, Ovsyannikov & Turaev [43] (see also previous work
of [19]) give an analytic proof of singular hyperbolic attractors in the extended Lorenz
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model
ẋ = y, ẏ = −λy + γx(1− z)− δx3, ż = −αz + βx2.

The attractors contain precisely one equilibrium, namely the origin, and are of geo-
metric Lorenz type [1, 24]. The eigenvalues of the linearized equations at the equi-
librium are close to −1, −1 and 1 (up to a scaling) for the parameters considered
in [43], so the standard q-bunching condition [7, 26] guaranteeing a Cq stable foliation
holds only for q close to zero. In this situation it is anticipated that the foliation fails
to be C1 except in pathological cases. In particular, previous results on statistical
properties for singular hyperbolic flows do not apply. However, the results in the
present paper do not require a smooth foliation. It follows that the attractors in [43]
satisfy the statistical limit laws described in this paper. Moreover, there is an open
set U within the space of C2 flows on R3, containing the extended Lorenz examples
of [43], that satisfy these statistical limit laws. In addition, an open and dense set of
flows in U have superpolynomial decay of correlations.

Spectral decompositions. Whereas the results on statistical properties for singular
hyperbolic flows in this paper are completely new, we note that there are existing
results on spectral decompositions [10, 30]. The decomposition in [10] is for three-
dimensional flows and our method extends [10] in the more general codimension two
situation. The method in [30] works directly with the flow and does not require the
codimension two restriction. However [10, 30] both make liberal use of Pesin theory,
including results that seem currently unavailable in the literature. The main issue,
as clarified in [7], is that a priori the stable lamination over a partially hyperbolic
attracting set Λ need not cover a neighborhood of Λ. The stable bundle extends
to an invariant contracting bundle over a neighborhood U ⊃ Λ and this integrates
to a topological foliation of U . However, the complementary center-unstable bundle
does not extend invariantly, so the resulting extended splitting is not invariant. This
means that the application of Pesin theory in [10, 30] is inaccurate. It is likely that the
desired results hold (some aspects were extended to noninvariant splittings already
in [7]) but currently the arguments seem incomplete.

In this paper, we make the approach in [10] completely rigorous by bypassing
the issue of noninvariance of the extended splitting. Theorem 5.1 below shows that
a posteriori the stable bundle restricted to Λ integrates to a topological foliation.
This relies heavily on the special structure associated to a codimension two singular
hyperbolic attracting set and uses also the information about the extended bundle [7].
Consequently, we can work with the nonextended splitting which is invariant and
Pesin theory applies. Also, using [45] we show that the foliation is Hölder which
simplifies the arguments in [10].

Sectional hyperbolicity. Finally, we remark on the restriction to singular hyperbolic
attracting sets that are codimension two. The natural setting in general is to consider
sectional hyperbolic attracting sets [39] (in the codimension two case, sectional and
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singular hyperbolicity are the same). The proof of Theorem 5.1 (specifically Proposi-
tion 5.2) relies on the restriction to codimension two. Nevertheless, we expect that in
the sectional hyperbolic setting, our results on the stable foliation should go through
largely unchanged (after adapting various arguments to deal with the noninvariant
splitting). However, the quotient map is higher-dimensional and so Pesin theory only
gives a Hölder Jacobian; the map itself is no better than Hölder. Hence the arguments
in Section 8 and 9 on spectral decompositions and statistical properties break down;
this remains the subject of future work.

The remainder of the paper is organized as follows. In Section 2, we review back-
ground material on partially hyperbolic attracting sets and singular hyperbolicity, and
recall results on stable foliations from [6]. In Section 3, we construct a global Poincaré
map f associated to any partially hyperbolic attracting set, following (and modifying)
the construction in [10]. Section 4 establishes that f is uniformly hyperbolic (with
singularities) when the attracting set is singular hyperbolic.

In Section 5, we show that the stable lamination over an attracting codimension
two singular hyperbolic set is a topological foliation. In Section 6, we establish Hölder
regularity and absolute continuity of the stable foliation, and show that the stable
holonomies have Hölder Jacobians. Using this, we obtain a uniformly expanding
piecewise C1+ε quotient map f̄ in Section 7.

Finally, in Sections 8 and 9, we prove results on spectral decompositions, statistical
limit laws, and rates of mixing, for f̄ , f , and the underlying flow.

Notation. Let (M,d) be a metric space and η ∈ (0, 1). Given v : M → R, define
‖v‖Cη = |v|∞ + |v|Cη where |v|Cη = supx 6=x′ |v(x)− v(x′)|/d(x, x′)η. We say that v is
Cη and write v ∈ Cη(M) if ‖v‖Cη <∞.

2. Singular hyperbolic attracting sets

In this section, we define what is understood as a singular hyperbolic attracting
set. Throughout this paper, we restrict mainly to the case where the center-unstable
subspace is two-dimensional.

Let M be a compact Riemannian manifold and Xr(M), r > 1, be the set of Cr

vector fields on M . Let Zt denote the flow generated by G ∈ Xr(M). Given a compact
invariant set Λ for G ∈ Xr(M), we say that Λ is isolated if there exists an open set
U ⊃ Λ such that Λ =

⋂
t∈R Zt(U). If U can be chosen so that Zt(U) ⊂ U for all t > 0,

then we say that Λ is an attracting set.

Definition 2.1. Let Λ be a compact invariant set for G ∈ Xr(M). We say that Λ
is partially hyperbolic if the tangent bundle over Λ can be written as a continuous
DZt-invariant sum

TΛM = Es ⊕ Ecu,
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where ds = dimEs
x ≥ 1 and dcu = dimEcu

x = 2 for x ∈ Λ, and there exist constants
C > 0, λ ∈ (0, 1) such that for all x ∈ Λ, t ≥ 0, we have

• uniform contraction along Es:

‖DZt|Es
x‖ ≤ Cλt; (2.1)

• domination of the splitting:

‖DZt|Es
x‖ · ‖DZ−t|Ecu

Ztx‖ ≤ Cλt. (2.2)

We refer to Es as the stable bundle and to Ecu as the center-unstable bundle. A
partially hyperbolic attracting set is a partially hyperbolic set that is also an attracting
set.

Definition 2.2. The center-unstable bundle Ecu is volume expanding if there exists
K, θ > 0 such that | det(DZt|Ecu

x )| ≥ Keθt for all x ∈ Λ, t ≥ 0.

If σ ∈ M and G(σ) = 0, then σ is called an equilibrium. An invariant set is
nontrivial if it is neither a periodic orbit nor an equilibrium.

Definition 2.3. Let Λ be a compact nontrivial invariant set for G ∈ Xr(M). We
say that Λ is a singular hyperbolic set if all equilibria in Λ are hyperbolic, and Λ
is partially hyperbolic with volume expanding center-unstable bundle. A singular
hyperbolic set which is also an attracting set is called a singular hyperbolic attracting
set.

Remark 2.4. A singular hyperbolic attracting set contains no isolated periodic orbits.
For such a periodic orbit would have to be a periodic sink, violating volume expansion.

A subset Λ ⊂M is transitive if it has a full dense orbit, that is, there exists x ∈ Λ
such that cl {Ztx : t ≥ 0} = Λ = cl {Ztx : t ≤ 0}.
Definition 2.5. A singular hyperbolic attractor is a transitive singular hyperbolic at-
tracting set.

Proposition 2.6. Suppose that Λ is a singular hyperbolic attractor with dcu = 2, and
let σ ∈ Λ be an equilibrium. Then σ is Lorenz-like. That is, DG(σ)|Ecu

σ has real
eigenvalues λs, λu satisfying −λu < λs < 0 < λu.

Proof. It follows from Definition 2.3 that σ is a hyperbolic saddle and that at most
two eigenvalues have positive real part. If there is only one such eigenvalue λu > 0
then the constraints on λs follow from volume expansion.

Let γ be the local stable manifold for σ. It remains to rule out the case dim γ =
dimM − 2. In this case, Tpγ = Es

p for all p ∈ γ ∩ Λ and in particular G(p) ∈ Es
p.

Also, G(p) ∈ Ecu
p (see for example [9, Lemma 6.1]), so we deduce that G(p) = 0 for

all p ∈ γ ∩ Λ and hence that γ ∩ Λ = {σ}.
On the other hand, Λ is transitive and nontrivial, so there exists x ∈ Λ \ {σ} such

that σ ∈ ω(x). By the local behavior of orbits near hyperbolic saddles, there exists
p ∈ (γ \ {σ}) ∩ ω(x) ⊂ (γ \ {σ}) ∩ Λ which as we have seen is impossible. �
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We end this section by recalling/extending some results from [7]. These results
hold for general dcu ≥ 2.

Proposition 2.7. Let Λ be a partially hyperbolic attracting set. The stable bundle Es

over Λ extends to a continuous uniformly contracting DZt-invariant bundle Es over
an open neighborhood of Λ.

Proof. See [7, Proposition 3.2]. �

Let Dk denote the k-dimensional open unit disk and let Embr(Dk,M) denote the
set of Cr embeddings φ : Dk →M endowed with the Cr distance.

Proposition 2.8. Let Λ be a partially hyperbolic attracting set. There exists a posi-
tively invariant neighborhood U0 of Λ, and constants C > 0, λ ∈ (0, 1), such that the
following are true:

(a) For every point x ∈ U0 there is a Cr embedded ds-dimensional disk W s
x ⊂M , with

x ∈ W s
x , such that

(1) TxW
s
x = Es

x.
(2) Zt(W

s
x) ⊂ W s

Ztx
for all t ≥ 0.

(3) d(Ztx, Zty) ≤ Cλtd(x, y) for all y ∈ W s
x , t ≥ 0.

(b) The disks W s
x depend continuously on x in the C0 topology: there is a continuous

map γ : U0 → Emb0(Dds ,M) such that γ(x)(0) = x and γ(x)(Dds) = W s
x . Moreover,

there exists L > 0 such that Lip γ(x) ≤ L for all x ∈ U0.

(c) The family of disks {W s
x : x ∈ U0} defines a topological foliation of U0.

Proof. See [7, Theorem 4.2 and Lemma 4.8]. �

The splitting TΛM = Es⊕Ecu extends continuously to a splitting TU0M = Es⊕Ecu

where Es is the invariant uniformly contracting bundle in Proposition 2.7. (In general,
Ecu is not invariant.) Given a > 0, we define the center-unstable cone field,

Ccux (a) = {v = vs + vcu ∈ Es
x ⊕ Ecu

x : ‖vs‖ ≤ a‖vcu‖}, x ∈ U0.

Proposition 2.9. Let Λ be a partially hyperbolic attracting set. There exists T0 > 0
such that for any a > 0, after possibly shrinking U0,

DZt · Ccux (a) ⊂ CcuZtx(a) for all t ≥ T0, x ∈ U0.

Proof. See [7, Proposition 3.1]. �

Proposition 2.10. Let Λ be a singular hyperbolic attracting set. After possibly in-
creasing T0 and shrinking U0, there exist constants K, θ > 0 such that | det(DZt|Ecu

x )| ≥
K eθt for all x ∈ U0, t ≥ 0.

Proof. Let K0, θ0 > 0 be the constants from Definition 2.2. Fix a > 0 and T0 as in
Proposition 2.9. We may suppose without loss that K0 < 2 and that K0e

θ0T0 > 2.
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By continuity, we may assume that for every x ∈ U0 there exists y ∈ Λ such that

| det(DZt|P )| ≥ 1
2
| det(DZt|Ecu

y )| ≥ 1
2
K0e

θ0t,

for all t ∈ [0, T0] and every dcu-dimensional subspace P ⊂ Ccux (a).
Write t = mT0 + r where m ∈ N, r ∈ (0, T0]. Since ZjT0x ∈ U0 for all j ≥ 0 by

invariance of U0, and since DZjT0P ⊂ CcuZjT0x(a) for all j ≥ 0 by Proposition 2.9, it

follows inductively that

| det(DZt|P )| ≥ (1
2
K0e

θ0r)(1
2
K0e

θ0T0)m ≥ (1
2
K0)1+t/T0eθ0t = Keθt,

where θ = T−1
0 log(1

2
K0e

θ0T0) > 0 and K > 0. Taking P = Ecu
x yields the desired

result. �

3. Global Poincaré map f : X → X

In this section, we suppose that Λ is a partially hyperbolic attracting set, and
recall how to construct a piecewise smooth Poincaré map f : X → X preserving a
contracting stable foliation Ws(X). This largely follows [10] (see also [9, Chapter 6])
but with slight modifications; the details enable us to establish notation required for
later sections. Mainly for notational convenience we restrict to the case dcu = 2.

3.1. Construction of the global cross-section X. Let y ∈ Λ be a regular point
(not an equilibrium). There exists an open set (flow box) Vy ⊂ U0 containing y such
that the flow on Vy is diffeomorphic to a linear flow. More precisely, let D denote the
(dimM−1)-dimensional unit disk and fix ε0 ∈ (0, 1) small. There is a diffeomorphism
χ : D× (−ε0, ε0)→ Vy with χ(0, 0) = y such that χ−1 ◦Zt ◦χ(z, s) = (z, s+ t). Define
the cross-section Σy = χ(D × {0}).

For each x ∈ Σy, let W s
x(Σy) =

⋃
|t|<ε0 Zt(W

s
x) ∩ Σy. This defines a topological

foliation Ws(Σy) of Σy.
We can identify Σy diffeomorphically with (−1, 1) × Dds . The stable boundary

∂sΣy
∼= {±1} × Dds consists of two stable leaves. Let Dds1/2 denote the open disk of

radius 1
2

in Rds . Define the subcross-section Σ′y
∼= (−1, 1)×Dds1/2, and the corresponding

subflow box V ′y
∼= Σ′y× (−ε0, ε0) consisting of trajectories in Vy that pass through Σ′y.

For each equilibrium σ ∈ Λ, we let Vσ be an open neighborhood of σ on which the
flow is linearizable. Let γsσ and γuσ denote the local stable and unstable manifolds of
σ within Vσ; trajectories starting in Vσ remain in Vσ for all future time if and only if
they lie in γsσ.

Remark 3.1. Note that W s
σ denotes the strong stable manifold of σ. In general,

dim γsσ ≥ dimW s
σ = ds. (In the case of a Lorenz-like singularity, dim γsσ = ds + 1.)

Define V0 =
⋃
σ Vσ. We shrink the neighborhoods Vσ so that (i) they are disjoint,

(ii) Λ 6⊂ V0, and (iii) γuσ ∩ ∂Vσ ⊂ V ′y for some regular point y = y(σ).
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By compactness of Λ, there exists ` ≥ 1 and regular points y1, . . . , y` ∈ Λ such
that Λ \V0 ⊂

⋃`
j=1 V

′
yj

. We enlarge the set {yj} to include the points y(σ) mentioned

in (iii) above. Adjust the positions of the cross-sections Σyj if necessary so that they
are disjoint, and define the global cross-section

X =
⋃`
j=1 Σyj .

In the remainder of the paper, we often modify the choices of U0 and T0. However,
the choices of Vyj , Σyj and X remain unchanged from now on and correspond to our
current choice of U0 and T0. To avoid confusion, all subsequent choices will be labelled
U1 ⊂ U0 and T1 ≥ T0. In particular, we suppose from now on that U1 ⊂ V0∪

⋃`
j=1 V

′
yj

.

3.2. Definition of the Poincaré map. By Proposition 2.8, for any δ > 0 we can
choose T1 ≥ T0 such that

diamZt(W
s
x(Σyj)) < δ, for all x ∈ Σyj , j = 1, . . . , `, t > T1. (3.1)

Define
Γ0 = {x ∈ X : ZT1+1(x) ∈

⋃
σ γ

s
σ}, X ′ = X \ Γ0.

If x ∈ X ′, then ZT1+1(x) cannot remain inside V0 so there exists t > T1 + 1 and
j = 1, . . . , ` such that Ztx ∈ V ′yj . Since ε0 < 1, there exists t > T1 such that

Ztx ∈ Σ′yj . Hence for x ∈ X ′, we can define

f(x) = Zτ(x)(x) where τ(x) = inf{t > T1 : Ztx ∈
⋃`
j=1 cl Σ′yj}.

In this way we obtain a piecewise Cr global Poincaré map f : X ′ → X with piecewise
Cr roof function τ : X ′ → [T1,∞).

Lemma 3.2. If Λ contains no equilibria (so Γ0 = ∅), then τ ≤ T1 + 2. In general,
there exists a constant C > 0 such that

τ(x) ≤ −C log dist(x,Γ0) for all x ∈ X ′.

Proof. This is a standard result so we sketch the arguments.
If ZT1+1x ∈ V ′yj for some j, then Ztx ∈ Σ′yj for some t ∈ (T1 + 1− ε0, T1 + 1 + ε0) so

τ(x) ≤ T1 + 2. Otherwise, ZT1+1x ∈ Vσ ⊂ V0 for some equilibrium σ, and we define

τ0(x) = sup{t ∈ [0, T1 + 1] : Ztx 6∈ Vσ}, τ1(x) = sup{t ≥ T1 + 1 : Ztx ∈ Vσ}.
Note that Zτ1(x)(x) ∈

⋃
j V
′
yj

so τ(x) ≤ τ1(x) + 1 ≤ τ1(x)− τ0(x) + T1 + 2.

By the Hartman-Grobman Theorem, the flow in Vσ is homeomorphic (by a time-
preserving conjugacy) to the linearized flow ẋ = DG(σ)x = (A ⊕ E)x where A
has eigenvalues with negative real part and E has eigenvalues with positive real
part. After writing E in Jordan normal form, a standard and elementary argu-
ment shows that the “time of flight” of trajectories in Vσ satisfies τ1(x) − τ0(x) ≤
−C ′ log dist(Zτ0(x)(x),Γ′) where Γ′ denotes the local stable manifold of σ in the linear
flow.
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Finally, we can suppose without loss that ∂Vσ is smooth so that the initial transition
x 7→ Zτ0(x)(x) is a diffeomorphism in a neighborhood of Γ0. Hence dist(Zτ0(x)(x),Γ′) ≈
dist(x,Γ0) up to uniform constants. �

Remark 3.3. It is immediate from the proof of Lemma 3.2 that τ(x) → ∞ as
dist(x,Γ0)→ 0.

Define the topological foliation Ws(X) =
⋃`
j=1Ws(Σyj) of X with leaves W s

x(X)
passing through each x ∈ X.

Proposition 3.4. For T1 sufficiently large, f(W s
x(X)) ⊂ W s

fx(X) for all x ∈ X ′.

Proof. By definition of V ′yj , it follows from (3.1) that we can choose T1 large (and

hence δ small) such that W s
fx(X) ⊂ Vyj whenever fx ∈ V ′yj . The result follows from

this by definition of Ws(X) and flow invariance of Ws. �

Define ∂sX =
⋃`
j=1 ∂

sΣyj and let

Γ = Γ0 ∪ Γ1, Γ1 = {x ∈ X ′ : fx ∈ ∂sX}.

Proposition 3.5. Γ is a finite union of stable disks W s
x(X), x ∈ X.

Proof. It is clear that W s
x(X) ⊂ Γ for all x ∈ Γ. Also, if x0 6∈ Γ then fx0 =

Zτ(x0)(x0) ∈ Σ′ for some Σ′ ∈ {Σ′yj}. For x close to x0, it follows from continuity of

the flow that fx ∈ Σ′ (with τ(x) close to τ(x0)). Hence x 6∈ Γ and so Γ is closed.
It remains to rule out the possibility that a sequence of stable disksW s

xn(X), xn ∈ Γ,
accumulates on W s

x0
(X) where x0 = limn→∞ xn. In showing this, it is useful to note

that if Ztx ∈ V ′y then Zsx ∈ Σ′y for some s ∈ (t− 1, t+ 1). In particular, if Ztx ∈ V ′y
for some t ≥ T1 + 1, then τ(x) ≤ t+ 1.

There are two cases to consider:
Case 1: ZT2x0 ∈ V ′y for some T2 ≥ T1 +1, y ∈ {y1, . . . , y`}. In this case, restricting to
large n we have ZT2xn ∈ V ′y , and hence τ(xn) ≤ T2 + 1. It follows that

⋃
nW

s
xn(X) ⊂

X ∩
⋃
j

⋃
t∈[0,T2+1] Z−t(∂

sΣyj). But this is a compact submanifold of X with the same

dimension ds as the stable disks, so {xn} is finite.
Case 2: Ztx0 ∈ V ′σ for all t ≥ T1+1 for some equilibrium σ. Note that Ztx0 ∈ γsσ for all
t ≥ T1 +1. As in Case 1, we can easily rule out accumulations when τ(xn) ≤ T1 +1 so
we can suppose that τ(xn) > T1 +1. Also, γsσ∩ZT1+1(X) is a compact submanifold of
dimension ds, so ZT1+1xn ∈ V ′σ \γsσ. Hence the trajectory through ZT1+1xn eventually
leaves V ′σ close to γuσ . Such trajectories immediately enter the flow box V ′y(σ) and

hence hit Σ′y(σ). In particular, f(xn) ∈ Σ′y(σ) and xn 6∈ Γ. �

Let X ′′ = X \ Γ. Then X ′′ = S1 ∪ · · · ∪ Sm for some m ≥ 1, where each Si
is homeomorphic to (−1, 1) × Dds . We call these regions smooth strips. Note that
f |Si : Si → X is a diffeomorphism onto its image and τ |Si : Si → [T1,∞) is smooth
for each i. The foliation Ws(X) restricts to a foliation Ws(Si) on each Si.
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Remark 3.6. In future sections, it may be necessary to increase T1 leading to changes
to f , τ , Γ and {Si} (and the constant C in Lemma 3.2). However the global cross-
section X =

⋃
Σyj continues to remain fixed throughout the paper.

4. Uniform hyperbolicity of the Poincaré map

Let Λ be a singular hyperbolic attracting set. We continue to assume dcu = 2
for notational simplicity. In this section, we show that for T1 sufficiently large, the
global Poincaré map f : X ′ → X constructed in Section 3 is uniformly hyperbolic
(with singularities). (As noted in Remark 3.6, the global cross-section X =

⋃
Σyj is

independent of T1.)
Let S ∈ {Si} be one of the smooth strips from the end of Section 3. There exist

cross-sections Σ, Σ̃ ∈ {Σyj} such that S ⊂ Σ and f(Σ) ⊂ Σ̃.
The splitting TU0M = Es⊕Ecu induces a continuous splitting TΣ = Es(Σ)⊕Eu(Σ)

defined by

Es
x(Σ) = (Es

x ⊕ R{G(x)}) ∩ TxΣ and Eu
x(Σ) = Ecu

x ∩ TxΣ, x ∈ Σ.

The analogous definitions apply to Σ̃.

For each y ∈ Σ̃, define the projection πy : TyM = TyΣ̃ ⊕ R{G(y)} → TyΣ̃. Also,
for x ∈ Σ, define the projection π̂x : Es

x ⊕ R{G(x)} → Es
x.

By finiteness of the set of cross-sections {Σyj}, there is a universal constant C1 ≥ 1
such that

‖πyv‖ ≤ C1‖v‖ for all v ∈ TyM,

‖π̂xv‖ ≤ C1‖v‖ for all v ∈ Es
x ⊕ R{G(x)}. (4.1)

Proposition 4.1. (a) Df ·Es
x(Σ) = Es

fx(Σ̃) for all x ∈ S, and Df ·Eu
x(Σ) = Eu

fx(Σ̃)
for all x ∈ Λ ∩ S.
(b) Let λ1 ∈ (0, 1). For T1 sufficiently large if inf τ > T1, then for all S ∈ {Si},

‖Df |Es
x(Σ)‖ ≤ λ1 and ‖Df |Eu

x(Σ)‖ ≥ λ−1
1 for all x ∈ S.

Proof. (a) For x ∈ S, we have that Df(x) : TxΣ→ TfxΣ̃ is given by

Df(x) = D(Zτ(x)(x)) = DZτ(x)(x) +G(fx)Dτ(x). (4.2)

Let v ∈ Es
x(Σ) ⊂ Es

x + R{G(x)}. Then using DZt-invariance of Es on U0 and of
the flow direction,

Df(x)v ∈ DZτ(x)(x)Es
x +DZτ(x)(x)R{Gx}+ R{G(fx)} ⊂ Es

fx + R{G(fx)},

so Df(x)v ∈ (Es
fx + R{G(fx)}) ∩ TfxΣ̃ = Es

fx(Σ̃).
Similarly, for x ∈ Λ ∩ S and v ∈ Eu

x(Σ) ⊂ Ecu
x , using DZt-invariance of Ecu on Λ

and the fact that the flow direction lies in Ecu,

Df(x)v ∈ DZτ(x)(x)Ecu
x + R{G(fx)} ⊂ Ecu

fx,
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so Df(x)v ∈ Ecu
fx ∩ TfxΣ̃ = Eu

fx(Σ̃).

(b) By (4.2) and the definition of πy,

Df(x) = πfxDf(x) = πfxDZτ(x)(x) for x ∈ S. (4.3)

Using the definition of π̂x, for v ∈ Es
x(Σ) ⊂ Es

x ⊕ R{G(x)},

‖Df(x)v‖ = ‖πfxDZτ(x)(x)π̂xv‖ ≤ C2
1‖DZτ(x)(x)|Es

x‖ ‖v‖,

by (4.1). It follows that

‖Df |Es
x(Σ)‖ ≤ C2

1Cλ
τ(x) ≤ C2

1Cλ
T1 ,

where C > 0, λ ∈ (0, 1) are as in (2.1). The first estimate in (b) is immediate for T1

large enough.
For the second estimate, define P = DZτ(x)E

cu
x and write DZτ(x)(x) : Ecu

x → P in
coordinates corresponding to the splittings

Ecu
x = Eu

x(Σ)⊕ R{G(x)}, P = (P ∩ Σ̃)⊕ R{G(fx)}.

In these coordinates, it follows from invariance and neutrality of the flow direction
that

DZτ(x)(x) =

(
a11(x) 0
a21(x) a22(x)

)
,

where supx |a22(x)| ≤ C2 for some constant C2 > 0. Moreover, by (4.3),

a11(x) = πfxDZτ(x)(x)|Eux (Σ) = Df(x)|Eux (Σ).

Hence by Proposition 2.10,

|Df(x)|Eu
x(Σ)| = |a11(x)| ≥ C−1

2 | detDZτ(x)(x)|Ecu
x |

≥ C−1
2 Keθτ(x) ≥ C−1

2 KeθT1 ≥ λ−1
1 ,

for T1 sufficiently large. �

Next, for a > 0 we define the unstable cone field

Cux(Σ, a) = {w = ws + wu ∈ Es
x(Σ)⊕ Eu

x(Σ) : ‖ws‖ ≤ a‖wu‖}, x ∈ Σ.

Proposition 4.2. For any a > 0, λ1 ∈ (0, 1), we can increase T1 and shrink U1 such
that if inf τ > T1 then for all S ∈ {Si}
(a) Df(x) · Cux(Σ, a) ⊂ Cufx(Σ, a) for all x ∈ S.

(b) ‖Df(x)w‖ ≥ λ−1
1 ‖w‖ for all x ∈ S, w ∈ Cux(Σ, a).

Proof. Let w = ws + wu ∈ Cux(Σ, a). The estimates in Proposition 4.1(b) hold with
λ1 = 1, so

‖Df(x)ws‖ ≤ ‖ws‖ ≤ a‖wu‖ ≤ a‖Df(x)wu‖,
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proving (a).
(b) Let λ1 ∈ (0, 1) be the constant in Proposition 4.1(b). For w ∈ Cux(Σ, a),

‖Df(x)w‖ ≥ (1− a)λ−1
1 ‖wu‖ ≥ (1− a)(1 + a)−1λ−1

1 ‖w‖
Since λ1 is arbitrarily small, the result follows with a new value of λ1. �

Taking unions over smooth strips S and cross-sections Σ, we obtain a global con-
tinuous uniformly hyperbolic splitting

TX ′′ = Es(X)⊕ Eu(X),

with the following properties:

Theorem 4.3. The stable bundle Es(X) and the restricted splitting TΛX
′′ = Es

Λ(X)⊕
Eu

Λ(X) are Df -invariant.
Moreover, for fixed a > 0, λ1 ∈ (0, 1), we can arrange that

Df · Cux(X, a) ⊂ Cufx(X, a) and ‖Df(x)w‖ ≥ λ−1
1 ‖w‖

for all x ∈ X ′′, w ∈ Cux(X, a). �

5. The stable lamination is a topological foliation

The stable manifold theorem guarantees the existence of an Zt-invariant stable
lamination consisting of smoothly embedded disks W s

x through each point x ∈ Λ.
For general partially hyperbolic attracting sets, there is no guarantee that {W s

x : x ∈
Λ} defines a topological foliation in an open neighborhood of Λ. However, in this
section we show that this is indeed the case under our assumptions that Λ is singular
hyperbolic with dcu = 2:

Theorem 5.1. Let Λ be a singular hyperbolic attracting set with dcu = 2. Then the
stable lamination {W s

x : x ∈ Λ} is a topological foliation of an open neighborhood
of Λ.

The method of proof is to show that {W s
x : x ∈ Λ} coincides with the topological

foliation {W s
x : x ∈ U0} in Proposition 2.8(c). In particular, we have a posteriori that

Λ ⊂ Int
⋃
x∈ΛW

s
x . The proof shows that for every x in an open neighbourhood of Λ,

there exists z ∈ Λ such that x ∈ W s
z (and hence W s

x = W s
z ).

Fix a > 0 as in Theorem 4.3. A smooth curve γ : [0, 1]→ Σ ⊂ X is called a u-curve
if Dγ(t) ∈ Cuγ(t)(Σ, a) for all t ∈ [0, 1]. We say that a u-curve γ contained in X crosses

a smooth strip S if each stable leaf W s
x(S) intersects γ in a unique point.

Proposition 5.2. For every u-curve γ0 there exists n ≥ 1 and a restriction γ̂ ⊂ γ0

so that fn|γ̂ : γ̂ → fnγ̂ is a diffeomorphism and fnγ̂ crosses Sj for some j.

Proof. We choose λ1 ∈ (0, 1
4
]. Let S ∈ {S1, . . . , Sm} and let γ be a u-curve in S with

length |γ|. We consider three possibilities:

(i) fγ ⊂ Si for some i. In this case |fγ| ≥ 4|γ| by Theorem 4.3.
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(ii) fγ intersects
⋃
∂Si in precisely one point q. In this case at least one of the

connected components of fγ \ {q} has length at least 2|γ|.
(iii) fγ intersects

⋃
∂Si in at least two points.

In case (iii), we are finished with n = 1. In the other cases, we can pass to a restriction
γ̃ such that γ̃ and fγ̃ lie in smooth strips with |fγ̃| ≥ 2|γ|.

By Theorem 4.3, fγ̃ is a u-curve so we can repeat the procedure. After one such
repetition, either the process has terminated with n = 2 or there is a restriction γ̃
such that γ̃ and f 2γ̃ lie in smooth strips with |f 2γ̃| ≥ 4|γ|. Since X is bounded, the
process terminates in finitely many steps. �

Proposition 5.3. There exists a finite set {p1, . . . , pk} ⊂ X ∩ Λ such that each pi is

a periodic point for f and
⋃
n≥0 f

−n(⋃k
i=1W

s
pi

(X)
)

is dense in X.

Proof. Let γ0 be a u-curve lying in a smooth strip. By Proposition 5.2, fn1γ0 crosses
a smooth strip for some n1 ≥ 1. Moreover, there exists a restriction γ̃0 ⊂ γ0 such that
fn1 maps γ̃0 diffeomorphically inside this strip. Applying Proposition 5.2 again, we
obtain n2 > n1 such that fn2γ0 crosses a strip. Inductively, we obtain 1 ≤ n1 < n2 <
· · · such that fnjγ0 crosses a strip for each nj. Since the number of smooth strips
is finite, there exists 1 ≤ q1 < q2 such that f q1γ0 and f q2γ0 cross the same smooth
strip S.

Let q = q2 − q1, γ = f q1γ0. Choose a restriction γ̃ of γ such that f q|γ̃ : γ̃ → f qγ̃ is
a diffeomorphism and f qγ̃ crosses S. Shrink γ and γ̃ if necessary so that γ and f qγ̃
cross clS and are contained in clS.

Define the surjection g : γ̃ → γ such that g(x) is the unique point where W s
fqx(X)

intersects γ. Since W s(X) restricts to a topological foliation of S, it follows that g
is continuous. Also γ̃ ⊂ γ are one-dimensional curves, so by the intermediate value
theorem g possesses a fixed point x0 ∈ cl γ̃.

Since g(x0) = x0 it follows that f qx0 ⊂ W s
x0

(X) and hence that f q(W s
x0

(X)) ⊂
W s
x0

(X). By (3.1), f q : W s
x0

(X) → W s
x0

(X) is a strict contraction, so f qp = p for
some p ∈ W s

x0
(X). In particular, p is a periodic point for f lying in X ∩ U0. Since Λ

is an attracting set, p ∈ X ∩ Λ. Moreover, f q1γ0 intersects W s
p (X).

Starting with a new u-curve γ′0 and proceeding as before, either fnγ′0 crosses S and
hence intersects W s

p (X) for some n ≥ 0, or we can construct a new periodic orbit
p′ in a new smooth strip such that fnγ′0 intersects W s

p′(X). In this way we obtain

periodic points p1, . . . , pk such that every u-curve eventually intersects
⋃k
i=1W

s
pi

(X)
under iteration. Since u-curves are dense and arbitrarily short, the result follows. �

Remark 5.4. The periodic points constructed in the proof of Proposition 5.3 lie in
distinct smooth strips, so k ≤ m. The proof does not show that each strip contains
a periodic point.

Proposition 5.5. For each x ∈ X there exists y ∈ X ∩ Λ such that x ∈ W s
y (X).
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Proof. Define

E = {x ∈ X : x ∈ W s
y (X) for some y ∈ X ∩ Λ}.

We show that E = X.
Suppose first that x ∈

⋃
n≥0 f

−n(⋃k
i=1W

s
pi

(X)
)
, so there exists n ≥ 0, i ∈ {1, . . . , k}

and y ∈ W s
pi

(X) such that fnx = y. Choose an open set V formed of a union of sta-
ble leaves and containing x such that fn|V : V → fnV is a diffeomorphism. By
Remark 2.4, periodic points are not isolated inside X ∩ Λ, so there exists a sequence
Wj of stable leaves inside fnV ∩ E that converges to W s

pi
(X). Choose yj ∈ Wj such

that yj → y. Let xj = f−nyj so xj → x.
Since yj ∈ E, we have yj ∈ W s

y′j
(X) for some y′j ∈ fnV ∩ Λ. Write y′j = fnx′j

where x′j ∈ V ∩ Λ. Since fn|V is a diffeomorphism and yj ∈ W s
y′j

(X), it follows that

xj ∈ W s
x′j

(X).

Passing to a subsequence if needed, we can assume that x′j → x′ ∈ X ∩ Λ and so
xj → x ∈ W s

x′(X) ⊂ E.

We have shown that E contains
⋃
n≥0 f

−n(⋃k
i=1W

s
pi

(X)
)

and so E is dense in X
by Proposition 5.3.

Now for x ∈ Σ we take xk ∈ E so that xk → x. We know that xk = W s
yk

(Σ)
for yk ∈ A and passing to a subsequence we find y ∈ A ∩ Σ so that yk → y. Then
x ∈ W s

y (Σ) and x ∈ E. �

Proof of Theorem 5.1. If x ∈ W u
σ for some equilibrium σ, then x ∈ Λ and there is

nothing to do. Otherwise, restricting to a smaller positively invariant neighborhood
U0, we can ensure that there always exists t > 0 such that Z−tx lies in one of the flow
boxes Vyj . But then there exists t > 0 such that Z−tx ∈ Σyj ⊂ X. By Proposition 5.5,
Z−tx ∈ W s

y (X) for some y ∈ X ∩ Λ. Hence there exists t > 0 such that Z−tx ∈ W s
y ,

and so x ∈ W s
z where z = Zty ∈ Λ. �

We have shown that the stable lamination {W s
x : x ∈ Λ} coincides with the stable

foliation {W s
x : x ∈ U0}. From now on, we refer to Ws = {W s

x : x ∈ Λ} as the stable
foliation.

6. Hölder regularity and absolute continuity of the stable foliation

In this section, we continue to assume that Λ is a singular hyperbolic attracting
set, and show that the topological foliationWs is in fact a Hölder foliation (bi-Hölder
charts). Also we recall results on absolute continuity of the stable foliation. These
results do not use explicitly the fact that dcu = 2; it suffices that the conclusion of
Theorem 5.1 holds.

A key ingredient is regularity of stable holonomies. Let Y0, Y1 ⊂ U0 be two smooth
disjoint dcu-dimensional disks that are transverse to the stable foliationWs. Suppose
that for all x ∈ Y0, the stable leaf W s

x intersects each of Y0 and Y1 in precisely
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one point. The stable holonomy H : Y0 → Y1 is given by defining H(x) to be the
intersection point of W s

x with Y1.

Lemma 6.1. There exists ε > 0 such that the stable holonomies H : Y0 → Y1 are
Cε. Moreover, if the angles between Yi and stable leaves are bounded away from zero
for i = 0, 1, then there is a constant K > 0 dependent on this bound but otherwise
independent of the holonomy H : Y0 → Y1 such that d(H(y), H(y′)) ≤ Kd(y, y′)ε for
all y, y′ ∈ Y0.

Proof. By Theorem 5.1, we can view Ws as the stable lamination corresponding to
the invariant splitting TΛM = Es ⊕ Ecu for the partially hyperbolic diffeomorphism
f = Z1. Hence we can apply [45, Theorem A’]. The result in [45] is formulated
slightly differently in terms of a splitting TΛM = Es⊕Ec⊕Eu, but their proof covers
our situation (with the invariant splitting TΛM = Eu ⊕ Ecs there replaced by the
symmetric situation TΛM = Es ⊕ Ecu). �

Theorem 6.2. The stable foliation Ws is Cε for some ε > 0.

Proof. Let {γ(x) : x ∈ U0} be the family of embeddings γ(x) : Dds → W s
x described

in Proposition 2.8.
Let x ∈ U0 and choose an embedded dcu-dimensional disk Y0 ⊂ M containing x

and transverse to W s
x . By continuity of Es, we can shrink Y0 so that Y0 is transverse

to W s
y at y for all y ∈ Y0. Let ψ : Ddcu → Y0 be a smooth embedding. The proof

of [7, Lemma 4.9] shows that the map χ : Dds ×Ddcu → U0 given by

χ(u, v) = γ(ψ(v))(u)

is a topological chart for Ws at x. Note that χ maps horizontal lines {v = const.}
homeomorphically onto stable disks W s

ψ(v).

Moreover, we claim that χ maps vertical lines {u = const.} onto smooth transver-
sals Yu to Ws. To see this, we recall the notation γ(y)(u) = Q(u, ϕy(u)) from the
proof of [7, Lemma 4.8]. Here Q = Qx,0 : Rd →M is a diffeomorphism and Q−1(W s

y )

is given by the graph of ϕy : Dds → Ddcu . Hence

Yu = {χ(u, v) : v ∈ Ddcu} = {γ(ψ(v))(u) : v ∈ Ddcu}
= {γ(y)(u) : y ∈ Y0} = Q{(u, ϕy(u)) : y ∈ Y0}.

The curves W s
y foliate U0, so the curves Q−1(W s

y ) = {(u, ϕy(u))} foliate Dds × Ddcu .
Hence the set {(u, ϕy(u)) : y ∈ Y0} is precisely {u = const.} and so Yu = Q({u =
const.}) verifying the claim.

Moreover, via the diffeomorphism Q, the angles of Yu with stable disks W s
y are

bounded away from zero. Hence for any u 6= 0, the stable holonomy Hu : Y0 → Yu
satisfies d(Hu(y), Hu(y

′)) ≤ Kd(y, y′)ε for all y, y′ ∈ Y0 by Lemma 6.1. Also H−1
u :

Yu → Y0 is a stable holonomy, so d(H−1
u (y), H−1

u (y′)) ≤ Kd(y, y′)ε for all y, y′ ∈ Yu.
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Now χ(u, v) = γ(ψ(v))(u) = Hu(ψ(v)), so

d(χ(u, v), χ(u, v′)) = d(Hu(ψ(v)), Hu(ψ(v′)))

≤ Kd(ψ(v), ψ(v′))ε ≤ K(Lipψ)ε‖v − v′‖ε.
Also there is a constant L1 > 0 such that

d(χ(u, v′), χ(u′, v′)) = d(γ(ψ(v′))(u), γ(ψ(v′))(u′))

≤ Lip γ(ψ)(v′)‖u− u′‖ ≤ L‖u− u′‖ ≤ L1‖u− u′‖ε.
Altogether, letting M = max{K(Lipψ)ε, L1},
d(χ(u, v), χ(u′, v′)) ≤M

(
‖u− u′‖ε + ‖v − v′‖ε

)
≤ CM(‖u− u′‖2 + ‖v − v′‖2)ε/2

where C > 0 is an upper bound for the homogeneous function
|x|ε + |y|ε

(|x|2 + |y|2)ε/2
over

the set of (x, y) ∈ R2 such that |x|2 + |y|2 = 1. Hence χ is Cε.
Next,

‖u− u′‖ ≤ ‖(u, ϕψ(v)(u))− (u′, ϕψ(v′)(u
′))‖

≤ Lip(Q−1)d(Q(u, ϕψ(v)(u)), Q(u′, ϕψ(v′)(u
′)))

= Lip(Q−1)d(γ(ψ(v))(u), γ(ψ(v′))(u′)) = Lip(Q−1)d(χ(u, v), χ(u′, v′)),

and

‖v − v′‖ ≤ Lip(ψ−1)d(ψ(v), ψ(v′)) = Lip(ψ−1)d(H−1
u′ χ(u′, v), H−1

u′ χ(u′, v′))

≤ K Lip(ψ−1)d(χ(u′, v), χ(u′, v′))ε.

Moreover,

‖(u′, ϕψ(v)(u
′))− (u′, ϕψ(v′)(u

′))‖ = ‖ϕψ(v)(u
′)− ϕψ(v′)(u

′)‖
≤ ‖ϕψ(v)(u

′)− ϕψ(v)(u)‖+ ‖ϕψ(v)(u)− ϕψ(v′)(u
′)‖

≤ L‖u− u′‖+ ‖ϕψ(v)(u)− ϕψ(v′)(u
′)‖

≤ (L+ 1)‖(u, ϕψ(v)(u))− (u′, ϕψ(v′)(u
′))‖,

so
d(χ(u′, v), χ(u′, v′)) ≤ (L+ 1) LipQLip(Q−1)d(χ(u, v), χ(u′, v′)).

Combining these estimates, we obtain ‖(u, v)−(u′, v′)‖ ≤ const. d(χ(u, v), χ(u′, v′))ε.
Hence ‖χ−1(p)− χ−1(p′)‖ ≤ const. d(p, p′)ε for p, p′ ∈ U0, so χ−1 ∈ Cε. �

Theorem 6.3. The stable holonomy H : Y0 → Y1 is absolutely continuous. That is,
m1 � H∗m0 where mi is Lebesgue measure on Yi, i = 0, 1.

Moreover, the Jacobian JH : Y0 → R given by

JH(x) =
dm1

dH∗m0

(Hx) = lim
r→0

m1(H(B(x, r)))

m0(B(x, r))
, x ∈ Y0,

is bounded above and below and is Cε for some ε > 0.
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Proof. This essentially follows from [14, Theorems 8.6.1 and 8.6.13]. See also [44, The-
orem 2.1] and [33, Section III.3]. The results there are formulated under a condition of
the type supx∈Λ ‖DZt|Es

x‖ supx∈Λ ‖DZ−t|Ecu
Ztx
‖ ≤ Cλt which is more restrictive than

the domination condition (2.2). However, it is standard that such results generalise
to our setting. (See the remark in [44] after their theorem. Most of the required
result is covered by [44] except that Hölder continuity of JH is not mentioned, only
continuity.) �

7. One-dimensional quotient map f̄ : X → X

In this section, we continue to suppose that Λ is a singular hyperbolic attracting
set with dcu = 2. Let f : X ′ → X be the global Poincaré map defined in Section 3
with invariant stable foliationWs(X). We now show how to obtain a one-dimensional

piecewise C1+ε uniformly expanding quotient map f̄ : X
′ → X.

We begin by analysing the stable holonomies for f . Let γ0, γ1 ⊂ X be two u-curves
such that for all x ∈ γ0, the stable leaf W s

x(X) intersects each of γ0 and γ1 in precisely
one point. The (cross-sectional) stable holonomy h : γ0 → γ1 is given by defining h(x)
to be the intersection point of W s

x(X) with γ1.

Lemma 7.1. The stable holonomy h is C1+ε for some ε > 0.

Proof. Recall that X =
⋃

Σyj where Σyj is the cross-section associated to the flow
box Vyj for each j. Since the result is local, we can suppose that γ0, γ1 ⊂ Σyj for some
j and we can choose coordinates so that the local flow Zt is linear.

Consider the 2-dimensional disks Yi =
⋃
t∈[−δi,δi] Zt(γi) = γi × [−δi, δi], i = 0, 1,

for fixed δi > 0. These are smooth transversals to the stable foliation Ws of the
flow. Provided δ0 is small with respect to δ1, we can then consider the holonomy
H : Y0 → Y1 as in Section 6.

For p = (v, 0) ∈ γ0 ⊂ Y0 we write H(v, 0) = (H1(v), ξ(v)) with H1 : γ0 → γ1 and
ξ : γ0 → [−δ1, δ1]. Clearly h = H1 by construction. Since Ws is flow invariant,

H(v, t) = (h(v), ξ(v) + t).

Let λi = (πi)∗mi denote Lebesgue measure on γi, i = 0, 1, where πi : Yi → γi is the
natural projection. By Theorem 6.3, m1 � H∗m0. Since π1H = hπ0,

λ1 = (π1)∗m1 � (π1H)∗m0 = (hπ0)∗m0 = h∗λ0.

Hence h is absolutely continuous.
Taking balls B(x, r) to be rectangles, we have for r sufficiently small

H(B(x, r)) =
⋃

v′∈B(v,r)

{h(v′)} × (t+ ξ(v′)− r, t+ ξ(v′) + r).

By Fubini,
m1(H(B(x, r)))

m0(B(x, r))
=

2rλ1(h(B(v)))

2rλ0(B(v, r))
=
λ1(h(B(v, r)))

λ0(B(v, r))
,
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showing that JH(x) = Jh(v) for all x = (v, t). By Theorem 6.3, Jh is Hölder. But
dim γ0 = dim γ1 = 1, so Jh = |Dh| and the result follows. �

Recall that X is a union of finitely many cross-sections Σyj , and that f is smooth
on a subset X ′′ ⊂ X ′ ⊂ X which is obtained from X by removing finitely many stable
leaves. Moreover, each Σyj ∩X ′′ is a union of finitely many connected smooth strips
S such that f |S : S → f(S) is a diffeomorphism.

For each j, let γj ⊂ Σyj be a u-curve crossing Σyj . Define X =
⋃
j cl γj and

X
′

= X ′ ∩ X. Given a smooth strip S ⊂ Σyj , there exists k such that f(S) ⊂ Σyk .
Also f(γj) is a u-curve by Theorem 4.3. Let h : f(S ∩ γj) → γk be the associated
stable holonomy and define f̄(x) = h(fx) for x ∈ S ∩ γj. In this way we obtain a

one-dimensional map f̄ : X
′ → X.

Corollary 7.2. The quotient map f̄ : X
′ → X is piecewise C1+ε and consists of

finitely many monotone C1+ε branches. Choosing T1 in Section 4 sufficiently large,

we have |Df̄ | ≥ 2 on X
′
.

Proof. Since f is smooth on smooth strips and the holonomies h : f(S ∩ γj)→ γk are
C1+ε by Lemma 7.1, it follows that f̄ is piecewise C1+ε. The collection of intervals
S ∩ γj is finite, so f̄ has finitely many branches. By finiteness of the collection {Σyj},
there is a constant c > 0 such that all the holonomies h considered above satisfy
|Dh| ≥ c. Hence taking λ1 sufficiently small in Theorem 4.3, we can ensure that |Df̄ |
is as large as desired. �

8. Statistical properties for f̄ and f

In this section, we investigate statistical properties for the (ds + 1)-dimensional

Poincaré map f : X ′ → X and the one-dimensional quotient map f̄ : X
′ → X.

Define π : X → X Hölder by letting π(x) be the point where W s
x(X) intersects X.

Then π defines a semiconjugacy between f and f̄ .
From now on, we write f : X → X and f̄ : X → X with the understanding that f

and f̄ are not defined everywhere (and are piecewise smooth where defined).

8.1. Spectral decomposition and physical measures.

Proposition 8.1. There exists a finite number of ergodic absolutely continuous f̄ -
invariant probability measures µ̄1, . . . , µ̄s whose basins cover a subset of X of full
Lebesgue measure. For each j, the density dµ̄j/dLeb lies in L∞ and Int supp µ̄j 6= ∅.

Proof. By Corollary 7.2, f̄ is a piecewise C1+ε uniformly expanding one-dimensional
map. Hence, most of the result is immediate from [28, Theorem 3.3]. We refer to [49,
Lemma 3.1] for the fact that Int supp µ̄j 6= ∅. �
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Corollary 8.2. There exists a finite number of ergodic f -invariant probability mea-
sures µ1, . . . , µs whose basins cover a subset of X of full Lebesgue measure. Moreover,
π∗µj = µ̄j for each j.

Proof. This follows from the existence of the stable foliation Ws(X) (here, the fact
that it is a topological foliation suffices) combined with Proposition 8.1. For details,
see [10, Sections 6.1 and 6.2]. �

8.2. Existence of an inducing scheme. In this subsection, we suppose without loss
that there is a unique absolutely continuous f̄ -invariant measure µ̄ in Proposition 8.1
(so s = 1).

Proposition 8.3. There exists k ≥ 1 such that supp µ̄ = X1 ∪ · · · ∪ Xk where the
sets Xj are permuted cyclically by f̄ , and f̄k : Xj → Xj is mixing for each j.

Moreover, for any η ∈ (0, 1), there exist constants c, C > 0 such that∣∣∣ ∫
Xj

v w◦ f̄kn dµ̄−
∫
Xj

v dµ̄

∫
Xj

w dµ̄
∣∣∣ ≤ C‖v‖Cη |w|1e−cn for all n ≥ 1, j = 1, . . . , k,

for all v ∈ Cη(X) and w ∈ L1(X).

Proof. This is immediate from the quasicompactness of the transfer operator for f̄
which is established in [28, Theorem 3.3]. Indeed the result in [28] is proved for
the class of functions with finite η-variation (for all η > 0 sufficiently small). This
includes observables that are Cη. �

For ease of exposition, we suppose for the remainder of this subsection that k = 1
and X1 = X. Recall that a one-dimensional map F : Y → Y is a full branch Gibbs-
Markov map if there is an at most countable partition α of Y and constants C > 0,
ε ∈ (0, 1] such that for all a ∈ α,

• F |a : a→ Y is a measurable bijection, and
•
∣∣ log |DF (y1)| − log |DF (y2)|

∣∣ ≤ C|Fy1 − Fy2|ε for all y1, y2 ∈ a.

Lemma 8.4. For all β > 0, there exists a positive measure subset Y ⊂ X and a full
branch Gibbs-Markov induced map F = f̄ρ : Y → Y , where ρ : Y → Z+ is constant
on partition elements and satisfies Leb(y ∈ Y : ρ(y) > n) = O(n−β).

Proof. By Proposition 8.1, µ̄ is an ergodic absolutely continuous invariant probability
measure on X with dµ̄/dLeb ∈ L∞. The result follows from Theorem A.1 provided
we verify that µ̄ is expanding and that conditions (C0)–(C3) hold. Let S denote the
finite set consisting of singularities/discontinuities of f̄ . (In general X \ S is a proper
subset of X ′ since S includes the discontinuities of the piecewise smooth map f .)
Conditions (C0) and (C3) are redundant since f̄ is one-dimensional. Conditions (C1)
and (C2) become

(C1) C−1d(x,S)q ≤ |Df̄(x)| ≤ Cd(x,S)−q for all x ∈ X \ S,
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(C2)
∣∣ log |Df̄(x)| − log |Df̄(x′)|

∣∣ ≤ C|x− x′|η(|Df̄(x)|−q + |Df̄(x)|q) for all x, x′ ∈
X \ S with |x− x′| < dist(x,S)/2,

where η ∈ (0, 1) and C, q > 0 are constants. Since dµ̄/dLeb ∈ L∞ it is immediate
from (C1) that log |(Df̄)−1| is integrable with respect to µ̄. Also

∫
log |(Df̄)−1| dµ̄ ≤

log 1
2
< 0 by Corollary 7.2, so µ̄ is an expanding measure.

It remains to verify conditions (C1) and (C2). Note that they are trivially satisfied
for functions f̄ with Df̄ Hölder and bounded below. Hence they are satisfied away
from S and also near all discontinuity points in S.

By Proposition 2.6, it remains to consider singularities x0 ∈ X corresponding to
Lorenz-like equilibria σ. The Poincaré map f can be written near x0 as f = h1 ◦g ◦h2

where g corresponds to the flow near σ and h1, h2 are the remaining parts of the
Poincaré map. In particular Dh̄j is Hölder and bounded below for j = 1, 2.

Suppose first that the flow is C1+ε-linearizable for some ε > 0 in a neighborhood
of σ. Incorporating the linearization into h1 and h2, we can suppose without loss
that the flow is linear in a neighborhood of σ. Hence the flow is given by x 7→ etAx
where A = λu ⊕ λs ⊕ B with −λu < λs < 0 < λu and B = DG(σ)|Es

σ. A standard
calculation shows that in suitable coordinates,

g(x, z) = (|x|−λs/λu , ze−λ
−1
u B log |x|).

In particular, ḡ(x) = |x|ω where ω = −λs/λu ∈ (0, 1).
Since Dh̄j is bounded above and below, it follows from the chain rule that

|Df̄(x)| ∼= |Dḡ(h̄2x)| = ω|h̄2x|ω−1 ∼= |x− x0|ω−1,

so (C1) is satisfied. Next,∣∣ log |Df̄(x)|− log |Df̄(x′)|
∣∣ ≤ C1

(
|x− x′|ε +

∣∣ log |Dḡ(h̄2x)| − log |Dḡ(h̄2x
′)|
∣∣

+ |ḡ(h̄2x)− ḡ(h̄2x
′)|ε
)

= C1

(
|x− x′|ε + (1− ω)

∣∣ log |h̄2x| − log |h̄2x
′|
∣∣+
∣∣|h̄2x|ω − |h̄2x

′|ω
∣∣ε).

Now∣∣ log |h̄2x| − log |h̄2x
′|
∣∣ ≤ C2(|h̄2x− h̄2x

′|/|h̄2x|)1−ω ≤ C ′2|x− x′|1−ω|x− x0|ω−1

≤ C ′′2 |x− x′|1−ω|Df̄(x)|.

Also without loss |x− x0| ≤ |x′ − x0|, so∣∣|h̄2x|ω − |h̄2x
′|ω
∣∣ ≤ |h̄2x− h̄2x

′|(|h̄2x|ω−1 + |h̄2x
′|ω−1)

≤ C3|x− x′||x− x0|ω−1 ≤ C ′3|x− x′||Df̄(x)|.

Hence, there exists η ∈ (0, 1) such that∣∣ log |Df̄(x)| − log |Df̄(x′)|
∣∣ ≤ C4|x− x′|η(|Df̄(x)|+ 1)

≤ C4|x− x′|η(2|Df̄(x)|+ |Df̄(x)|−1),
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verifying (C2).
To complete the proof, we remove the assumption that the flow near σ is C1+ε-

linearizable. By the center manifold theorem (eg. [26, Theorem 5.1]), locally we can
choose a flow-invariant C1+ε two-dimensional manifold W tangent to Ecu

σ (for some
ε > 0). Note that the quotient of g|W coincides with ḡ. By a result of Newhouse [42]
(stated previously but without proof in [25]), the flow restricted to W (being two-
dimensional) can be C1+ε′ linearized for some ε′ > 0. The proof now proceeds as
before. �

Remark 8.5. Since we have exponential decay of correlations in Proposition 8.3, there
is the hope of obtaining an induced Gibbs-Markov map as in Lemma 8.4 but with
exponential tails for ρ. (We note that Theorem A.1(2) which would give stretched
exponential tails does not apply because the density dµ̄/dLeb is not bounded below.)
In certain situations, it is possible to construct an inducing scheme with exponential
tails by using different methods, controlling the tail of hyperbolic times and relating
this with the tail of inducing times more directly [22, 5, 11]. One repercussion of the
existence of such an inducing scheme would be that the error rate in the vector-valued
ASIP would be improved to n

1
4

+ε for ε > 0 arbitrarily small [23].
However, our construction here with superpolynomial tails holds in complete gen-

erality and suffices for our results on singular hyperbolic flows in Section 9, so we do
not pursue this further.

Proposition 8.6. There is a constant C > 0 such that∑ρ(y)−1
`=0 |τ(f `y)− τ(f `y′)| ≤ C|Fy − Fy′|ε for all y, y′ ∈ a, a ∈ α.

Proof. It follows from the proof of Lemma 8.4 that the roof function τ : X → R+

satisfies τ(x) = −λ−1
u log |h̄2x|+ t(x) where h̄2 and t are C1+ε. Hence

|τ(x)− τ(x′)| ≤ λ−1
u |h̄2x− h̄2x

′|/|h̄2x|+ |Dt|∞|x− x′| ≤ C1|x− x′|d(x,S)−1,

and the result follows from (A.1). �

8.3. Statistical limit laws for the Poincaré map. By Corollary 8.2, there is
a unique ergodic f -invariant probability measure µ on X corresponding to µ̄, with
π∗µ = µ̄.

Theorem 8.7. Fix η ∈ (0, 1) and let v ∈ Cη(X) with
∫
X
v dµ = 0. Write vn =∑n−1

j=0 v ◦ f j. Then the limit σ2 = limn→∞ n
−1
∫

Λ
v2
n dµ exists. Suppose that σ2 > 0.

Then the following limit laws hold.

ASIP [16]: Let ε > 0. There exists a probability space Ω supporting a sequence of
random variables {Sn, n ≥ 1} with the same joint distributions as {vn, n ≥ 1}, and a
sequence {Zn, n ≥ 1} of i.i.d. random variables with distribution N(0, σ2), such that

sup1≤k≤n
∣∣Sk −∑k

j=1 Zj
∣∣ = O(nε) a.e. as n→∞.
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Berry-Esseen [21]: There exists C > 0 such that∣∣µ{x ∈ X : n−1/2vn(x) ≤ a} − P{N(0, σ2) ≤ a}
∣∣ ≤ Cn−1/2 for all a ∈ R, n ≥ 1.

local limit theorem [21]: Suppose that v is aperiodic (so it is not possible to write
v = c + g − g ◦ f + λq where c ∈ R, λ > 0, g : X → R measurable and q : X → Z).
Then for any bounded interval J ⊂ R,

lim
n→∞

n1/2µ(x ∈ X : vn(x) ∈ J) = (2πσ2)−1/2|J |.

For Cη vector-valued observables v : X → Rd with
∫
X
v dµ = 0, the limit Σ =

limn→∞ n
−1
∫

Λ
vnv

T
n dµ ∈ Rd×d exists and we obtain

vector-valued ASIP [37, 29]: There exists λ ∈ (0, 1
2
) and a probability space Ω

supporting a sequence of random variables {Sn, n ≥ 1} with the same joint distri-
butions as {vn, n ≥ 1}, and a sequence {Zn, n ≥ 1} of i.i.d. random variables with
distribution N(0,Σ), such that

sup1≤k≤n
∣∣Sk −∑k

j=1 Zj
∣∣ = O(nλ) a.e. as n→∞.

Proof. The strategy is to model F : Y → Y and F : Y → Y by “one-sided” and
“two-sided” Young towers ∆̄ and ∆, and to construct an observable v̄ : ∆̄ → R to
which the various results in the references can be applied. The desired statistical
properties for v are deduced from those for v̄.

Using F : Y → Y and ρ : Y → Z+ as given in Lemma 8.4, we define the one-sided
Young tower map f̄∆ : ∆̄→ ∆̄,

∆̄ = {(y, `) ∈ Y × Z+ : 0 ≤ ` ≤ ρ(y)− 1}, f̄∆(y, `) =

{
(y, `+ 1) ` ≤ ρ(y)− 2

(Fy, 0) ` = ρ(y)− 1
.

Let µ̄Y denote the unique absolutely continuous invariant probability measure for the
Gibbs-Markov map F : Y → Y . Then µ̄∆ = µ̄Y × counting/

∫
Ȳ
ρ dµ̄Y is an ergodic

f̄∆-invariant probability measure on ∆̄.
Next, define Y = π−1Y ⊂ X to be the union of stable leaves W s

y (X) where y ∈ Y .
In the proof of Corollary 8.2, we used an argument from [10] which constructs µ
on X starting from µ̄ on X. The same argument constructs an ergodic F -invariant
probability measure µY on Y starting from µ̄Y . Define ρ : Y → Z+ and F : Y → Y
by setting ρ(y) = ρ(πy) and F (y) = fρ(y)y. Using these (instead of ρ : Y → Z+

and F : Y → Y ) we obtain a two-sided Young tower map f∆ : ∆ → ∆ with ergodic
f∆-invariant probability measure µ∆ = µY × counting/

∫
Y
ρ dµY . The projection

π : X → X extends to a semiconjugacy π : ∆ → ∆̄ given by π(y, `) = (πy, `), and
π∗µ∆ = µ̄∆. Moreover, the projection

π∆ : ∆→ X, π∆(y, `) = f `y,

is a semiconjugacy from f∆ to f and π∆ ∗µ∆ = µ.
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The separation time s(y, y′) of points y, y′ ∈ Y is the least integer n ≥ 0 such that
F ny and F ny′ lie in distinct elements of the partition α. This extends to ∆̄ by setting
s((y, `), (y′, `′)) = s(y, y′) when ` = `′ and zero otherwise, and then to ∆ by setting
s(p, p′) = s(πp, πp′).

For each θ ∈ (0, 1), define the symbolic metric dθ on ∆̄ given by dθ(p, p
′) = θs(p,p

′).
Given w : ∆̄→ R, we define

‖w‖θ = |w|∞ + sup
p 6=p′
|w(p)− w(p′)|/dθ(p, p′).

Let λ1 ∈ (0, 1) be as in Propositions 4.1 and 4.2, and set θ = λ
η/2
1 . Let v ∈

Cη(X,Rd) with
∫
X
v dµ = 0. We claim that there exists χ ∈ L∞(∆,Rd) and v̄ ∈

L∞(∆̄,Rd) with ‖v̄‖θ <∞ such that

v ◦ π∆ = v̄ ◦ π + χ ◦ f∆ − χ. (8.1)

Suppose that the claim is true. Since ∆̄ is a one-sided Young tower [52] with super-
polynomial tails (in fact β > 2 suffices here) and ‖v̄‖θ <∞, it follows that v̄ satisfies
all of the desired statistical properties by the mentioned references. These are inher-
ited (since π is measure-preserving) by v̄ ◦ π : ∆→ Rd. Since χ ∈ L∞, the properties
are inherited by v ◦ π∆ : ∆→ Rd and thereby v (since π∆ is measure-preserving).

It remains to verify the claim. Define χ : ∆→ Rd,

χ(p) =
∞∑
j=0

(
v ◦ f j ◦ π∆(πp)− v ◦ f j ◦ π∆(p)

)
.

For p = (y, `), using Proposition 4.1(a), we have

|χ(p)| ≤
∞∑
j=0

|v|Cη‖f
j ◦ π∆(πp)− f j ◦ π∆(p)‖η = |v|Cη

∞∑
j=0

‖f j+`(πy)− f j+`(y)‖η

≤ |v|Cη
∞∑
j=0

ληj1 ‖πy − y‖η <∞.

Hence χ ∈ L∞(∆).
Let v̂ = v ◦ π∆ − χ ◦ f∆ + χ. It follows from the definitions that v̂ : ∆ → Rd is

constant along fibres π−1p̄ for p̄ ∈ ∆̄. Indeed,

v̂(p) =
∞∑
j=0

v ◦ f j ◦ π∆(πp)−
∞∑
j=0

v ◦ f j ◦ π∆(πf∆p).

Hence we can write v̂ = v̄ ◦ π where v̄ : ∆̄→ Rd satisfies (8.1).
Clearly, |v̄|∞ ≤ |v|∞ + 2|χ|∞ <∞.
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Let p = (y, `), p′ = (y′, `′) ∈ ∆. If ` 6= `′, then |v̄(p) − v̄(p′)| ≤ 2|v̄|∞ =
2|v̄|∞dθ(p, p′). When ` = `′, set N = [s(p, p′)/2]. Then

|v̂(p)− v̂(p′)| ≤ AN(p) + AN(p′) +BN(p, p′) +BN−1(f∆p, f∆p
′),

where

AN(q) =
∞∑
j=N

|v ◦ f j ◦ π∆(πq)− v ◦ f j−1 ◦ π∆(πf∆q)|,

BN(q, q′) =
N−1∑
j=0

|v ◦ f j ◦ π∆(πq)− v ◦ f j ◦ π∆(πq′)|.

The calculation for χ gives AN(q) = O(ληN1 ) = O(θs(p,p
′)) for q = p, p′. Next,

BN(p, p′) =
N−1∑
j=0

|v ◦ f j+`(πy)− v ◦ f j+`(πy′)|.

Write n = s(p, p′). By Proposition 4.2,

diamX ≥ ‖fn ◦ f `(πy)− fn ◦ f `(πy′)‖ = ‖fn−j ◦ f j(f `πy)− fn ◦ f j(f `πy′)‖

≥ λ
−(n−j)
1 ‖f j(f `πy)− f j(f `πy′)‖,

for all j ≤ n. Hence

‖f j(f `πy)− f j(f `πy′)‖ = O(λ
s(y,y′)−j
1 ), (8.2)

and so BN(p, p′) ≤ C
∑N−1

j=0 λ
η(s(y,y′)−j)
1 = O(θs(p,p

′)). Similarly, BN−1(f∆p, f∆p
′) =

O(θs(p,p
′)).

Hence we have shown that |v̂(p)− v̂(p′)| = O(θs(p,p
′)) and so ‖v̄‖θ <∞ as claimed.

�

Remark 8.8. The ASIP and vector-valued ASIP have numerous consequences sum-
marised in [41, p. 233]. These include the central limit theorem (CLT); the functional
CLT, also known as the weak invariance principle; the (functional, vector-valued) law
of the iterated logarithm (LIL); upper and lower class refinements of the LIL and
Chung’s LIL.

Remark 8.9. The nondegeneracy assumption σ2 > 0 fails only on a closed subspace of
infinite codimension in the space of Cη observables. Indeed if σ2 = 0 and x ∈ X is a
periodic point, then there exists N ≥ 1 such that

∑N−1
j=0 v(f jx) = 0 for all v ∈ Cη(X)

with mean zero. (See [8, Theorem B] for such a result in a more difficult context.)
Similar comments apply to the covariance matrix Σ in the vector-valued ASIP. Taking
one-dimensional projections, we obtain that the nondegeneracy assumption det Σ > 0
fails only on a closed subspace of infinite codimension.
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9. Statistical properties of singular hyperbolic attractors

In this section, we investigate statistical properties of the flow Zt on a codimension
two singular hyperbolic attracting set. We begin by modifying the Poincaré section
so that the roof function τ becomes constant along stable leaves.

Let X be the union of u-curves in Section 7 and define X+ =
⋃
x∈XW

s
x . Then X+ is

a Hölder-embedded cross-section and we obtain a new Poincaré map f+ : X+ → X+

with return time function τ+ : X+ → R+. We also define the quotient map f̄+ =
h ◦ f+ : X → X where h is the stable holonomy in X+.

Proposition 9.1. τ+ is constant along stable leaves in Ws and f̄+ = f̄ .

Proof. For fixed x ∈ X, set T0 = τ(x). The stable foliation Ws is invariant under the
time T0-map ZT0 so ZT0(W

s
x) = W s

T0x
⊂ X+. Hence τ+(x) = T0 for each x ∈ W s

x .
Next, recall that W s

fx(X) is the intersection of
⋃
|t|<ε0 ZtW

s
x with X for suitably

chosen ε0. Then f̄x is the unique intersection point of
⋃
|t|<ε0 ZtW

s
x with X. But

f+x = Ztfx for some small t so f̄+x also lies in the intersection of
⋃
|t|<ε0 ZtW

s
x with

X. Hence f̄+x = f̄x. �

In this section, we work with the new Poincaré map and roof function which we
relabel f : X → X and τ : X → R+. In doing so we lose the smoothness properties
of f and τ — they are now only piecewise Hölder. However we gain the property
that τ is constant along the stable foliation in X. Since f̄ : X → X is unchanged; we
still have that f̄ is piecewise C1+ε and the results on f̄ in Section 7 and the physical
measures and statistical properties in Section 8 remain valid.

Define the suspension

Xτ = {(x, u) ∈ X × R : 0 ≤ u ≤ τ(x)}/ ∼ where (x, τ(x)) ∼ (fx, 0),

and the suspension flow (x, u) 7→ (x, u+ t) (computed modulo identifications).

Theorem 9.2. There exists a finite number of ergodic Zt-invariant probability mea-
sures µM,1, . . . , µM,s whose basins cover a subset of U0 of full Lebesgue measure.

Proof. For each µj in Corollary 8.2, we obtain an ergodic flow-invariant probabil-
ity measure µτj = µj × Lebesgue/

∫
X
τ dµj on Xτ . The projection πτ : Xτ → M ,

πτ (x, u) = Zux defines a semiconjugacy from Xτ to M and µM,j = πτ∗µ
τ
j is an ergodic

Zt-invariant probability measure on M . By [10, Section 7], these form a finite family
of physical measures µM,j for the flow Zt whose basins cover a subset of U0 of full
Lebesgue measure. �

Suppose without loss that there is a unique physical measure µM = πτ∗µ
τ where

µτ = µ × Lebesgue/
∫
X
τ dµ (in the notation above). Recall that µ̄, and hence µ, is

mixing up to a finite cycle of length k ≥ 1. By shrinking the cross-section X we may
suppose without loss that the measure µ on X is mixing.
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Define the induced roof function

ϕ : Y → R+, ϕ(y) =
∑ρ(y)−1

`=0 τ(f̄ `y).

Proposition 9.3. µY (ϕ > t) = O(t−β) for any β > 0.

Proof. A standard general calculation (see for example [13, Proposition A.1]) shows
that

µY (ϕ > t) ≤ µY (ρ > k) + ρ̄µ(τ > t/k),

for all t > 0, k ≥ 1, where ρ̄ =
∫
Y
ρ dµY . In particular, since ρ has superpolynomial

tails and τ has at most logarithmic singularities, there is a constant c > 0 such that
µY (ϕ > t) = O(k−2β + e−ct/k). Now take k = [t1/2]. �

Recall that F : Y → Y is a Gibbs-Markov map with partition α and separation
time s(y, y′).

Proposition 9.4. There exists θ ∈ (0, 1) and C > 0 such that

|ϕ(y)− ϕ(y′)| ≤ Cθs(y,y
′) for all y, y′ ∈ a, a ∈ α.

Proof. We can write τ = τ0 + τ1 where τ0 is as in previous sections and in particular
satisfies the estimate Proposition 8.6, and τ1 is Cε. Setting θ = 2−ε and using uniform
expansion of f̄ ,

|τ1(f̄ `y)− τ1(f̄ `y′)| ≤ |τ1|Cε|f̄
`y − f̄ `y′|ε ≤ C1θ

ρ(y)−`|Fy − Fy′|ε.

Combining this with the estimate for τ0, we obtain that
∑ρ(y)−1

`=0 |τ(f̄ `y)− τ(f̄ `y′)| ≤
C ′1|Fy − Fy′|ε. By (8.2), |Fy − Fy′| = O(2−s(y,y

′)) and the result follows. �

9.1. Statistical limit laws for the flow. If Λ = suppµM contains no equilibria,
then Λ is a nontrivial hyperbolic basic set for an Axiom A flow and the CLT for Hölder
observables follows from [46, 38]. Moreover, [17] obtains a version of the (scalar) ASIP
that implies the functional CLT and functional LIL.

When Λ contains equilibria, the CLT and its functional version still holds by [27]
at least for geometric Lorenz attractors. As pointed out in [13], a simpler argument
than in [27] applies in general situations where the roof function is unbounded and
includes the entire class of singular hyperbolic attractors analysed in this paper. We
refer to the introduction of [13] for a more comprehensive list of statistical limit laws,
with precise statements, that can be obtained in this way.

9.2. Mixing and superpolynomial mixing for the flow.

Theorem 9.5. There is a C2-open and C∞-dense set of singular hyperbolic flows such
that each nontrivial attractor Λ is mixing with superpolynomial decay of correlations:
for any β > 0,∣∣∣ ∫

Λ

v w ◦ Zt dµM −
∫

Λ

v dµM

∫
Λ

w dµM

∣∣∣ ≤ Ct−β for all t > 0,
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for all v, w : M → R such that one of v or w is C∞ and the other is Hölder. Here C
is a constant depending on v, w and β.

Proof. If Λ = suppµM contains no equilibria, then Λ is uniformly hyperbolic and the
result is due to [18, 20]. The general case follows essentially from [34, 35].

More precisely, we have seen that the semiflow and flow is modelled as a suspension
over a Young tower with superpolynomial tails. Using the induced roof function ϕ :
Y → R+, we obtain a suspension Y ϕ over the uniformly hyperbolic map F : Y → Y
where the roof function ϕ : Y → R+ has superpolynomial tails.

We are now in a position to apply [12, Theorem 3.1] (see also [36, Theorem 4.1]).
Conditions (3.1) and (3.2) in [12] follow from Propositions 4.1 and 4.2. Moreover,
ϕ is constant along stable leaves by Proposition 9.1 and projects to a well-defined
roof function ϕ : Y → R+ satisfying the estimate in Proposition 9.4 which is condi-
tion (3.3) in [12]. Hence the suspension flow on Y ϕ is a skew product Gibbs-Markov
flow in the terminology of [12]. Hence superpolynomial mixing follows from [12,
Theorem 3.1] subject to a nondegeneracy condition (absence of approximate eigen-
functions).

Finally, it is shown in [20] that absence of approximate eigenfunctions is C2-open
and C∞-dense (cf. [35, Remark 2.5] or [36, Subsection 5.2]). �

We have already seen that statistical limit laws such as the CLT hold for all singular
hyperbolic flows. In the situation of Theorem 9.5, we can obtain such results also for
the time-one map of a singular hyperbolic flow.

Corollary 9.6. Assume that Zt : Λ → Λ has superpolynomial decay of correlations
as in Theorem 9.5. Let v : M → R be C∞ (or at least sufficiently smooth) with
mean zero. Then the ASIP holds for the time-one map Z1 for all C∞ observables
v : M → R.

In particular, the limit σ2 = limn→∞ n
−1
∫

Λ
(
∑n−1

j=0 v ◦ Zj)2 dµM exists, and after
passing to an enriched probability space, there exists a sequence A0, A1, . . . of i.i.d.
normal random variables with mean zero and variance σ2 such that

n−1∑
j=0

v ◦ Zj =
n−1∑
j=0

Aj +O(n1/4(log n)1/2(log log n)1/4), a.e.

Moreover, if σ2 = 0, then for every periodic point q ∈ Λ, there exists T > 0 (indepen-

dent of v) such that
∫ T

0
v(Ztq) dt = 0.

Proof. This is proved in the same way as [8, Theorems B and C]. �

In the case of the classical Lorenz attractor, it was shown in [32] and [8] that mixing
and superpolynomial mixing is automatic. The proof exploits the locally eventually
onto (l.e.o.) property as well as smoothness properties of the stable foliation. We
now show that the mixing argument in [32] does not require the stable foliation to be
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smooth. In the general situation of this paper, we assume hypotheses that are more
complicated to state but which are implied by l.e.o. for the classical Lorenz attractor.

We require that Λ contains at least one equilibrium. Let q ∈ S be the corresponding
singularity for f̄ : X → X. (Again, f̄ is not defined at q.) Assume that the set of
preimages of q under iterates of f̄ is dense in X. (This condition is always satisfied
for geometric Lorenz attractors.) By Lemma 8.4 and Remark A.3, we can construct
an induced Gibbs-Markov map F = f̄σ : Y → Y where the inducing set Y contains q.
Let K =

⋃
`≥0 f̄

`Y ; this is an open and dense full measure subset of X. Our final

assumption is that f̄pq+ = limy→q+ f̄
py ∈ K for some p ≥ 1. (This would work

equally well with q+ replaced by q−.)

Theorem 9.7. Under the above assumptions, Λ is automatically mixing (and even
Bernoulli).

Proof. We sketch the proof following [32]. By [47], it suffices to show that the quotient
suspension semiflow f̄ τt : X

τ → X
τ

is weak mixing. Equivalently, the cohomological
equation u ◦ f̄ = eibτu has no measurable solutions u : X → S1 for all b 6= 0. (Here
S1 denotes the unit circle in C.)

Suppose for contradiction that there exists u : X → S1 measurable and b 6= 0 such
that u ◦ f̄ = eibτu. A Livšic regularity theorem of [15], exploiting the fact that F is
Gibbs-Markov and that the roof function τ is Hölder with at most logarithmic growth
(Lemma 3.2) ensures that u has a version that is continuous on K.

Also, q ∈ Y ⊂ K. Choose p ≥ 1 with f̄pq+ ∈ K. Then u ◦ f̄p = eibτpu where
τp =

∑p−1
j=0 τ ◦ f̄ j. By Remark 3.3, τp(y) ≥ τ(y)→∞ as y → q+, whereas u(y)→ u(q)

and u(f̄py)→ u(f̄pq+). Since b 6= 0, this contradicts the equality u ◦ f̄p = eibτpu. �

Remark 9.8. If we assume in addition that the stable foliation Ws for the flow is
C1+ε, then we can deduce exponential decay of correlations following [6].

However, without smoothness of Ws, the roof function τ (on the modified cross-
section) is only Hölder and the cancellation argument of [18] fails. In fact, we are
unable even to prove superpolynomial mixing for fixed flows (without perturbing as
in Theorem 9.5). It should be possible to use the techniques in [8] to prove that
the stable and unstable foliations (defined appropriately) for the flow are not jointly
integrable – this is a stronger property than mixing. However, we do not see how to
use this to prove superpolynomial mixing when τ is only Hölder.

Appendix A. Theorem of Alves et al. [3]

In this appendix, we recall a result of Alves et al. [3] that is required in Section 8.1.
Although the argument in [3] is essentially correct, there are certain problems with
the formulation of the hypotheses. First, the hypotheses (C2) and (C3) in [3] are
stated too strongly, since the right-hand side of their conditions are zero for points
x 6= y equidistant from S, whereas the left-hand side is generally nonzero. Second,
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the hypotheses are not stated strongly enough for the first half of the proof of [3,
Lemma 5.1], since the estimate for d(x,S)−α is false in general. We state below a
corrected version of the hypotheses in [3]. The conclusion in Theorem A.1 is identical
to that in [3, Theorem C], and the proof is largely unchanged.

Throughout, (M,d) is a compact Riemannian manifold and f : M → M is a local
C1+ diffeomorphism with singularity set S. We suppose that there are constants
η ∈ (0, 1) and C, q > 0 such that

(C0) Leb(x : d(x,S) ≤ ε) ≤ Cεη for all ε ≥ 0.
(C1) C−1d(x,S)q ≤ ‖Df(x)v‖ ≤ Cd(x,S)−q, for all x ∈ M \ S, v ∈ TxM with

‖v‖ = 1.
(C2)

∣∣ log ‖Df(x)−1‖ − log ‖Df(y)−1‖
∣∣ ≤ Cd(x, y)η(‖Df(x)−1‖q + ‖Df(x)−1‖−q)

for all x, y ∈M \ S with d(x, y) < d(x,S)/2.
(C3)

∣∣ log | detDf(x)| − log | detDf(y)|
∣∣ ≤ Cd(x, y)ηd(x,S)−q for all x, y ∈ M \ S

with d(x, y) < d(x,S)/2.

Recall [3, Definition 1.2] that a measure µ is expanding if log ‖(Df)−1‖ is integrable
with respect to µ and

∫
M

log ‖(Df)−1‖ dµ < 0.
Let Cov(v, w) =

∫
M
v w dµ−

∫
M
v dµ

∫
M
w dµ.

Theorem A.1 ( [3, Theorem C] ). Let f : M → M be a C1+ local diffeomorphism
satisfying (C0)–(C3), and let α ∈ (0, 1). Let µ be an ergodic expanding absolutely
continuous invariant probability measure with dµ/dLeb ∈ Lp for some p > 1.

(1) Suppose that there exists β > 1 and C > 0 such that |Cov(v, w ◦ fn)| ≤
C‖v‖Cα|w|∞ n−β for all v ∈ Cα, w ∈ L∞, n ≥ 1.

Then there is a full branch Gibbs-Markov induced map F = fρ : Y → Y , where
ρ : Y → Z+ is constant on partition elements and satisfies Leb(y ∈ Y : ρ(y) > n) =
O(n−(β−1)). Moreover, there are constants C, ε > 0 such that∑ρ(y)−1

`=0 d(f `y, f `y′)ηd(x,S)−q ≤ Cd(Fy, Fy′)ε, (A.1)

for all y, y′ lying in the same partition element.

(2) Suppose that dµ/dLeb is bounded below on its support and that there exist γ ∈
(0, 1], C, c > 0 such that |Cov(v, w ◦ fn)| ≤ C‖v‖Cα |w|∞ e−cn

γ
for all v ∈ Cα,

w ∈ L∞, n ≥ 1.
Then the conclusion in (1) holds and moreover for any γ′ ∈ (0, γ/(3γ + 6)) there

exists c′ > 0 such that Leb(y ∈ Y : ρ(y) > n) = O
(
e−c

′nγ
′)

.

Remark A.2. The estimate (A.1) is a crucial component of the proofs in [3, 4]. (See
the calculation at the end of the proof of [4, Lemma 4.1].) We make it explicit here
since it is used in the proof of Proposition 8.6.

Remark A.3. Let x ∈ M be any point with dense preimages in M . By [4, Re-
marks 1.4], the inducing set Y can be chosen to be an open ball containing x.
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In the remainder of this appendix, we indicate the modifications to the argument
in [3] required to obtain the corrected version of Theorem A.1.

We begin by noting that a consequence of (C1) and (C2) is that∣∣ log ‖Df(x)−1‖ − log ‖Df(y)−1‖
∣∣ ≤ Cd(x, y)ηd(x,S)−q

2

for all x, y ∈M \ S.

Combined with (C3), this means that the C1+ version of the C2 set up in [2, 4] is
satisfied. It is well-known, and routine, that the theory of hyperbolic times and the
resulting constructions in [2, 4] work just as well in the C1+ setting. Hence as in [3],
it suffices to verify the hypotheses of [4, Theorem 2]. This all proceeds exactly as
in [3] except for the estimate of φ1,k in [3, Lemma 5.1]. Recall from [3] that φ1 =
log ‖(Df)−1‖ and that φ1,k = φ11{|φ1|≤k}. (The definition in [3] has φ1,k = φ11{φ1≤k},
but it is clear from the proof of [3, Lemma 4.3] that this is what was meant.)

Proposition A.4. For any α > 0, there exists η′ ∈ (0, 1), C > 0 such that ‖φ1,k‖Cη′ ≤
Ceαk.

Proof. We can suppose without loss that α < 2q.
Let x, y ∈ M . It is immediate that |φ1,k(x)| ≤ k and that |φ1,k(x)− φ1,k(y)| ≤ 2k.

Also, by (C2), assuming without loss that φ1,k(x) ≤ φ1,k(y),

|φ1,k(x)− φ1,k(y)| ≤ C1d(x, y)η(eqφ1,k(y) + e−qφ1,k(x)) ≤ C ′1d(x, y)ηeqk.

The inequality min{1, a} ≤ aε holds for all a ≥ 0, ε ∈ [0, 1]. Hence taking ε = 1
2
α/q

and η′ = εη we obtain that

|φ1,k(x)− φ1,k(y)| ≤ C2kmin{1, d(x, y)ηeqk} ≤ C2kd(x, y)η
′
e

1
2
αk ≤ C ′2d(x, y)η

′
eαk.

We have shown that ‖φ1,k‖Cη′ = O(k + eαk) = O(eαk) as required. �

The remainder of the proof of Theorem A.1 proceeds exactly as in [3]. (We note
that in [3] it is asserted that η′ = α, but this is not required in the proof.)
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[22] S. Gouëzel. Decay of correlations for nonuniformly expanding systems. Bull. Soc. Math. France

134 (2006) 1–31.
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