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Abstract

We consider special Euclidean (SE(n)) group extensions of dynamical sys-
tems and obtain results on the unboundedness and growth rates of trajectories
for smooth extensions. The results depend on 7 and the base dynamics consid-
ered.

For discrete dynamics on the base with a dense set of periodic points, we
prove unboundedness of trajectories for generic extensions provided n = 2 or
n is odd. If in addition the base dynamics is Anosov, then generically trajec-
tories are unbounded for all n, exhibit square root growth, and converge in
distribution to a nondegenerate standard n-dimensional normal distribution.

For sufficiently smooth SE(2)-extensions of quasiperiodic flows, we prove
that trajectories of the group extension are typically bounded in a probabilistic
sense, but there is a dense set of base rotations for which extensions are typically
unbounded in a topological sense. The results on unboundedness are generalised
to SE(n) (n odd) and to extensions of quasiperiodic maps.

We obtain these results by exploiting the fact that SE(n) has the semi-direct
product structure I' = G x R" where G is a compact connected Lie group and
R"” is a normal abelian subgroup of I'. This means that our results also apply
to extensions by this wider class of groups.

*To appear in Nonlinearity
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1 Introduction

Recently there has been substantial progress in understanding the ergodic and mixing
properties of generic compact group extensions of dynamical systems. In contrast
very little is known about extensions by noncompact groups; nevertheless noncompact
groups are of great interest in applications. The setting raises natural questions about
the unboundedness and growth rates of typical orbits in generic extensions.

In this paper we investigate the issues of unboundedness and growth rates for
a certain class of noncompact group extensions of dynamical systems. The class of
groups includes the special Fuclidean group I' = SE(n) = SO(n) x R" consisting of



rotations SO(n) and translations R" in n-dimensional space. Throughout the intro-
duction, we emphasize the special Euclidean group I' = SE(n), n > 2, contrasting
the results with the comparatively well understood case I' = R", n > 1. However,
the methods in this paper easily generalise to the case of noncompact connected Lie
groups of the form I' = G x R" (semidirect product) where G is a compact connected
subgroup of I' and R" is an abelian normal subgroup of T

Recall that a group extension (I'-extension) of a base dynamical system consisting
of a smooth mapping or flow on a compact manifold X is defined on the product space
X xTI'. Such extensions arise naturally in dynamical systems that are equivariant with
respect to a symmetry group [' and have been extensively studied both by ergodic
theorists and in the equivariant dynamics literature. We take the approach (common
in this literature) that we specify the dynamics on X and then investigate the generic
behavior of the extension.

Given a semidirect product structure I' = G x R", any I'-extension is an R"-
extension of a G-extension. (That is, any [-extension has a G-extension as a factor.)
We will use this as a tool to extend compact group extension results to the noncompact
case. In the case I' = R", the I'-extension reduces to the well-studied case X x R". In
the case [' = SE(n), we have a I'-extension on (X x SO(n)) x R". On a cautionary
note, it must be emphasized that the R"-extension of X x SO(n) is not arbitrary,
but is SO(n)-equivariant. That is, R"-extensions k : X x SO(n) — R" are required
to satisfy

k(z,q) = gk(x,e), for all g € SO(n), (1.1)

where e denotes the identity element of SO(n) and gk(-) denotes matrix multiplication
of the n X n matrix g and the n-dimensional vector k(-). This restriction reflects the
semidirect product structure of SE(n).

Our main concern in this paper is the unboundedness of trajectories on X x I,
which reduces to unboundedness of their R" component since G is compact. Our
results depend in a fundamental way on properties of the base dynamics and on the
group I'.

We consider two types of base dynamics; “chaotic” dynamics and quasiperiodic
dynamics. (The case of periodic base dynamics is discussed in Ashwin and Mel-
bourne [1] and Wulff et al. [16, Section 4(b)].)

“Chaotic” base dynamics (Section 4) Suppose that the dynamics on X is
chaotic in the sense that periodic points are dense in X (we exclude the case that
X is itself a periodic orbit). Regardless of ergodic properties of the transformation
on X, we prove that generic extensions have trajectories that are unbounded when
I' = R" (for all n) and when I' = SE(n) (for n =2 or n odd, cf. Remark 1.1).



Suppose further that u is an ergodic measure on X and that periodic points are
dense in the support of u. When I' = R", typically trajectories exhibit linear growth
on average, and moreover the deviation from linear growth is unbounded.

If we replace I' = R" by I' = SE(n), it is necessary to assume that ergodicity on X
lifts to the compact group extension on X x SO(n). The validity of this assumption
is the subject of extensive current research (see the references in subsection 3(a))
and it is known, for example, that a generic set of extensions are ergodic when p is
supported on an Axiom A attractor. Under the assumption that ergodicity lifts to
X x SO(n), we prove for all n > 2 that trajectories exhibit sublinear growth. (Of
course, when n = 1, SE(1) = R and we expect linear growth.) Combined with our
results on unboundedness, we can prove unbounded sublinear growth for n =2 or n
odd.

Uniformly hyperbolic base dynamics (Section 6) In the case that the dynam-
ics on X is Axiom A, it is known [14] that sums of real observables typically obey
central limit theorems. This can be rephrased as saying that for an R-extension,
typically the deviation of trajectories from linear growth exhibits square root growth,
and there is convergence to a nondegenerate normal distribution. Similarly, for an
R"-extension, there is convergence to a general n-dimensional normal distribution.

The results for SE(n)-extensions are considerably more difficult and we require
recent results of Field and Parry [6], Burns and Wilkinson [4], Dolgopyat [5], and
Liverani [10]. We prove that for n > 3, typically there is convergence to a nondegen-
erate standard n-dimensional normal distribution. The same result holds for n = 2
provided that X is Anosov on an infranilmanifold.

In proving this result, we strengthen and generalize results of Biktashev and
Holden [2] relating chaotic base dynamics to random walks in the translation vari-
ables for SE(2)-equivariant problems. In particular we address the question of the
degeneracy or nondegeneracy of the normal distribution.

Quasiperiodic base dynamics (Section 7) Suppose that X = 7™ is a torus
and that the dynamics on X is a linear flow § = « or translation 6 — 6 + o, where
a € R™ is such that all orbits are dense in X. If ' = R" (n > 1) it is well-known
(and easy to prove) that there is an open and dense full measure set of extensions
whose trajectories exhibit linear growth. The growth arises from the constant term
(which is typically nonzero) in the Fourier expansion of the R"-extension. If « is
Diophantine (and the R"-extension is smooth enough) then the deviation from linear
growth is bounded.

The situation for I' = SE(n) is less straightforward, since it is no longer typically
the case that the constant term of the Fourier expansion of the R"-extension is nonzero



(due to the constraint (1.1)). First, consider SE(2)-extensions of a quasiperiodic flow.
If o is Diophantine (which occurs with probability one) we prove that trajectories are
bounded for almost all sufficiently smooth extensions. In the non-Diophantine case,
we prove that trajectories are generically unbounded in the C” topology for all » > 1.

Our results on unboundedness in the non-Diophantine case hold also for SE(n)-
extensions of flows and maps provided n is odd. However, our results in the Diophan-
tine case are presently restricted to SE(2)-extensions of flows.

Remark 1.1 Many of the results that we have discussed for SE(n)-extensions are
restricted to the cases n = 2 or n odd. The reason for this is that our arguments
rely on the existence of a C" small perturbation of the SE(n)-extension of a periodic
point in X such that the dynamics of the extension is unbounded. This is easy when
n is odd, since extensions of periodic orbits are typically unbounded [1]. When n = 2,
we exploit the fact that SO(2) is abelian to show that a small perturbation suffices
if the period of the periodic orbit is high enough.

We conjecture that similar results hold for all n. However, the difficulties that
arise for n even, n > 4, remain unresolved when X is not Axiom A.

Equivariant deterministic central limit theorems (Section 5) In proving our
results on SE(n)-extensions of uniformly hyperbolic base dynamics (as described in
Section 6), the key step is proving an equivariant deterministic central limit theorem.
This is a result about the statistics of compact group extensions X x G (where G is
an arbitrary compact connected Lie group), and is of interest in its own right. Here,
we have made extensive use of recent results of Dolgopyat [5] and Liverani [10] which
together imply in many cases the validity of deterministic central limit theorems on
the partially hyperbolic set X x G. Our main contribution in this area is to show
that for equivariant observations (cf. equation (1.1)), nondegeneracy in the central
limit theorem is equivalent to unboundedness of trajectories. We show this by means
of an equivariant version of the Livsic Theorem [11].

The remainder of this paper is organized as follows. In Section 2, we describe
the implications that the semi-direct product structure of I' = SE(n) has for the
structure of the SE(n)-extensions. Indeed similar observations hold for all extensions
by groups which are of form I' = G x R". In Section 3, we raise questions about
the unboundedness of trajectories of I'-extensions, distinguishing between linear and
sublinear growth of unbounded trajectories, and we summarize results on whether
the growth is linear or sublinear.

Our main results can be found in Sections 4—7. In Sections 4, 6 and 7, we
consider extensions when the base is respectively chaotic, uniformly hyperbolic and
quasiperiodic. Our results on equivariant central limit theorems are given in Section 5.



2 Maps and flows

In this section, we discuss the general setting for our results. We assume a semidirect
product structure of the group I' and discuss the structure of I'-extensions of base
dynamics on X for dynamics generated by maps and flows.

(a) The groupT'=G x R"

Throughout this paper, we consider Lie groups I' that are a semidirect product of

a connected compact subgroup G and an abelian normal subgroup R". We write!
I' = G x R" and note that

(91,U1) . (92, U2) = (9192,1)1 + Pglv2),

where g1,92 € G, v1,v3 € R" and p : G — Aut(R"). Of course, if I is the special
Euclidean group SE(n) then we have G = SO(n) and p,v = gv (multiplication of the
orthogonal matrix g and the vector v).

(b) T-extensions of maps on X

Let f: X — X be a C* map of a compact manifold (k > 0). A I'-extension of f is a
map T : X xI' = X x I'" defined by

T(z,7) = (f(z),7¢(z))

where ¢ € C"(X,T') (r > 0). Note that the skewing function ¢ acts on the right,
and hence the extension T is ['-equivariant with respect to the left action of I' where
§-(z,7v) = (z,dv) for § € I'. Indeed, every I'-equivariant mapping 7 : X xI' - X x T’
has the form T'(z,v) = (f(z),y((x)) where f : X — X and ( : X — T.

Given the structure I' = G x R", we can write

T(.’E, gv ’U) = (f(x)v gh(iﬁ'), v + pgk(iﬁ')),
where h € C"(X,G) and k € C"(X,R"). If we write S as the G-extension
S(z,9) = (f(x), gh(z))

then T can be viewed as an R"-extension of the G-extension S.
On iterating a I'-extension of a map, the extension determines cocycles h;(x) and
kj(x) characterized by the following Proposition.

1 As is traditional, we use multiplicative notation for the group G' and additive for the abelian
group R".



Proposition 2.1 For j € N we can write

Tj(x,g,v) = (fj(iE),gh,j(.’E),U + pgkj(x))’

where the cocycles h; and k; are defined by

hi(z) = h(z)h(f(x)) - - h(f77 (),
ki(z) = k(z) + pry@) k(f (@) + -+ pn,_y @k (7 (2)).

Similarly, of f is invertible we can define h; and kj; for j € Z.

Proof This is an elementary induction argument. |

(c) T-extensions of flows on X

Suppose that X is a smooth compact manifold and that f : X — T'X is a C* vector
field, £ > 1. Let LI" denote the Lie algebra of I'. We consider I'-extensions of the
form

&= f(z), =), (2.1)

where ¢ € C"(X, LT).
Just as in the case of maps, we exploit the structure ' = G x R" by writing
equation (2.1) in the form

&= flz), g=ghlx), 0= pk(x), (2:2)

where h € C"(X, LG) and k € C"(X,R"). Again the flow of equation (2.2) can be
viewed as an R™-extension of a G-extension of the flow on X.

Remark 2.2 We consider right actions of I in our definition of I'-extensions of maps
and flows. These extensions are equivariant under the left action of d € ' on X x T’
by §(z,v) = (z,07). In many applications, X is thought of as the orbit space of a
group action of I' on, say, a manifold ¥ and the point (z,7) ‘represents’ the point
~vz in the ambient space Y. However it is traditional in the ergodic theory literature
(but see [6]) to consider group extensions defined by a left action (which would be
for maps, T(z,v) = (f(z),{(x)y) )- As we now explain, these two viewpoints are
equivalent for the questions we consider in this paper.

Suppose that G is a compact group with Haar measure v and suppose that p
is an ergodic measure on X. Let h € C°(X,G). The group extension T(z,g) =
(f(x), gh(x)) is ergodic with respect to p X v if and only if T'(z, g) = (f(z), h(x)g) is
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ergodic (see [6, Theorem 2.4.1] and [12, Theorem 1]). Similar results hold for mixing
properties of the extensions.

More generally, if ( defines an extension on the right by T'(z,v) = (f(z),v((z))
then (! defines an extension on the left 7"(z,v) = (f(z),( *(z)y) that is topo-
logically conjugate to T under the automorphism (x,7) + (x,7!). Therefore un-
boundedness and other such properties are independent of which action we choose.
Analogous statements hold for group extensions of flows.

3 Unboundedness of trajectories: Linear and sub-
linear drift

In this section, we raise the question of unboundedness for trajectories on X x I'. By
choosing an ergodic measure on the compact group extension X x G, we distinguish
between linear growth and sublinear growth. We focus on growth of trajectories for
mappings, but the discussion is equally applicable to flows with minor modifications.

Consider the I'-extension T'(z,g,v) = (f(z), gh(z),v + pyk(z)). The trajectory
with initial condition (xg, go,vo) is unbounded if the closure of the trajectory is not
compact. This is equivalent to unboundedness of the R" component of the tra-
jectory, since X and G are assumed to be compact. The trajectory with initial
condition (zg, go, o) is a translate of the trajectory with initial condition (zg, go,0)
so that unboundedness is independent of vy. We take vg = 0 from here on. Let
{(zn,gn,vNn), N > 0} denote the trajectory with initial condition (zg, go,0) and
note that

N-1
UN = Umo,go(N) = Z pgjk('fj)'
j=0

Suppose that m is an ergodic Borel measure on X x G. The Birkhoff ergodic
theorem implies that the time averaged linear growth rate

1 1 N-1
o= lim —v(N)= lim = Zopgjk(%-)
J:

exists and is constant for m-almost all initial conditions (zg, go) € X x G. We define
the deviation from linear growth €z, ., by

Vzo,90 (N) =N + €20,90 (),

and so for m-almost all initial (29, go) we have €, 4,(N) = o(N).
The question of the growth of vy, 4 (N) for a given ergodic measure m divides
naturally into two subquestions:



(Q1) Is @ zero or nonzero?
(Q2) Is €(N) bounded or unbounded?

Clearly, almost all trajectories are bounded if and only if ¥ = 0 and € is bounded.
Depending on the answers to these questions, we have four mutually exclusive sce-
narios: (i) bounded growth, (ii) unbounded but sublinear growth, (iii) linear growth
with bounded deviation, (iv) linear growth with unbounded deviation.

In the case of periodic base dynamics, there are simple answers to questions (Q1)
and (Q2) as shown below in Proposition 3.1. The answer to (Q1) follows from Ashwin
and Melbourne [1]. The answer to (Q2) is that the deviation ¢(N) from the linear
growth is bounded. We note that there is no need to refer to an ergodic measure on
X X G when the dynamics on X is periodic.

Since this result is formulated somewhat differently in [1], and is crucial in later
sections of this paper, we rederive the result here. Let T denote a maximal torus in
G and let

Fix(T) ={veR": p,v=vforallg € T},

denote the fixed-point subspace for that action of T C G on R". Since all maximal
tori are conjugate in G, the dimension of Fix(T) is independent of the choice of T.

Proposition 3.1 Suppose that P C X is a periodic solution (or equilibrium) for a
flow or map. Let T be a maximal torus in G. Then there is an open and dense set
of T-extensions in the C" topology (for each r > 0) such that

(a) If Fix(T) = {0}, then all trajectories on P x I' are bounded.
(b) If Fix(T) # {0}, then all trajectories on P x " have linear growth with bounded

deviation.

Proof We verify the Proposition in the case of maps. Since a periodic point is a
fixed point for an iterate of the map f, it is sufficient to consider a fixed point xg
for f. By Proposition 2.1,

Vagig0(N) = pgo (I + A+ -+ -+ AV Nk(o),

where A = pp(aq). Write k(z0) = yo + y1 € Fix(A) @ Fix(A)" and let B = Alpjya)e-
Since A is orthogonal and I — B is nonsingular we have

’U(N) = NpgoyO +ng(I+B + - "+BN_1)y1
= Nogyo + po(I = B)™ (I = BV)y.



It follows that o = py,yo and that e(N) = py,(I — B)"}(I — BY)y; is bounded (since
||B|| = 1). Moreover, ¢ is nonzero, generically, if and only if Fix(A4) # {0}. But
A = phzo) is a general element of G and hence Fix(A) coincides with Fix(T) where
T is a maximal torus. |

Remark 3.2 For groups of the form I' = G x R", and periodic solutions with trivial
isotropy, generically Fix(T) = {0} implies compact drift and Fix(T) # {0} implies
unbounded drift (using the terminology of [1]). When I' = SE(n), we obtain compact
drift generically for n even and unbounded drift generically for n odd.

(a) Some results on linear drift

In general, the solutions to questions (Q1) and (Q2) depend on the dynamics on
X and the group I' = G x R" (specifically, the action p of G on R"). For certain
groups G, the solution to (Q1) is elementary and independent of the dynamics. Let
Fix(G) C R" denote the fixed-point subspace for the action of G on R".

Proposition 3.3 Suppose that Fix(G) # 0 and let m be any ergodic measure on
X X G. Then there is an open and dense set of I'-extensions (for each r > 0) such
that v # 0 (linear growth).

Proof By the ergodic theorem, we compute that

N-1

_ 1

v = lim N E Pg; k() :/ pg k(z) dm(z, g).
=0 X

N—oo %G

Write R" = Fix(G) @ Y] where Y; is G-invariant. Then k = ko + ki, where &y : X —
Fix(G), k; : X — Y}, and

5= /X  hale) dm{z.g) + /X k() dm(a.g)

We can control the value of the first term by making arbitrarily small constant per-
turbations to ko. Hence, generically v # 0. |

It follows from Proposition 3.3 that we expect linear growth for I' = R", but there
is no conclusion for I' = SE(n). We obtain sharper results by making assumptions
on the ergodic measure m on X X G. Let vg denote Haar measure on G.

Proposition 3.4 Suppose that the invariant measure m = | X vg is an ergodic
measure on X X G.
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(a) If Fix(G) = {0} then © =0 (sublinear growth).

(b) If Fix(G) # {0} then v # 0 (linear growth) for an open and dense set of I'-
extensions in the C™ topology (for each r > 0).

Proof As in the proof of Proposition 3.3, we compute that

N-1
1
7= lim —) p k(x):/ pg k(z) du(z) dva(g /p dyg/
N—o0 N j:() 9i J XXG g
But [, p, dVG is orthogonal projection onto Fix(G). It follows that 7 € Fix(G).
Moreover [ k « k(z)dp is a general element of R™ since there are no restrictions on £,
and hence v is a general element of Fix(G). |

By Proposition 3.4, the condition Fix(G) # {0} in Proposition 3.3 is sharp pro-
vided p X vg is an ergodic measure for the compact group extension X x G. (In other
words, provided ergodicity lifts to X x G.)

There has been much recent work on the question of the ergodicity of compact
group extensions of ergodic dynamical systems. For example, when G is abelian, it
follows from Jones and Parry [8] that ergodicity lifts generically in the C° topology.
That is, the set of h € C°(X, G) such that u x vg is ergodic on X x @G is residual in
the C° topology.

Stronger results are available if the base dynamics is uniformly hyperbolic. Field
and Parry [6, Theorem 5.1.1] show that if G is a compact connected Lie group and
4 is an invariant ergodic equilibrium measure on a connected hyperbolic attractor in
X then ergodicity lifts generically in the C" topology for all » > 1. Indeed, there
is an open and dense set of h € C"(X, @) for which the extension is ergodic. (This
phenomenon is known as stable ergodicity [7].)

The work of [6, 8], combined with Proposition 3.4, yields the following result.

Proposition 3.5 Suppose that Fix(G) = {0} and p is an ergodic measure on X.

(i) If G is abelian then m = p X vg is ergodic and v = 0 for a generic set of
extensions in the C° topology.

(1) If p is an invariant ergodic equilibrium measure on a connected hyperbolic at-
tractor in X then m = u X vg s ergodic and v = 0 for an open and dense set
of extensions in the C” topology (for each r > 1).

Note that when I' = SE(n), n > 2, we have Fix(G) = {0} (since G = SO(n) acts
on R" by matrix multiplication). Hence, the conclusions of Proposition 3.5 apply.
Of course, for the group I' = SE(1) = R, we have Fix(G) = R and Proposition 3.3
implies generic linear growth regardless of the dynamics.

11



Remark 3.6 By Field and Parry [6, Theorem 5.1.1], when G is semisimple, the as-
sumption of a connected hyperbolic attractor in Proposition 3.5(ii) may be weakened
to the assumption that there is a hyperbolic basic set. In particular, this greater
generality applies to SE(n), n > 3, but not to SE(2).

4 Extensions of chaotic base dynamics

In this section we give answers to the question (Q2) asked in section 3. At present,
our results are restricted to groups of the form I' = G x R" where either G is abelian
or Fix(T) # 0 for T is a maximal torus in G. In particular, this class of groups
includes the Euclidean groups I' = SE(n) when n is odd and when n = 2.

In subsection (a), we obtain some results of a topological nature on unboundedness
of trajectories associated with a single w-limit set in the base. We prove unbound-
edness under certain assumptions on the group I' and on the number of periodic
solutions in the w-limit set.

The results in subsection (a) do not apply directly to question (Q2) since the
unboundedness could arise from © and/or from ¢(N). The consequences of the results
in subsection (a) for (Q2) are explored in subsection (b). As a special case, we obtain
the result that if G is abelian or if Fix(T) # 0, and if the base dynamics is “chaotic”
then generically the deviation €(/N) from linear growth is unbounded.

(a) Topological dynamics

In this subsection, we consider the dynamics on X restricted to a single w-limit set
A. We state and prove the results only for maps. The results for flows are identical,
with the convention that equilibria are counted as periodic solutions.

Definition 4.1 Suppose that A C X is an w-limit set for the dynamics on X and
consider a I'-extension X x I' defined by some ( : X — I'. We say that a trajectory
in A x I' is unbounded if the closure of the trajectory is not compact. The dynamics
on A x I' is unbounded if there exists an unbounded trajectory in A x T'.

Suppose that the dynamics on A XTI is unbounded in the sense of Definition 4.1. Then
by continuity, for any zo € X with w(zg) = A and for any gy € G, the component
Vg0 (V) Of the trajectory with initial condition (zg, go,0) € X x I' is unbounded.

Proposition 4.2 Suppose that I' = G x R™ with G a compact connected Lie group, T
a mazimal torus in G and Fix(T) # 0. Let A C X be an w-limit set for the dynamics
on X and suppose that A contains at least one periodic solution. Then for an open
and dense set of I'-extensions in the C" topology (for each r > 0), the dynamics on
A x T s unbounded.
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Proof Let P C A be a periodic solution. Since Fix(T') # 0, it follows from Proposi-
tion 3.1 (using the measure supported on P) that for generic extensions, trajectories
on P xT' are unbounded. Let z be an initial condition in X with w(z) = A. Then the
trajectory of (x,7) € X x I limits on P x I for all v € G and hence is unbounded. B

Remark 4.3 The hypothesis that Fix(T) # 0 is satisfied trivially for the groups R",
and also for the Euclidean groups SE(n) when n is odd.

Theorem 4.4 Suppose that I' = G x R" where G is a compact connected abelian
Lie group. Let A C X be an w-limit set for the dynamics on X and suppose that
A contains periodic solutions of arbitrarily high period. Then generically in the C”
topology (for each r > 0) the dynamics on A x I is unbounded.

Proof The space C"(X,I') is a complete metric space. Let Z; = {¢ € C"(X,T) :
|Vso,e(IN)| > j for some zy € X, and some N > 1}. Each Z; is open. We now show
that each Z; is dense and hence NZ; is the desired residual subset in C"(X,I). (In
fact, our proof shows directly that NZ; is dense, without using the Baire Category
Theorem.)

Let U x V. C G x R" be a neighborhood of the identity (e,0). We construct a
cocycle using C = (h k) X — U x V such that h is constant, and such that k
together with all of its derivatives, maps X into V. Such a perturbation is arbitrarily
small in the C" topology.

Since G is a torus, the N’th roots of elements of G are “equally spaced” in G.
Hence there exists an integer Ny such that every element in G has an N’th root in
U for all N > N,. Choose a periodic point p € A of minimal period N > N,. Let
(p, hn, kn) = T (p,e,0) and recall that by Proposition 2.1 we have

hy = h(p)h(fp)---h(f"'p),
kn = kD) + prk(fp) + -+ pry K (FV D).

In particular ' has an N’th root 7 € U. Since G is abelian, h(p)T - (fN Ip)yr =
hntV = e € G. Hence, perturbing by the constant cocycle h(z) = 7, k(z) = 0, we
obtain that Ay = e. B _ B
Suppose after perturbation that ky = 0. Redefine k(x) so that k(p) # 0, k(fp) =
. = k(f¥~'p) = 0. It is then the case that ky # 0. Note that k(p) can be chosen
arbitrarily small, and hence we can arrange that %, together with all of its derivatives,
maps X into V. o
We have shown that there is a small cocycle perturbation (h,k), of the form
described above, after which we have hy = e, ky # 0. In particular, TV(p,e,0) =
(p,e,lky) and |v,(NC)| = |lky| — 00 as £ — oo proving the theorem. |
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(b) Unboundedness of deviations

Let m be an ergodic measure on X xG. Recall that the R" component of a I'-extension
on X x I' takes the form

Vzo,90 (N) =oN + €20,90 (IV),

with €4y 4, (V) = 0o(N) for m-almost all initial conditions (o, go). Proposition 4.2 gives
no information about whether the unboundedness of v, 4, (/V) arises from the term
N and/or the term €, 4, (V). In fact, all three possibilities may occur: linear growth
with bounded deviation (Proposition 3.1), unbounded sublinear growth (Theorem 4.5
below) and linear growth with unbounded deviation (also Theorem 4.5).

Theorem 4.5 Suppose that the ergodic measure p on X lifts to an ergodic measure
m = puXvg on X X G for a C" generic set of extensions (r > 0). Let T denote a
mazimal torus in G. Suppose that at least one of the following conditions is satisfied:

(i) Fix(T) # Fix(G) and there is at least one periodic solution in the support of .
(#) Fix(T) # 0 and there are at least two periodic solutions in the support of p.
(iii) G is abelian and there are infinitely many periodic solutions in the support of p.

Then generically, in the C™ topology, €gy.4,(N) is unbounded for p-almost all zo € X
and for all gy € G.

In particular, under these hypotheses, generically we have unbounded sublinear
growth if Fix(G) = {0} and linear growth with unbounded deviation if Fix(G) # {0}.

Proof First, we prove part (i). Let P denote a periodic solution in the support
of pu. Trajectories on P x I' experience linear growth vp # 0 by Proposition 3.1.
Moreover, vp is a general element of Fix(T). Write Fix(T) = Fix(G) @ Y, and
define the projection 7 : R® — Y. From the above discussion, wop is generically
nonzero, so that the Y components of trajectories on P x I'" are unbounded. As in
Proposition 4.2, Ty, 4,(N) is unbounded for p-almost every zo € X and for every
go € G. In addition, by ergodicity with respect to m, Proposition 3.4 implies that
v € Fix(G) so that mv = 0. Hence ey, 4,(N) is unbounded.

Next, we prove part (ii). Let P; and P, be distinct periodic solutions in the
support of . We have the three linear growth rates v, vp, and vp, corresponding
to the ergodic measure m and the periodic solutions respectively. Since Fix(T) # 0,
generically Up, and vp, are nonzero. Moreover, generically vp, # Up,.
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Now we pass to a traveling frame with speed v. More precisely, we replace the
[-extension (h, k) by the new extension (h',k') = (h,k — ©). Note that trajectories
for the extension (h', k') satisfy

/U;?O,go (N) = EN + 6$0=90 (N) - ,DN = 631'0590(]\[)’
so it remains to show unboundedness for the extension (h', k).

For the extension (A, k'), the periodic solutions have corresponding linear growth
rates ﬁ};j = Up; — 0. Since vp, # Up,, at least one of the growth rates ﬁ};j is nonzero.
Hence trajectories for the extension (A’, k') are unbounded as required.

Finally, we prove part (iii). If Fix(G) # 0 then Fix(T) # 0 and we can apply
part (ii). If Fix(G) = {0} then v = 0 by Proposition 3.4, and v(N) is unbounded by
Theorem 4.4, so that ¢(/N) is unbounded. |

Remark 4.6 (a) The Euclidean groups I' = SE(n) satisfy certain of the hypotheses
of Theorem 4.5 when n is odd and when n = 2. In particular, if periodic points are
dense in the support of u, we have unbounded sublinear growth generically for the
Euclidean groups with n > 3 odd and with n = 2. (The case SE(1) is a special
case of ' = R", n > 1, for which we have linear growth with unbounded deviation
generically.)

(b) Under hyperbolicity assumptions on the dynamics on X, it can be shown that
the conclusion of Theorem 4.5 is valid for all compact connected Lie groups G, see
Section 6. In fact, we conjecture that part (iii) of Theorem 4.5 is valid even if G is
not, abelian and without hyperbolicity assumptions.

5 Equivariant deterministic central limit theorems

Throughout this section, X is a compact Riemannian manifold and the base dynamics
f:X — X is a topologically mixing Axiom A diffeomorphism when restricted to a
hyperbolic basic set equipped with a Gibbs measure p. Let G be a compact Lie group
with Haar measure vg and define the product measure m = u X vg on X x G. We
consider G-extensions S : X x G — X x G.

Most of the results in this section require additional hypotheses on the base dy-
namics f or on the group G. We define hypothesis (H) by

(H) The Axiom A diffeomorphism f is Anosov on an infranilmanifold, and/or the
compact Lie group G is semisimple.

Let p be a representation of G on R" and suppose that ® : X x I' — R" is a
smooth function with mean zero. We prove an equivariant deterministic central limit
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theorem which states that if hypothesis (H) holds and ® is equivariant (as defined
in subsection (a)), then generically \/Lﬁ Z;.V;Ol ® o S’ converges in distribution to an
n-dimensional normal distribution. The normal distribution is equivariant (again
defined in subsection (a)) and the form of the normal distribution (general, standard,
and so on) depends on the representation of G. Moreover, we give necessary and
sufficient conditions for nondegeneracy of this normal distribution in terms of the
unboundedness of the sum Z;.V:_Ol ®o 57,

In subsection (a), we begin by stating a recent result of Liverani [10] that estab-
lishes conditions for a one-dimensional central limit theorem on X X G. We then
prove an n-dimensional equivariant version of this result.

The condition for nondegeneracy in the central limit theorems of subsection (a)
takes the form of a cohomological equation. Livsic type theorems state that mea-
surable solutions to cohomological equations have Holder continuous versions. In
subsection (b), we prove an equivariant Livsic theorem and use this to investigate the
solutions of the cohomological equation.

In subsection (c), we state our main result, namely that provided hypothesis (H)
is satisfied, then generically \/—lﬁ Z;V: , ®0.57 converges in distribution to a nondegen-
erate equivariant n-dimensional normal distribution. The proof relies on the results
of subsection (a) and (b) together with recent results of Dolgopyat [5], Burns and
Wilkinson [4], and Field and Parry [6].

In subsection (d), we specialize our results to the cases G = 1, n > 1, and
G = SO(n), n > 2. In particular, in the case G = SO(n), generically we obtain
convergence to a nondegenerate standard normal distribution. In contrast, in the
case G = 1, generically the covariance matrix has nonzero offdiagonal entries.

(a) An n-dimensional equivariant central limit theorem

Let X be a compact Riemannian manifold and suppose that the base dynamics
f:X — X is a topologically mixing Axiom A diffeomorphism when restricted to
a hyperbolic basic set equipped with a Gibbs measure p. Let G be a compact con-
nected Lie group and define the product measure m = pu X vg on X x G. We consider
G-extensions S : X xG — X x G given by S(z, g) = (f(z), gh(z)) with h € C" (X, G).

In this subsection, we assume that S : X x G — X x G is rapidly mizing. That
is, for any £ > 1, and for all C*° functions ¢,v9 : X x G — R, there is a constant
C > 0 such that

S0l W)imiy) — [ wm\scj—k,

XxG XxaG XxG

for all 7 > 1. This assumption turns out to be valid generically provided hypothe-
sis (H) is satisfied by results of [4, 5, 6], see subsection (c).
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We start by stating a recent theorem of Liverani.

Theorem 5.1 (Liverani [10, Theorem 1.2]) Suppose that f : X — X is Az-
iom A and suppose that S : X x G — X x G is rapidly mizing. Let ¢ : X x G — R
be a C* function with mean zero ([ xxg®dm =0). Then, S satisfies a central limit
theorem for ¢. That is, there exists o > 0 such that for each interval I C R,

N-1
. 1 202
; L1 j - - —z? /20
]}%m{QEXXG-ﬁZ;¢(SQ)€I} (2#02)1/2/16 dz .
]:
Moreover, o = 0 if and only if the cohomological equation

o(y) = ¥(Sy) — ¥(y), (5-1)
has an L? solution v : X x G — R.

Remark 5.2 (a) Theorem 5.1 is a special case of [10, Theorem 1.2] also stated ex-
plicitly in Dolgopyat [5, Corollary 6.1].

(b) There is an extensive theory concerning central limit theorems for Axiom A dy-
namical systems and their generalizations, see Young [17] and references therein.

Theorem 5.1 gives conditions under which a sequence of random variables Xy :
X x G — R (specifically Xy = ﬁ Z;YZBI $0.S7) converges in distribution to a normal
distribution with mean zero and variance o2. Moreover, the theorem gives necessary
and sufficient conditions for the normal distribution to be nondegenerate (o > 0).

In this subsection, we generalize Liverani’s Theorem in two directions. First, we
prove the n-dimensional analogue, where ¢ takes values in R". Second, we prove an
equivariant analogue.

Suppose that X is a random vector taking values in R". Recall that X is said to
have an n-dimensional normal distribution with mean zero if the distribution function
of X is given by

1
(2m)"/2(det 5)1/2 /I exp{—;(E7"z, z)}da, -~

where ¥ is an n X n matrix, called the covariance matrix. It is easily verified that
Yk = E(X;X}), so that ¥ is symmetric and (Xz,2) > 0 for all z € R". The
distribution is said to be nondegenerate if ¥ is nonsingular, (equivalently, (Xz,z) > 0
for all nonzero z € R").2

The Cramer-Wold technique (see for example [3, Theorem 29.4]) enables us to
pass from 1-dimensional normal distributions to n-dimensional normal distributions:

2In the degenerate case detX = 0, the singular density function defines in the obvious way a
normal distribution concentrated on a proper subspace of R™.
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Lemma 5.3 Let X(N) = (Xi(N),---,Xn(N)) be a sequence of random vectors
with values in R™. Suppose that for any a = (oq,...,q,) € R", the sequence
> =1 @ X;(N) converges in distribution to a (possibly degenerate) normal distri-
bution with mean zero. Then X(N) converges in distribution to a (possibly de-
generate) n-dimensional normal distribution with mean zero and covariance matriz
¥ = {E(X;Xk) h<jken-

Moreover, if the sequence Z?Zl a;X;(N) converges to a nondegenerate normal
distribution for all a # 0, then X(N) converges in distribution to a nondegenerate
n-dimensional normal distribution. n

Let p denote a representation of G on R". A map ® : X xG — R" is G-equivariant
if ®(x,ag) = p.®(x,g) for all a € G. (Equivalently, ®(xz, g) = pyk(z) for some map
kE:X —R")

Similarly, a linear map ¥ : R® — R" is G-equivariant if p,¥ = Xp, for all g € G.
Finally, we say that an n-dimensional normal distribution is G-equivariant if the
covariance matrix ¥ is G-equivariant.

Theorem 5.4 Suppose that f : X — X is Axiom A and suppose that S : X x G —
X xX G 1s rapidly mixing Let @ : X x G — R" be a C* G-equivariant function with
mean zero. Then \/— ZN oS converges in distribution to a (possibly degenerate)
G-equivariant n- dzmenszonal normal distribution with mean zero. That is, there is a
G-equivariant n X n matriz X2 such that for each cube I C R",

N-1
. 1
J — _1lyy-1
Nh_r)rclmm{y eEX xG: \F jE_O o(Sy) € I} ) 2 (det )12 /IeXp{ (X7, ) Yd

The distribution is degenerate if and only if there is a G-invariant subspace V C
R", with associated orthogonal projection my : R™ — V', such that the restricted coho-
mological equation my® = Wo S — U has a G-equivariant L? solution ¥ : X x G — V.

Proof We introduce the sequence of random vectors X (V) : X x G — R" given
by X(N) = —~ ZN "® o057, Let m: R® — R be a linear function, and consider
the C'*° functlon ¢ =70 : X x G — R. Then ¢ has mean zero and it follows from
Theorem 5.1 that the sequence of random variables 7X (N) converges in distribution
to a normal distribution with mean zero. Since the projection 7 is arbitrary, it
follows from Lemma 5.3 that X (N) converges in distribution to an n-dimensional
normal distribution with mean zero and covariance matrix X.

If ® is G-equivariant then X (N) is G-equivariant and X (N)(z, ag) = po X (N)(z, 9)
for all a € GG. By left invariance of Haar measure,

m{(z,9) € X xG: X(N)(z,ag9) € I} =m{(z,9) € X xG: X(N)(z,g) € I}.
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It follows that X (N) and p,X(/N) converge to the same normal distribution. We
compute, making a change of variables, that for each a € G,

1 1 /51 1 / et
71 L w1 /9 —5 E e 1 E d
(det X)1/2 /Iexp{ (50 2) b (det X)1/2 [ —1; p{=3 (X e, a)}de
1 — p—
= G e s

It follows that p,Xp, ' = ¥ for each a € G so that 3 is G-equivariant.

It is immediate from the last statements of Theorem 5.1 and Lemma 5.3 that the
n-dimensional normal distribution is degenerate if and only if there is a projection
7 : R® — R such that 7® = 1) o S — v has an L? solution . In particular, it is
immediate that the distribution is degenerate if 7,® = ¥ o S — ¥ has an L? solution
¥ for some G-invariant subspace V.

Conversely, suppose that the n-dimensional normal distribution is degenerate.
Then there is a projection m and an L? function ¢ : X xG — R such that 7® = 1o S—
. For each g € G we can form the projection mp, : V' — R. Let K = Ny ker mp,.
Then K is G-invariant and has a G-invariant complement V' of dimension r say.

Choose group elements gi,...,9, € G with g; = e, such that the projections m; =
mpg = V' — R are linearly independent. That is, mjv = 0 for all j if and only
if v = 0. In addition, given vy,...,v, € R, there exists (a unique) v € V such

that mjv = v;. Let my : R® — V denote the orthogonal projection. Observe that
my® is G-equivariant. Define ®; = m;®y and compute that ®;(z,g) = #(z, g;9).
Define ¥,(z,9) = ¥(x,g;g9). By definition, ®; = ¥; 0 S — ¥; and it follows from
equivariance of S and ®y that ®; = ¥;05—V; for all j. Thus the measurable function
¥ : X xG — V with components 7;¥ = U, satisfies the restricted cohomological
equation 7y ® = W o S — U. Averaging over GG yields a G-equivariant solution ¥. 1

Remark 5.5 It follows from the theorem that we expect convergence to a standard
normal distribution (where the covariance matrix is a real multiple of the identity) if
and only if the action p of G on R" is irreducible.

(b) An equivariant LivSic Theorem

In this subsection, we continue to suppose that f : X — X is Axiom A when restricted
to a hyperbolic basic set A C X equipped with a Gibbs measure u. Again, we
suppose that G is a compact Lie group and define m = u x vg. We consider smooth
G-extensions S : X x G — X x G.

Let V be a finite dimensional vector space, and let p denote a representation of
G on V. Again, we say that a map ® : X x G — V is G-equivariant if ®(z,ag) =
pa®(z, g) for all a € G.
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Theorem 5.6 Suppose that the G-extension S : X x G — X x G is such that m =
X vg is ergodic. Let ® : Ax G — V be a G-equivariant Holder continuous function.
Then any G-equivariant measurable solution ¥ : A x G — V to the cohomological
equation

d=ToS—T (5.2)

has a Hélder continuous version. That is, there exists a Hélder continuous function
U’ : A X G — R such that V' = U almost everywhere.

Proof The proof combines the original argument of Livsic [11] with recent results
on partially hyperbolic sets [13].

Step 1 In [13, Theorem 4.1], local stable manifolds W*(z,g) C X X G are con-
structed for each (z,g) € A x G as Holder continuous graphs over the local stable
manifolds W#(z) C X. Moreover, the Holder exponents and constants are uniform
in z and g. The same is true of the local unstable manifolds W*(z, g). (We note
that the partial hyperbolicity assumption in [13] is automatically satisfied since G is
compact.)

Step 2 Choose a metric dx on X and a right-invariant metric dg on G. Define
the right-invariant metric d on X x G by setting d((acl,gl), (:Cg,gz)) = dx(z1,z2) +
dg(g1, g2)- It follows easily from the local product structure on A together with the
uniform Holder continuity of the local manifolds W*(x,g), W*(z,g) that we have
the following analogue of local product structure on A x G. There exists € > 0 such
that if (z1,91), (z2,92) € A x G satisfy d((z1,91), (22,92)) < € then W(z1, 1) N
Ws(xo,bg2) N A X G # () for some b € G. For notational convenience, we scale dg so
that dg(b,e) < 1 for all b € G.

Step 3 It follows from the original argument of Livsic that ¥ is Hélder continuous
on W#(x,g) and W*(x, g) for almost every (z,g) € A x G. In fact, it follows from
equivariance of ¥ that Holder continuity holds on W#(z, g) and W¥(z, g) for almost
every x € A and for every g € G. As usual, the Holder exponent o > 0 and constant
K > 0 are uniform in (z, g).

Step 4 Let € > 0 be as in Step 2, and suppose that d((z1,g1), (z2,92)) < €. By
Step 2, we may choose (z,g9) € A X G and b € G such that (z,9) € W*(x1,91) N
W*#(z9,bg2). By ergodicity on A x G together with the absolute continuity of the
foliations {W*(z,g)}, {W"(x,g)} [13], for almost every 1,z and for all g;, go, we
have

Y (21,91) — ¥(z,9)] < Kd((l'l,gl), (x,g))a, (5.3)
¥ (x, 9) — W@z, bge)| < Kd((w,9), (w2, bg2))", (5.4)
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by Step 3. (Again, o and K are absolute constants.) In addition, there is a Lipschitz
constant K such that

oo — I|| < Kidg(b,e) < Kidg(b,€)* = Kidg(bga, g2)* = K1d((22,b92), (72, 92))",

for all (z9,92) € A X G, and for all b € G. Hence, it follows from equivariance of ¥
that

| (2, bga) — U(w2, 92)| = [(pp — 1)U (2, g2)| < K1 |¥(w2, go)|d (w2, bgo), (152’92)2;-5)

Together, inequalities (5.3,5.4,5.5) imply that there are absolute constants ¢ > 0,
o > 0 and K3 > 0 such that

U(21,91) — U(22,92)| < Kod((21,91), (22, 92))°,

for almost all (z1, g1), (2, g2) that are e-close. In this way, we obtain uniform Holder
continuity in an e-neighborhood of (x9, go) for almost all (3, g2) and hence Holder
continuity on the whole of A x G. |

We are now able to give precise conditions that determine the degeneracy or
nondegeneracy of the normal distribution in Theorem 5.4.

Corollary 5.7 Assume the hypotheses and conclusions of Theorem 5.4. The follow-
g are equivalent:

(i) The normal distribution is degenerate.

(ii) There is a G-invariant subspace V- C R"™ such that the sequence my E;v:_ol D(S7(y))
is bounded uniformly iny € A x G and N > 1.

(11i) There is a G-invariant subspace V. C R™ such that the cohomological equation
my® =WoS — W has a Hélder solution V.

(In cases (ii) and (iii), the covariance matriz 3 satisfies X|y = 0).

Proof Statements (i) and (iii) are equivalent by Theorems 5.4 and 5.6. If 7y, Z;.V:_Ol do
S7 is bounded, then it is immediate that \/LNWV Z;.v:_ol ® o S7 converges to the degen-
erate distribution supported at 0 showing that (ii) implies (i). Conversely, suppose
that my® = ¥ oS — ¥ has a Holder solution ¥ : X x G — R. In particular,

Ty Z;.V:_Ol P05 =Wo SN —T. Since A X G is compact and ¥ is continuous, it follows

that the sequence 7y Z;.V:_Ol ® o S7 is bounded, so (iii) implies (ii). |
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Write S(xag) = (f(fE),gh(.T)), ﬂ—V(P(xag) = pgk(x)’ and \Ij(xag) = pgg(ft) The
restricted cohomological equation 7y ® = ¥ o S — ¥ reduces to the equation

kE(z) = pra)l(fr) — (). (5.6)
The next result shows that typically this equation has no continuous solutions.

Lemma 5.8 Let X be a topological space, G be a compact topological group, and
p: G — L(R") be an orthogonal representation of G. Let h : X — G be continuous.
Suppose that f : X — X is a homeomorphism with a fized point xq € X, and that
there is a “homoclinic point” x € X with the property that x # zo and fY(x) — x¢
as N — Foo.

Then there is an open and dense set of functions k : X — R" in the C" topol-
ogy (for each r > 0) such that the cohomological equation (5.6) has no continuous
solutions £ : X — R".

Proof Let A = py(y,) — I. The proof divides into two cases: A singular and A
nonsingular. First, we show that equation (5.6) has no solutions unless k(xg) lies
in the range of A, which deals with the case A singular. In the case when A is
nonsingular, we use the fact that x is homoclinic to choose a neighborhood U of x
such that f7(z) ¢ U for all |j| > 1. The value of k(z) can be changed slightly by a C"
small perturbation supported in U and we show that equation (5.6) has no continuous
solutions for every perturbation of this form.

Suppose that £ : X — R" is a continuous solution to equation (5.6). Then
in particular k(zo) = Al(xg), so that k(xq) lies in the range of A as claimed above.
Hence, we may suppose from now on that A is nonsingular, so that £(zo) = A k(xy).

Now we use the homoclinic point z. Define h; € G as follows:

- { h(@)h(fz) - h(f"2); jz1
! h(f 7o) th(fPa) ™ h(f) T G <1
and hy = e. It is easily verified that
hsh(f7z) = hysa, (5.7)
for all j € Z. Using equations (5.6) and (5.7), we compute that

Z pnk(fIz) Z onint(f71 z) — (fz))

N
= D o l(F0) = prgb(F72) = pn o L(FYP0) = pu_y £ 2).
j=—N
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Passing to a subsequence, we may suppose that hy — h* as N — £o00. Then
N
Z pr;k(fx) = (pn+ — pn-)E(w0) = (pn+ — pu-) A~ k(o).
j=—N

Changing the value of k(z) by a perturbation supported in U, as described above,
leads to a corresponding change in the limit of the left-hand-side expression yielding
the required contradiction. |

(c) Nondegenerate central limit theorems

We continue to suppose that f : X — X is a topologically mixing Axiom A diffeo-
morphism when restricted to a hyperbolic basic set A C X equipped with a Gibbs
measure p, and that R" is a representation of a compact connected Lie group G.
Suppose that S : X x G — X x (G is a rapidly mixing G-extension of f and that
®: X XxG — RisaC*™ function with mean zero. We proved in Theorem 5.4 that
LN Z;.V:_Ol ® o S’ converges in distribution to a G-equivariant n-dimensional normal
istribution with mean zero.

To apply Theorem 5.4, we need hypotheses that guarantee that S is rapidly mix-
ing. It turns out that S is generically rapidly mixing provided we assume hypothe-
sis (H) stated at the beginning of this section. Sufficiency of hypothesis (H) is shown

by the following recent results of Field and Parry [6] and Dolgopyat [5].

Theorem 5.9 (Field and Parry [6, Theorem 5.1.1]) Suppose that hypothesis (H)
is satisfied. (For alternative assumptions on f, see [6].) Suppose that S : X x G —
X X G 1s C" wherer > 1. Then generically S is stably ergodic. That s, the subset
of C" extensions h : X — G for which m = u X vg is ergodic is open and dense in
the C" topology. |

Theorem 5.10 (Dolgopyat [5, Corollaries 1.2 and 1.3]) Suppose that hypothe-
sis (H) is satisfied. If S: X x G — X x G is a stably ergodic extension of f then S
s rapidly mizing. |

Theorem 5.11 Suppose that f : X — X 1is a topologically miring Aziom A dif-
feomorphism, and let R™ be a representation of a compact connected Lie group G.
Suppose that hypothesis (H) is satisfied. Then there is an open and dense set of G-
extensions S : X xG — X xG and mean zero G-equivariant functions ® : X xG — R"
in the C" topology (for each r > 1) such that \/Lﬁ Z;.V:_Ol ® 0 87 converges in distribu-
tion to a nondegenerate G-equivariant n-dimensional normal distribution with mean

ZETo.
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Moreover, the distribution is a general nondegenerate G-equivariant normal dis-
tribution. More precisely, if X(®) is the covariance matriz associated with a G-
equivariant map P, then the mapping ® — X(®) is an open mapping onto the set
of G-equivariant positive definite symmetric matrices.

Proof By Theorems 5.9 and 5.10, generically the corresponding G-extension S : X X
G — X X G is rapidly mixing. Hence, by Theorem 5.4, ﬁ Z;.V:_Ol ® o S’ converges in
distribution to a G-equivariant n-dimensional normal distribution with mean zero. By
Lemma 5.8, generically the cohomological equation (5.6) has no continuous solutions,
guaranteeing nondegeneracy of the normal distribution by Corollary 5.7.

It remains to show that X is a general G-equivariant symmetric positive definite
matrix. A computation using change of variables (similar to the proof of equivariance
of ¥ in the proof of Theorem 5.4) shows that if A is an nx n matrix then the sequence
\F ZN ' A®0S7 converges in distribution to the normal distribution with mean zero

and covariance matrix AXA”. In particular, in the absence of symmetry, the result
follows from the fact that all positive definite symmetric matrices are congruent.
When symmetry is present, we require some elementary representation theory (over
R). First, write R" = W1 ®- - -@W, where Wy, ... , W, are the isotypic components for
the action of G' (so each Wj is a direct sum of isomorphic irreducible representations,
and distinct W;’s consist of distinct irreducible representations). It is immediate that
X=X ®---® %, where ¥; : W; — W,. Hence, we may suppose without loss of
generality that R" is a single isotypic component. Second, write R" =V @& --- @V
(s copies) where V' is an irreducible representation of G. The real version of Schur’s
Lemma states that the space of G-equivariant linear maps on V' is a real division ring
D isomorphic to R, C or H. Hence ¥ (and A) is identified with an s x s matrix with
entries in D. When D = R, we have reduced to the case without symmetry, and the
cases D = C and D = H are proved in a similar way as the case without symmetry. i

(d) Special cases: G =1 and G = SO(n)

Example: G = 1 Suppose that f : X — X is a topologically mixing Axiom A
diffeomorphism. Then there is an open and dense set of mean zero functions @ :
X — R" in the C" topology (for each r > 1) such that \/— ZN '® o f7 converges in
distribution to a general nondegenerate n-dimensional normal dlstrlbutlon with mean
zero. That is, for each cube I C R",

N-1
1
J — Lyt
A}l_I}n m{y €eX: \/N jE_O ®(S7(y)) € I} ) (Aot )1 /Iexp{ 5(X7 7, z) bz,

where Y. is a general n X n covariance matrix.
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Example: G =SO(n) Suppose that f: X — X is a topologically mixing Axiom A
diffecomorphism, and that G = SO(n) acts in the standard way on R". If n = 2,
suppose further that f is Anosov. Then there is an open and dense set of SO(n)-
extensions S : X x SO(n) — X x SO(n) and SO(n)-equivariant functions @ :
X x SO(n) — R" in the C" topology (for each r > 1) such that LN Z;.V:_Ol ® o 5
converges in distribution to a nondegenerate n-dimensional normal distribution with
mean zero and covariance matrix o2I,, where o > 0. That is, for each cube I C R",

N-1
]\}I_I)I;om{y € X xSO(n) :

3

; 1 —lzl2/202
(I)(Sj(y))el}zm/e /2 dx .
i=0 !

6 Extensions of hyperbolic base dynamics

In Section 4(b), we gave conditions under which €(NV) is unbounded. We now spe-
cialize to the case when the underlying dynamics is Axiom A. Using the equivariant
central limit theorems established in Section 5, we investigate convergence in distri-
bution of ﬁe(N ) to a nondegenerate n-dimensional normal distribution.

Throughout this section, X is a compact Riemannian manifold and the base dy-
namics f : X — X is a topologically mixing Axiom A diffeomorphism when restricted
to a hyperbolic basic set equipped with a Gibbs measure u. Let I' = G x R" where
(G is a compact Lie group and define the product measure m = u X vg on X x G. We
consider I'-extensions 7" : X x I' = X x I'. As in Section 5, our main results require
that hypothesis (H) is valid.

We view the ['-extension 7" as an R"-extension of the G-extension S : X x G —
X x G. Let {vg4(N), N > 1} denote the R" component of the trajectory on X x I'
with initial condition (z, g,0). By Proposition 2.1,

N-1
Vag(N) = pg 3, Py k(17 (2)),
=0

where hj(z) = h(z)h(f(z))---h(f7~'(z)). Recall that we write
V3,9(N) = NT + €5 4(N),
where ¥ is the mean growth and €(N) is sublinear.

Theorem 6.1 Let f: X — X be Aziom A, and I' = G x R™ where G is a compact
connected Lie group. Suppose that hypothesis (H) is satisfied.

Then there is an open and dense set of I'-extensions T : X x I' = X x I in the
C" topology (for each r > 1) such that \/—%e(N) converges in distribution to a general
nondegenerate G-equivariant n-dimensional normal distribution with mean zero.
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Proof Consider the G-equivariant function ® : X x G — R" given by ®(z,g) =
pgk(x) — v. By definition, o = [, . pgk(z)dm so that ® has mean zero. Moreover,

ey(N) = Z;-V:_Ol ®(S’(y)). Now apply Theorem 5.11. |

Remark 6.2 In the special cases I' = R" and I' = SE(n), we obtain the more precise
results described in subsection 5(d).

7 Extensions of quasiperiodic base dynamics

In this section we consider smooth noncompact group extensions of quasiperiodic
flows and maps. As usual, we restrict attention to groups of the form I' = G x R"
where G is a compact connected Lie group. _

The base dynamics takes the form of an irrational torus flow # = o on 7™ or an
irrational torus map f(#) = R.0 = 0+ «. The results depend heavily on whether « is
Diophantine or non-Diophantine. For example, suppose that I' = SE(2) in the context
of flows. Then for almost all @ (Diophantine) the dynamics on 7™ x SE(2) is bounded
for almost every sufficiently smooth extension. In contrast, there is a generic set of «
(non-Diophantine) for which the dynamics on 7™ x SE(2) is generically unbounded
in the C'" topology for any r > 1.

Subsection (a) contains some basic estimates involving Fourier coefficients and
Diophantine approximations. In subsection (b), we consider the case when « is Dio-
phantine. In subsection (c), we consider the case when « is non-Diophantine. We note
that our results in subsection (b) are restricted to the case of flows with G abelian.

(a) Preliminaries

The results in this section rely heavily on certain estimates on the magnitude of
Fourier coefficients and on certain Diophantine inequalities.

Proposition 7.1 Suppose that ¢ : T™ — R has Fourier series ¢(0) = D icym a;e? 50
where a_; =a;. Let r > 1.

(a) If ¢ is C", then a; = O(|j|™").

(b) If a; = O(|j|"%) where d > r +m, then ¢ is C". Moreover, the Fourier series
for partial derivatives up to and including order r are uniformly convergent.

Proof These estimates are standard when m = 1, see for example [9]. They are
also well-known when m > 1, but are recorded here for convenience. Part (a) follows
from integration by parts just as in the case m = 1. Indeed, a; = o(|j|™").
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To verify part (b), write the Fourier series in the form » ;.4 32—, a;e'9 . Con-
. >

sider the partial derivative where 7y + --- + 1, = r. We apply this

ooyt ---00rm
differential operator term by term to the Fourier series and show that the result-
ing series converges uniformly. The J’th term becomes b; = Z| il=J a;-e“j’g), where
a; =i"j;" -+ - jyraj. Hence

!
bs] < ny gﬁ}]{laﬂ <nyJ" mg’ﬂaﬂ;

where ny is the number of vector integers j € Z™ satisfying [j| = J. The estimates
la;] = O(]j]~%) and n; = O(J™ ') guarantee that |b;| < O(J-@7™+)). Since
d > r + m, the series ) ;- bs is uniformly convergent as required. |

Proposition 7.2 (a) Let v > 0. Then for almost every a € R™, there ezists a
constant ¢ > 0 such that

(4, a)| > ¢|j|~ ™), for all nonzero j € Z™. (7.1)

(b) Let « € R™ and v > 0. Then for almost every by € R, there exists a constant
¢ > 0 such that

b + (4, a)| > ¢|§|~™) | for all nonzero j € Z™. (7.2)
Equations (7.1) and (7.2) are referred to as Diophantine conditions and « satis-
fying Proposition 7.2(a) and the pair «, by satisfying Proposition 7.2(b) are termed
Diophantine. If o is not Diophantine we have the following result.
Proposition 7.3 Let v > 0. Let D C R™ be the set of vectors a € R™ such that
la—p/gl <q” (7.3)

has infinitely many solutions p € Z™, ¢ > 1. Then D is a dense G5 in R™.

Proof For each ¢ > 1, define B, = {a € R™ : |a — p/q| < ¢, for somep € Z™}.
Define C,, = Ug>p By, for n > 1. It is immediate that C), is open in R™, and C, is
also dense since Q™ C C, for all n. Thus D = N,>1C,, is a dense Gj. |
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(b) Diophantine quasiperiodic base

In this subsection, we show that for sufficiently smooth SE(2)-extensions of quasiperi-
odic flows, it is almost always the case (in the measure theoretic sense) that trajec-
tories are bounded.

Theorem 7.4 Consider the irrational torus flow 0 =aonTm. Then, for almost
every a € R™, and for almost every sufficiently smooth SE(2)-extension (h,k) :
T™ — SE(2) = SO(2) x R?, the dynamics on T™ x SE(2) is bounded.

More precisely, let by denote the 0°th Fourier coefficient of h. Then it is suffi-
cient that h is C*™*2, that k is C*™*, and that o and by satisfy the Diophantine
conditions (7.1) and (7.2) respectively, with v € (0, 1).

Proof We can write the SE(2)-extension in the form
b=a,  o=h(001), ©=eVk(1)).

In particular, the (;S equation is given by

b= Z bet0(0) = Z betthalt,

jezm jezm
where b; € C, b_; = b;. Since h is smooth, we can integrate term by term to obtain
(1) = bot + R(6(t)),

where R : T™ — R is given by R(0) =", iéja) eiid),

Now, we define a function S : T™ — C given by S(0) = e®Ok(h). As shown
below, our hypotheses guarantee that S is smooth and hence can be written as a
Fourier series S(0) = ./ d;e'9?  with coefficients d; € C. The v equation then

takes the form

0= ei¢(t)k(9(t)) — eiboteiR(ﬂ(t))k(e(t)) — ibot Z djei(j,a)t.

jezm™

Integration yields

v(t) = Z %ei(j"")t. (7.4)

jezm b0+ <]a OJ))

We claim that S is smooth (justifying the formal calculations above) and moreover
that v(t) is bounded as required.
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It remains to verify the claim. By Proposition 7.1(a), [b;| = O(|j|~“™*?). Since

(g,cx)
all j. By Proposition 7.1(b), R is C?™*L. Since k is C*™*! we see that S is C?™+!

verifying the first part of the claim. Moreover, |d;| = O(|j|7?™*1)). This estimate
combined with condition (7.2) yields

« satisfies equation (7.1) for some ¢ > 0, we have that ‘ b ‘ = O(|§|~@m+2=1) for

d;

— | = O(|j| ).
bo + (4, @) (11 )

It follows as in the proof of Proposition 7.1(b) that the trigonometric series (7.4) for
v(t) is uniformly convergent and hence that v(t) is bounded. |

Remark 7.5 The set of o and by for which the theorem is valid can be made larger
by increasing v to be any positive constant, at the cost that we require more regularity
for the extension (h, k).

Remark 7.6 Theorem 7.4 has applications to certain bifurcations of spiral waves
considered in [15]. The symmetry group is SE(2) and there is a transition from
periodic base dynamics (meandering spirals) to quasiperiodic base dynamics. (Due
to drifts along the SE(2) group orbits, this is a transition generically from a two
frequency motion to a three frequency motion.) Sandstede et al. [15] point out that the
quasiperiodic base dynamics leads to typically sublinear growth, whereas we predict
typically bounded growth.

The methods in this subsection extend directly to groups I' = G' x R" for which
G is compact and abelian. As in the case of extensions of periodic flows, the results
depend on whether Fix(G) = {0} (for example, I' = SE(2)) or Fix(G) # {0} (for
example I' = R").

Theorem 7.7 Consider the irrational torus flow 0=aon T™, where a is Diophan-
tine. Let ' = G x R" where G is a compact abelian Lie group and suppose that

¢:T™ — T is sufficiently smooth (C*™** is sufficient). Then

(a) The R™ component of each trajectory can be written as v(t) = vt + €(t) where
7 € R" and €(t) is bounded,

(b) If Fix(G) = {0} then v = 0 for almost every extension ¢, and
(c) If Fix(G) # {0} then © # 0 for almost every extension (.
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Proof Write G = T* where s > 1 and write g = (¢y,...,¢s) € G. The irreducible
representations of G' have dimension either one or two. We consider one by one the
irreducible representations for the action of G on R". It is sufficient to prove that
(i) if G acts irreducibly but nontrivially on R? then typically v(t) is bounded; and
(i) if G acts trivially on R then typically v(¢) = 0(t) + €(t) where v # 0 and €(t) is
bounded.

In case (i), the proof proceeds in identical manner to the proof of Theorem 7.4.
The ¥ equation takes the form

b = el ProrOF4psds(D) k(9 (1)),

where pq, s Ds € Z are not all zero. Let by; denote the constant term in the Fourier
series for ¢;. Then,

O = lP1boi+-+psbo,s)t E djei(j,aﬁ,

Jje™

where d; € C. Hence for almost every choice of by 1, ..., by s, there are no constant
terms in the expansion of 0. As in the proof of Theorem 7.4, v(t) is almost always
bounded.

In case (ii), v = ZjeZm d;e’9®* Hence ¥ = dy which is typically nonzero, and
v(t) — dpt is almost always bounded as before. |

Remark 7.8 (a) Comparing Theorem 7.7 with Proposition 3.1, we see that the con-
clusions for sufficiently smooth extensions of Diophantine quasiperiodic flows with GG
abelian are identical to the conclusions for extensions of periodic flows.

(b) The results in this subsection do not easily extend to maps. However, the case
of degree zero extensions of quasiperiodic maps follows immediately from the results
for flows.

(c) Non-Diophantine quasiperiodic base

We have seen that typically (with probability one) trajectories are bounded for smooth
SE(2) extensions of Diophantine quasiperiodic flows. In contrast, we show that gener-
ically trajectories are unbounded (cf. Definition 4.1) for smooth extensions of non-
Diophantine quasiperiodic flows (and maps). It is convenient to prove the result first
for maps. The result for flows follows immediately.

The idea behind the proof is (i) that non-Diophantine quasiperiodic dynamics can
be approximated by periodic dynamics of high period, and (ii) for certain compact Lie
groups GG, we can perturb G-extensions of periodic dynamics of high enough period
¢ so that the dynamics for the G-extension is periodic of period ¢ (cf. Section 4(a)).
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Proposition 7.9 Suppose that G is a compact manifold. Let r > 1. Then there is
a constant D > 0 with the following property. Suppose that there are finite sets of
points {x;} € T™ distinct, and {¢;} € G. Let d = min,;4; |x; — x;| > 0. Then there is
a smooth function n: T™ — G such that n(x;) = g; for all i and |n|, < D/d".

Proof First, consider the similar problem with 7™ replaced by R™ and ¢ = 1. Since
G is compact, it is clear that there is a uniform constant C, > 0, depending only on
G and 7, such that there is a smooth function f : R™ — G with specified values at
sets of points separated by distance at least one, such that |f|, < C,. Now consider
the function n(y) = f(y/d). Then n takes specified values at sets of points separated
by distance at least d and |n|, < D/d" where D = max{C,...,C,}. This result
transfers to 7™ with the obvious modifications. |

Lemma 7.10 Let f = R,;, : T™ — T™ be a rational torus map where p € 7™,
g>1. Let T'= G x R" where G is abelian. Suppose that ( = (h, k) : T™ =T isa C"
extension, where r > 1.

Fiz xo € T™, and let 6 > 0. Suppose that ¢ > diam G /6. Then there exists a C”
extension C = (h, k) : T™ — T such that |C(7Y|, < & and

Y4

igg(w0) — keg(20)| = Do (7.5)

for all £ > 1, where D s a constant that depends only on r and L.

Proof Since z; is ¢g-periodic and G is abelian, it follows, as in the proof of Theo-
rem 4.4, that there is a small constant perturbation h of h such that h,(xo) = e. It is
clear that the perturbation can be chosen so that |k — A, = [h— ko < diam G/q < 6.

Let n(fizy) = p,:jl(wo), 0 < j < g. The points f7(z,) are equally spaced at distances
1/q from each other, and the image of p : G — L(R") is compact, so it follows from
Proposition 7.9 that 1 extends to a smooth function n : 7™ — L(R") such that
Inlr < Dq" for some constant D that depends only on 7 and T.

Now, let w € R be a vector of unit length and define k(z) = k(z) +

Then |E — k|, < 4. By Proposition 2.1,

kq(0) = kq(o) +

{n(@0)w + o5, ooy 1(F (@) + -+ 5, o1~ (0w |

Dq"
kq(0) + g {w+ - +w} = ky(zo) + 0
= €T w . w ] €T w.
T Dy a0 Dgr-1
Since TLq(mo) = e, it follows, as in the proof of Theorem 4.4, that qu(a:o) = kgo(zo) +
%w for all £ > 1 as required. 5
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Theorem 7.11 Let f = R, : T™ — T™ be an irrational torus map. Let ' = G x R"
where G is abelian, and fix r > 1. Then for a residual set of o € R™ there exists
a residual set of C" extensions ¢ : T™ — I' for which the dynamics on T™ x I is
unbounded.

More precisely, choose v > 3(r + 1). If a is such that the inequality (7.3) has in-
finitely many solutions then the dynamics is unbounded for a residual set of extensions
¢ wn the C" topology.

Proof Let (= (h,k): T™ — I". We have the I'-extension T,(z, g,v) = (Rax, gh(x), v+
pok(z)). Also, for any p € Z™, ¢ > 1, we have the I'-extension Tp4(z,g,v) =
(Rp/qx, gh(x),v + pyk(x)). Taking iterates, we have

Tg(l" €, 0) = (Rjax’ hj,a(x)’ kj,a(x))’

and similarly for Tg /- Here, hj, and k;, are defined in the usual way (cf. Proposi-
tion 2.1) but we require the additional subscript to indicate the base transformation.
We claim that there exists a constant C', independent of «, p, ¢ and j, such that

ko = kjpral < Cj°la—p/ql.

We show how the result follows from the claim. Let 6 > 0 and M > 0, and choose
g € T™. We show that there is a perturbation of ( that is d-small in the C"
topology such that the perturbed extension { = (h, k) satisfies |k;o(x0)| > M for
some j > 1. It follows that the set of extensions with unbounded trajectories is a
countable intersection of open and dense subsets.

Fix r > 1 and suppose that v > 3(r + 1). Choose ¢ > 1 such that

diamG 04 oy Y om (7.6)

9275 oD =30

(Here, D > 0 is defined in Lemma 7.10.) Since inequality (7.3) has infinitely many
integer solutions, we can choose ¢ > 1 satisfying inequalities (7.6) and p € Z™ such
that |« — p/q| < 1/¢”. Taking j = ¢"*! in the claim, we have that

kgt — kgrti gl < C(@H)? /g = C/g" 730+ < M.

By (7.6), we have ¢ > diam G/§ and so can apply Lemma 7.10. Taking £ = ¢"
in (7.5), we can make a perturbation of size less than ¢ in the C” topology so that
|kgr+1,7g(0)| > 2% > 2M. Hence

‘qu+1’a($0)‘ > |kq“+1,p/q(x0)‘ — |qu+1,a($0) — qu+1,p/q(l'o)‘ >2M - M=M
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as required.

It remains to verify the claim. Let |h|s and |k|4 denote the norms of h and k in
the C? topology. By Proposition 2.1,
i1

(Phy o)k (2 + 50) = ph, @)k (2 + 5D/q))
s=0
j—1

‘phs W@ k(z + sa) — phs,p/q(w)k(:r + sa)‘

Kja() = Kjp/q()] =

Jj—
Z ‘phs p/q m)k T+ Sa) phs,p/q(w)k(x + Sp/q)‘
s=0

j—1 j—1
< Phan@ — Pha,u@lElo + D [Elisla = p/ql.
s= s=0

=0
Now h,o(%) = hs_1,4(z)h(z + (s — 1)a) and similarly for A, ;/,. Hence
|Phosa(@) = Phypyo(@)| = [Pho s a(@)Phiat(s-1)a) = Phy_s psa(@) Phiz+(s-1p/0)]
< Phy 1 0(2) Phiat(s—1)a) = Phy_y p)q(@) Phiz+(s—1)a) |
F [Phy_1 g (@) Phlat(s—1)a) — Phy_q(@)Phiz+(s—1)p/q) |
< |Phe_ra(@) = Phy_y e T+ [PIIAlL(s = 1) = p/q].
It follows by induction that

|Phaa@) = Phoyse(@)| < 5(s = 1)(s = 2)|pl |l lla — p/al.

Hence
j—1 j—1
|k () = kjprq()] <D (s = 1)(s = 2)lpl[Blila — p/a|+ Y slkhi|a - p/q
s=0 s=0
< (7%[pllhly + 7%[k[1) o — p/q| < C5°le = p/q,
for some constant C' > 0. This proves the claim. |

Remark 7.12 (a) As in Section 4, we can replace the condition that G is abelian
by the condition that Fix(T) # {0} where T is a maximal torus in G. Thus, for the
Euclidean groups I' = SE(n), our result applies to the cases n = 2 and n odd. We
conjecture (cf. Remark 4.6(b)) that Theorem 7.11 holds for G an arbitrary compact
Lie group.

(b) For extensions of a quasiperiodic flow we take the time 7 map and perturb the
vector field to obtain the same result.

(c) When r = 1, we require only that v > 3 in Theorem 7.11.
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