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Abstract

Meandering of a one-armed spiral tip has been noted in chemical reactions and
numerical simulations. Barkley, Kness and Tuckerman show that meandering can begin
by Hopf bifurcation from a rigidly rotating spiral wave (a point that is verified in a B-Z
reaction by Li, Ouyang, Petrov and Swinney). At the codimension two point where
(in an appropriate sense) the frequency at Hopf bifurcation equals the frequency of the
spiral wave, Barkley notes that spiral tip meandering can turn to linearly translating
spiral tip motion.

Barkley also presents a model showing that the linear motion of the spiral tip is
a resonance phenomenon, and this point is verified experimentally by Li et al. and
proved rigorously by Wulff. In this paper we suggest an alternative development of
Barkley’s model extending the center bundle constructions of Krupa from compact
groups to noncompact groups and from finite dimensions to function spaces. Our



Figure 1: Epicycle motion of spiral tip: outward and inward petals.

reduction works only under certain simplifying assumptions which are not valid for
Euclidean group actions. Recent work of Sandstede, Scheel and Wulff shows how to
overcome these difficulties.

This approach allows us to consider various bifurcations from a rotating wave. In
particular, we analyze the codimension two Barkley bifurcation and the codimension
two Takens-Bogdanov bifurcation from a rotating wave. We also discuss Hopf bifurca-
tion from a many armed spiral showing that meandering and resonant linear motion
of the spiral tip do not always occur.

1 Introduction

Spiral waves have been observed both in experiments [20, 13, 14] and numerical simulations
[13, 4]. See Kapral and Showalter [11] for descriptions of recent work on spiral waves and
for additional references. In our discussion we focus on one particular aspect of spiral wave
theory — the observation by Barkley [3] that linear meandering of the spiral tip is caused
by Euclidean symmetry.

Planar spirals rigidly rotate and, as a result, the tip of the spiral traces out a circle in
the plane. Winfree [20] observed that under certain circumstances the tip of a spiral can
meander and create flower-like movements as in Figure 1. These motions are quasiperiodic
two frequency motions, which can be thought of as an epicycle motion superimposed on the
basic spiral wave circle. When the motion on the epicycle is in the same orientation as the
motion on the circle (either clockwise or counterclockwise), then the petals of the flowers
point in; when the motions have the opposite orientation, the petals point out. Winfree
observed both types of quasiperiodic motions and the possibility of changing the directions
of the petals — which we call a change in petality — as a system parameter is varied.



The epicycle motion can be written as
q(t) = (2, + e ™20z, (1.1)

where z; € R and 2, € C. In these coordinates the change in petality occurs when w; = ws.
We note that in order to see well-defined petals the ratio of the amplitudes |z5|/|21| should be
large. Nevertheless, these quasiperiodic states can be formed, as Barkley et al. [4] observed
in numerical simulations of a reaction-diffusion system, through a Hopf bifurcation from
the rotating spiral wave. That observation has been confirmed in recent chemical wave
experiments by Li et al. [14].

In the epicycle motion (1.1), Hopf bifurcation corresponds to the secondary amplitude
z9 = 0. From the standard bifurcation theory point of view, there is nothing significant about
Hopf bifurcation at this critical parameter value where w; = wy. However, in Barkley’s nu-
merical simulation [1] and in experiments such as those by Li et al. [14] another phenomenon
is observed. As the change in petality is approached, the radius of the second frequency |zo|
grows unboundedly large. In particular, at the point of petality change, the spiral tip ap-
pears to drift in a straight line off to infinity. See Figure 2. Thus, unbounded growth of the
second frequency amplitude is a feature that seems to be connected with change in petality.

As we mentioned, for changes in petality to be observed, the amplitude of the epicycle
should be large, while near Hopf bifurcation points, this same amplitude must be small. This
dichotomy suggests that standard Hopf bifurcation by itself cannot provide an explanation
for petality change and unbounded growth. However, Barkley [3] made the keen observation
that Euclidean symmetry coupled with Hopf bifurcation is behind the unbounded growth
that accompanies changes in petality. The basis of his argument turns out, in retrospect, to
be quite simple.

Suppose we consider a reaction-diffusion system on the unbounded plane. Such systems of
equations have Euclidean symmetry. Suppose the system has a spiral wave solution and that
the time-periodic spiral wave undergoes a Hopf bifurcation to a quasiperiodic motion. At the
point of Hopf bifurcation, symmetry forces (at least) five eigenvalues of the linearized system
to be on the imaginary axis — two generated from Hopf bifurcation and three generated by
Euclidean symmetry. Assuming that center manifold ideas hold, the time evolution of the
meandering spiral (and hence the time evolution of the meandering spiral tip) is described
by a five dimensional Euclidean equivariant system of ODEs. There are three variables of
this system representing the Euclidean group — the translation variable p € R? = C and
the rotation variable ¢ € S — and the variable ¢ € C representing the amplitude of the
eigenfunction of Hopf bifurcation.
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Figure 2: Growth of flower near change in petality: path of [} ¢(s)ds, where g(t) is as in
(1.1) with w; =1, 2 = 1, 20 = 0.3 and w, = 0.61,0.85,1, 1.11.

In these variables Barkley [3] assumes that the translation symmetry acts by

T,(p,0,q) = (p+z,9,49).

It follows that the ODE vector field is independent of p and that the (¢, ¢) equations decouple,
see Lemmas 3.6 and 4.1 in this paper. Suppose that a quasiperiodic solution is found in the

(p,q) equations. Then p is obtained by integration. To understand how this integration
causes unbounded growth in p, rewrite (1.1) as

q(t) — eiw1t21 + ei(w1—wg)t22.
Then, for some constant C' € R,

t 1 (zpint 1 2o eilwi—w2)t +C w w
o) = | q(T)dT{ (et 4 gEge ) 40wt
0

Z.fd—lle“"lt + 29t +C W] = Ws.



It follows that if zo # 0, then as w, approaches w; a resonant blow-up in p(t) occurs. In
particular, when wy —w; # 0 is small the amplitude of the second term is large, the motion of
the second term is on a circle of large radius, and the motion of p(t) is a small perturbation
of this circular motion. (The center of this circle is determined by C.) Thus, this blow-up
is the source of the unbounded growth of the second frequency mode and occurs even when
the magnitude of 2o is small.

Barkley [2] performed a numerical linear stability analysis for the basic time-periodic
spiral wave solution and showed that there is a Hopf bifurcation. In particular, a simple
pair of eigenvalues were shown to cross the imaginary axis while three neutral eigenvalues
lie on the imaginary axis and the remainder of the spectrum is bounded into the left-half
plane. Starting from Barkley’s numerical calculation, Wulff [21], in a major mathematical
work on spirals, has given a rigorous proof that resonant unbounded growth occurs in Hopf
bifurcation near the codimension two point where w; = wo. Wulff approaches the study of
this Hopf bifurcation using Liapunov-Schmidt reduction. Her proof is nontrivial, as there
are technical difficulties, such as the nonsmoothness of the group action, which must be
overcome.

In this paper we suggest an alternative to the methods in [21], which we believe helps
in the understanding of the work of Barkley and Wulff. Our approach to bifurcations from
rotating waves in Euclidean equivariant differential equations extends Krupa’s ideas [12]
of bifurcation from relative equilibria. Krupa’s methods lead to the construction of and
reduction to a center bundle over the critical group orbit. We note that Biktashev et al. [5]
obtain a similar reduction for the case of one-armed spirals by considering an orbit space
reduction. For many armed spirals, the center bundle reduction has the advantage of not
introducing singularities. Indeed, we obtain new results on bifurcation from many armed
spirals.

The group orbit of the rotating spiral wave is three dimensional and the center subspace
corresponding to Hopf bifurcation is two dimensional, thus leading to a five dimensional
center bundle. With the construction of this bundle, we recover the action of the Euclidean
group in Barkley’s five dimensional model. The general equivariant vector field on the center
bundle can then be analyzed.

It is our contention that center bundle techniques simplify the understanding of more
complicated bifurcations from rotating waves. To illustrate this point, we discuss Hopf
bifurcation from rotating waves recovering the results of Wulff [21] in the case of one-armed
spirals and discovering new phenomena in the case of many armed spirals. We also discuss
the codimension two Takens-Bogdanov bifurcation from one-armed spiral waves.

The center bundle reduction of Krupa [12] is formulated under the assumption that the
total group of symmetries is compact and hence is not directly applicable to the problem of



meandering spirals. However, it turns out that the main requirement is compactness of the
isotropy subgroups of points on the critical group orbit. In the appendix, we prove, under
certain hypotheses, that Krupa’s theorems are valid even when the group of symmetries is not
compact and acts on an infinite dimensional function space. In this theorem, it suffices that
the isotropy subgroups are either discrete or compact, which is the case for spiral solutions
since their isotropy subgroups are finite.

The hypotheses for the reduction described in the appendix are not satisfied in our
particular context of Euclidean symmetry due to the nonsmoothness of the group action.
Recent work of Sandstede et al. [17, 18] circumvents these hypotheses and enables the center
bundle reduction for meandering spirals to be carried out rigorously.

2 Center Bundles and Rotating Waves

We begin by describing the relevant results in Krupa [12] on center bundles. Let I' be a
compact Lie group acting orthogonally on R", and let f : R® — R" be a I'-equivariant
vector field. A group orbit X is a relative equilibrium if the flow of

&= f(z) (2.1)

leaves X invariant. (Alternatively, X is a relative equilibrium if f is tangent to X along
X.) Note that rotating waves are relative equilibria as time evolution is the same as spatial
rotation.

Suppose that the group orbit X = I'zy is a relative equilibrium, and let ¥ C T be the
isotropy subgroup of xy. Let T, X be the tangent space to the group orbit at xy, and note
that 75, X is Y-invariant. Write

R"=T,,X & Ny

where N, is the orthogonal complement to 73, X. We can form the normal bundle N(X)
over X by attaching v, to the point yxy; since N, is X-invariant this construction makes
sense and the bundle is I'-invariant. This bundle gives a ['-invariant tubular neighborhood
of X in R".

Krupa then shows (see also Vanderbauwhede et al. [19]) that f may be written as

f=In+ir
on a neighborhood of X where

e fn and fr are ['-equivariant vector fields,



e fx preserves normal fibers yN,,, and
e fr is tangent to group orbits, that is, fr(z) € T,I'z.

It follows that g = fn|N,, is a Y-equivariant vector field. Moreover, g is ‘generic’ in the
sense that any Y-equivariant vector field g : N,,—N,, extends, in a neighborhood of X, to
a [-equivariant vector field f : R*—R".

If X is a relative equilibrium, then g(xz¢) = 0. The relative equilibrium X is a critical
group orbit if (dg),, has eigenvalues on the imaginary axis. (We note that (dg),, is com-
putable, see Proposition A.3 in the appendix.) Let V,, be the center subspace of (dg),,. We
call V.= U{yV,,} the center bundle.

Next, Krupa shows that every solution z(¢) to the differential equation (2.1) near X can
be written as

z(t) =y (t)y(), (2.2)
where y/(t) is a solution to the normal vector field equation ¢ = g(y) and 7(¢) € I is a smooth
curve.

Suppose that W, C N, is a ¥-invariant center manifold for g. Based on (2.2), Krupa
observes that W = U{yW,,} is a [-invariant flow-invariant center manifold for f in a
neighborhood of the critical group orbit. In particular, if the noncritical eigenvalues of
(dg)s, all have negative real parts, then W is attracting for the dynamics of f. As is usually
the case with center manifolds, we can project f|I¥ onto the center bundle V. Thus, we can
understand bifurcations from critical group orbits by studying bifurcations of the normal
vector field g from equilibria.

To apply the center bundle reduction to the problem of meandering spirals, it is necessary
to generalize Krupa’s results from compact groups to noncompact groups and from finite
dimensions to infinite dimensions. We carry out this generalization, under certain natural
hypotheses, in the appendix. We note however that there are additional technical problems
coming from the action of the Euclidean group and it is necessary to appeal to the recent
results of [17, 18]. In the remainder of the main body of the paper, we show how these ideas
can be formally applied to bifurcations from spiral waves in Euclidean equivariant systems.

3 Group Action on the Center Bundle

Trivialization of center bundles

We continue to use the notation from Section 2. In particular, xy is a point with isotropy X
and X = I'zg is a critical relative equilibrium for the I'-equivariant vector field f on N(X).
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Recall that the action of " on points (z,v) € N(X) is given by v(z,v) = (yz, yv).

Define the Y-equivariant vector field g : N, —N,, as in Section 2 and let Vj; = V,,
denote the Y-invariant center subspace for g with corresponding I'-invariant center bundle
V = U{~yVs}. Although N(X) is a trivial bundle, the subbundle V' is not necessarily trivial
(see Remark 3.4). We now give a sufficient condition for V' to be a trivial bundle.

Lemma 3.1 Suppose that the action p of X on Vy extends to an action p of I' on V. Then
there 1s a trivialization
VeXxV,.

The action of I' on V is given by

v(@,v) = (vz, pyv),

where ye ', x € X, v € V.

Proof Let (z,w) € V,s0 2 € X and w € V, where V, is the fiber over x. Write
x = 0y where § € I' and observe that V, = V5. Hence §~'w € V4. Define the trivialization
h:V—=X xV, by

h(z,w) = (z, ps(0 'w)).
To show that h is well-defined, suppose that x = d12x9 = d22¢9 where 61,00 € I'. Then
6516, = 0 € ¥. The assumption on the action p ensures that p,v = ov for all v € V. We
compute that

Ps, (85 "w) = p5, 05 (07185 w) = s, p515, (0710285 Mw) = ps, (67 w),

hence h is well-defined.

Next, we verify the action of I' on X x V. In other words, we show that h is '-equivariant
with respect to the actions on V and X x Vj. Let (z,w) € V as at the beginning of the
proof. Then

h(y(z,w)) = h(yz,yw) = (v2, pys((¥0) "'yw))
= (yz, pyp6(6 'w)) = y(z, ps (0 'w)) = vh(z, w),
as required. [}

The next corollary includes the case ¥ = 1 (one-armed spirals).

Corollary 3.2 Suppose that ¥ acts trivially on Vo. Then V =2 X x Vi is a trivial bundle
and T acts as (z,v)—(yz,v).



Next, we prove a general result about Hopf bifurcation from a relative equilibrium when
['=S0(2).

Proposition 3.3 Suppose that ' = SO(2) and that X = I'zq is a relative equilibrium. If
X undergoes a Hopf bifurcation, then generically dimVy = 2 and the corresponding center
bundle V = X x Vj 1s a trivial bundle.

Proof If ¥ =SO(2), then X is a point and the result is immediate. Hence, we may sup-
pose that ¥ = Z,, £ > 1, with generator o = Ry, € SO(2). Each irreducible representation
of ¥ is one dimensional (and absolutely irreducible) or two dimensional (and nonabsolutely
irreducible). It follows from general theory [8] that generically either V4 is nonabsolutely
irreducible or V4 is the sum of two isomorphic absolutely irreducible representations. Ei-
ther way, dimVy = 2. Moreover, o acts as an orientation-preserving transformation on Vj:
oz = e¥™™/%y for some m = 0, ...,[¢/2]. To apply Lemma 3.1, take pgz = ¢z, § € SO(2). N

Remark 3.4 (a) We give a simple example of a bifurcation from a relative equilibrium for
which the center bundle is not a trivial bundle. Take I' = SO(2), ¥ = Z,, V; = R and
suppose that X acts nontrivially on V5. (In other words, we consider a symmetry-breaking
steady-state bifurcation in the normal vector field.) Then the center bundle V' is a Mébius
band.

(b) By results of Fiedler et al. [6], the analysis that follows does not depend crucially on
whether or not V' is a trivial bundle.

The center bundle for spirals

Now suppose that I' = SE(2), the special Euclidean group consisting of rotations and trans-
lations. We suppose that X = SE(2)z, is a relative equilibrium where z is an f-armed
spiral. In other words the isotropy subgroup ¥ = Z,. As a manifold SE(2) is diffeomorphic
to R? x S'. The assumptions on the symmetry of z, imply that

X =SE(2)zy 2 SE(2)/Z, % R* x (S'/Z;) 2 C x S,
that is, X is a cylinder with coordinates (p, ¢).

Lemma 3.5 The action of (z,0) € SE(2) on (p,¢) € X is:

(,0)(p, 9) = (¢”p + 7, 0 + £9). (3.1)



Proof To verify (3.1), note that the action of SE(2) on X is just induced by the action
of group multiplication in SE(2). Group multiplication in SE(2) is most easily understood
through the action of SE(2) on R? = C. Let w € C; then

(z,0)w = ew + x.
It follows that
(z,0)(y, v)w = (z,0)(e¥w + y) = €?(e¥w + y) + & = TV + (¥ + ).
Hence, the group multiplication on SE(2) induced by its action on C is
(z,0)(y,¥) = (e”y +z,9 +0).

Substituting (p, ) for (y,¢) gives the action of SE(2) on X when ¢ = 1. For general ¢, the
angle 0 acts on C as in the £ = 1 case, but 6 acts on S'/Z, as an ¢-fold covering. That is,
we must add 46 to . |

Lemma 3.6 Hopf bifurcation from an £-armed spiral reduces generically to Hopf bifurcation
of a five dimensional vector field on a trivial center bundle

V=XxV

that is equivariant under the action:

Ty(p,o,q) = (p+z,9,9),
Ro(p,¢,q) = (e¥p, ¢+ £6,e™),
where 0 < m < [£/2].

Proof  Whether or not V is a trivial bundle is independent of the C factor in X. Hence,
it follows from Proposition 3.3 that V is a trivial bundle. The action of SE(2) on the X
coordinates follows from (3.1). The action on the V coordinates follows from Lemma 3.1
and the proof of Proposition 3.3. [ |
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4 Meandering and Resonant Growth of a One-Armed
Spiral

In this section, we analyze Hopf bifurcation from a one-armed spiral. In Subsection 4.1,
we write down the general equivariant vector field on the center bundle. In Subsection 4.2,
we solve these equations and obtain the conditions for resonant growth. Finally, in Subsec-
tion 4.3, we interpret these results in the context of Hopf bifurcation in a partial differential
equation, recovering the results of Barkley and Wulff on the meandering and resonant growth
of spirals.

4.1 Equivariant vector fields on the center bundle

For a one-armed spiral, we have £ =1, m = 0 in Lemma 3.6.

Lemma 4.1 Let F be a system of differential equations on the center bundle V that is
SE(2)-equivariant with respect to the £ =1, m = 0 action. Then F' has the form

p = €%f(q)
¢ = F?(q) (4.1)
() ¢ = Fq).

Proof Symmetry invariance of a system of differential equations means that solutions are
transformed to solutions by that symmetry. Thus, translation invariance implies that if

is a solution to (4.1), then so is

y(t) = (p(t) + 2, ¢(t), (1))

for any z € C. Since 2(t) = y(t), it follows that

for all solutions z(t). In particular,
Flp+z,0,9) = F(p,¢,9),

11



for all z. Hence F' is independent of p and the differential equations have the form

p = Fpq)
¢ = F?(e,q) (4.2)
i = Fipq).

Similarly, the rotational invariance of (4.2) implies that

Fr(p+0,q) = €’FP(p,q)
Felp+0,9) = F?(¢,9),
Filp+0,q) = Fp,q).

Thus, F? and FY are independent of ¢, which verifies (4.1)(b,c).

To complete this proof we must verify (4.1)(a). Define
H(p,q) = e “F"(¢,q)
and note that
H(p+0,q) = e HIFP (0 +0,q) = e e e FP(p,q) = H(p, q)-
It follows that H(p,q) = f(q) is independent of ¢ and that (4.1)(a) is valid. |

4.2 Periodic Solutions and Resonant Growth

Suppose that ¢(t) is a 27 /wy periodic solution to
¢ =F(q)
in the center bundle equations (4.1). We define w; = F¥(q(0)). (These frequencies are
related to, but not identical to, the frequencies w; and ws that appear in the introduction,
see equation (4.7).)
We can solve
$=F?(q(t))
for ¢(t) and
p= e f(g(1))
for p(t) to obtain a solution (p(t),¢(t),q(t)) to (4.1). In the next theorem we recover the
resonance conditions of Barkley and Wulff for these solutions.
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Theorem 4.2 Let (p(t), ¢(t),q(t)) be a solution to (4.1). Then

o(t) = wit + @(t) (4.3)

where @(t) is 2w /wy periodic. If
w1 + k'u)g =0

for some integer k, then generically p(t) undergoes unbounded resonant growth.

Proof  The function F¥(q(t)) is 2m/we periodic since ¢(t) is. Therefore, we can write
F¥(q(t)) as a Fourier series in ¢ obtaining

o0
< mwot
¢ = Y Bpem™?,

n=—oo

where B,, € C and B_,, = B,,. Every term except n = 0 in the Fourier series yields a periodic
function on integration and hence ¢(t) has the form in (4.3) where wy = By = F¥?(q(0)).
Next, consider the differential equation

p=e*Of(q(t)) = " H(1) (4.4)

where H (t) is smooth and 27 /wy periodic. We may write H (t) as the uniformly convergent
Fourier series o
H(t)= Z Dpe™2t
n=-—00
where D,, € C.
Suppose that w; + kws is close to zero for some nonzero integer k. Then integration of
(4.4) yields

? Dyt + P(t)e™rt wy + kwy =0
p =

i(Wngw2)6i(wl+sz)t + P(t)e™ wi + kwy # 0

where P(t) is a smooth bounded 27/ws periodic function. Generically, D, # 0. Hence,
by varying we so that w; + kwy goes through zero, the first summand in p(¢) undergoes
unbounded resonant growth, while P(¢) remains uniformly bounded for these values of w,. B
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4.3 Hopf Bifurcation from a One-Armed Spiral

Let H be a space of functions with domain R? on which the Euclidean group E(2) acts as
yu(z) = u(y'z),
where u € H and v € E(2). Consider a partial differential equation
ur = F(u, \) (4.5)

where F : H — H is E(2)-equivariant and ) is a real bifurcation parameter. Let Ry denote
rotation of the plane through angle §. Suppose that

u(t) = Ry,1o (4.6)

is a rotating wave solution to (4.5) with period 27 /w.

Let X = SE(2)z, be the connected component of the group orbit of u(t) in phase space
under the action of E(2). As noted by Rand [15], Renardy [16] and others, it is possible
to study bifurcation from rotating waves by transferring the problem to the rotating frame.
Substituting (4.6) into (4.5) yields that z; is an equilibrium for the equation

Uy = f(ua /\) = .7:(’(,6, /\) - wlgua

where

d
{fu = %Rtu

t=0

The operator (dﬁ )zo,x has three eigenvalues on the imaginary axis corresponding to the con-
tinuous group orbit SE(2). Barkley [2] showed numerically that the rotating wave u(t) could
undergo a Hopf bifurcation as an additional simple pair of eigenvalues cross the imaginary
axis. We suppose that this bifurcation occurs at A = 0. Let V; = C be the corresponding
center subspace.

Theorem 4.3 [17, 18] There exists a reduction of (4.5) to the center bundle V = X x Vj.
The reduced equations have the form

y=F(y,\),

where y = (p, ¢,q) € V and F has the form in equations (4.1).

14



It follows from the reduction procedure that
F#(0,0) =w;, F0,0)=0, and f(0,0)=0.

Note that in equation (4.1), the original rotating wave solution corresponds to the equilibrium
g = 0. Also, the critical eigenvalues generically cross the imaginary axis transversely on
variation of \. Consequently, the vector field F'%(¢q, \) on Vj satisfies

d,F(0,0) = iw, and Red,FY{(0,0) # 0.

Thus, there is a Hopf bifurcation in the ¢ equation of (4.1) to an approximately 27 /w,
periodic solution ¢(t). We suppose that the Hopf bifurcation is supercritical.

The amplitude and frequency of the periodic solution ¢(¢, \) vary as functions of A. To
leading order, the amplitude varies as av/A and the frequency varies as wy + b\ where a and
b are real coefficients. We set wi(A\) = F¥(g(0,))) and define ws(A) to be the frequency of
q(t,A). Thus

wiN) =w +O(VA),  wa(N) =wa 4+ O(N). (4.7)

Note that w;(0) coincides with w; as defined in this subsection and in the introduction for
each j = 1,2. On the other hand, the w;’s in Subsection 4.2 correspond to w;(\) evaluated
at a specific value of \.

It follows from Theorem 4.2 that linear meandering occurs at A = )\ if

w1 ()\0) + ktdg()\()) =0

for some integer k. We call this resonance a k-resonance. In particular, resonant growth
occurs when wq(0) + kwy(0) is close to zero for some integer k. We can expect unbounded
growth in p(t) as A approaches the resonance point, and linear drifting in p(¢) at the resonance
point. However, by inspection of pictures, only when &k = £1 or £ = 42 do the concepts of
petality and changes in petality appear to be relevant.

Visualization of Hopf Bifurcation from a One-Armed Spiral

To illustrate resonance and petality issues, we have plotted results of numerical integration
of the equations (4.8) in Figure 3 for six values of \.

p = €¥(0.2—0.6i)q
o =1 (4.8)

¢ = (A—0.95i)g — (1 -0.1i)qlq[?,

15



Each figure is a plot of (f1, f2) where
fi=cosp(t)+Rep(t) and fo=sinp(t)+ Im p(t).

These coordinates approximate the movements of the spiral tip in the lab frame. The ¢
equation in (4.8) undergoes a supercritical Hopf bifurcation at A = 0, and the frequency of
the corresponding periodic solution is wy(A) = —0.95 — 0.1A. Since wi(A) = 1, there is a
resonance at A = 0.5.

30 40 55

-30 -20 -5

-25 35 -35 25 -5 55
f1 f1 f1
60 55 40
f2 f2 f2
0 -5 20
-20 40 -50 10 -10 50
f1 f1 f1

Figure 3: Numerical simulation of (4.8) for A = 0.1,0.3,0.4,0.5,0.6 and 0.8.

As previously mentioned, in order to see well-defined petals in the simple epicycle motion
described by (1.1), the amplitude of the second frequency must be larger than the amplitude
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of the primary frequency. That is, in order to see well-defined petals, we must have

z
2] > M (4.9)
|21]
for some real positive number M. Suppose that the secondary motion arises via a Hopf
bifurcation and that |2;| ~ 1. Then near a point of k-resonance, we have

|22] V| Dy|
21l w (14 k2)

where D; is a Fourier coefficient and we have suppressed the dependence of wi, wy on A.
Thus, if we define 7 = wy/wy, then (4.9) becomes

M?w?
N> W 4 ke, 4.10
B () (410)
This defines a sequence of “resonance tongues” in the 7\ plane in which changes of petality
can be observed in addition to unbounded growth of the flower near the resonance. See
Figure 4. Since klim |Dg| = 0, the tongues eventually narrow as k — oo.
— 00

If the point (7, A) is in exactly one tongue (as is the point labeled A in Figure 4), then an
epicycle motion with well-defined petals will be observed. A change in petality occurs as the
resonance is crossed. If the point is in a tongue corresponding to a k resonance, then each
petal will be (approximately) traced out k times before a new petal is formed. However, in
the case where the point is in more than one tongue (as is point B in Figure 4), then the
motion involves multiple harmonics and petality is an ill-defined concept for these points.
However, we will still observe unbounded growth of the flower as the resonance is crossed.

5 Hopf Bifurcation from /-Armed Spirals

In this section we discuss Hopf bifurcation from /-armed spirals where ¢ > 1. Suppose that
an f-armed spiral wave undergoes a simple Hopf bifurcation with frequency ws. Let V be
the center subspace of the bifurcation in the normal directions to X at zo. The SE(2) action
is given as in (3.2):

(P, ¢,q) — (¢”p + 2,0+ £0,e™q),

for some m =0,...,[¢/2].
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Figure 4: Resonance tongues described by (4.10).

The isotropy subgroup in SE(2) of the /-armed spiral is Z,. Note that the action of Z,
on Vj is faithful (in other words, the kernel of the action is trivial) precisely when ¢ and
m are coprime. For example, if the eigenfunction associated with Hopf bifurcation from a
two-armed spiral (£ = 2) is invariant under rotation by 7, then m = 0, and ¢ and m are not
coprime.

For all £ and m, the solutions arising from Hopf bifurcation are quasiperiodic. However,
there are differences in the resulting motions in physical space depending on whether or not
¢ and m are coprime. In particular:

e When / and m are not coprime, the spiral tip does not meander and the codimension
two bifurcation to resonant growth does not occur. What does occur is that (approxi-
mately) the spiral rigidly rotates at a rate that depends quasiperiodically on time.

e When /¢ and m are coprime, Hopf bifurcation leads to meandering and to codimension
two resonant growth. The points where resonance occurs depend on both ¢ and m.

In the remainder of this section, we give the precise statements and proofs of these results.
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Hopf Bifurcations without Meandering

First, we analyze the equations on the center bundle when ¢ and m are not coprime. We
prove:

Theorem 5.1 Let F' be an SE(2)-equivariant system of differential equations on the center
bundle V' corresponding to an (-armed spiral where £ > 1. If / and m are not coprime, then
F? =0 and p(t) is constant. In particular, there is no resonant growth.

Moreover, the spiral in the physical plane does not meander. Rather, the motion is a
rigid rotation by Ry, where ¢(t) is quasiperiodic in 1.

Proof As in the proof of Lemma 4.1, the action of translations on V implies that F' is
independent of p. The main difference comes in the equation

p="F"(¢,q).
Here the action of rotations implies that
e’ FP(p,q) = FP(¢ + £0,e™q) (5.1)

for all #. Since £ and m are not coprime there is an integer j > 2 such that £ = j¢ and
m = jm/. Setting § = 27 /j in (5.1) yields

TP (i, q) = FP(p +20'm, ™ q) = FP(p,q).

Since j > 1 it follows that F? = 0. In particular, p(¢) is constant and there is no resonant
growth and no meandering.

The remaining components of the system on the five dimensional center bundle have the
form

¢ = F?(p,q)

¢ = Fie,q)
This can be viewed as an SO(2)-equivariant system on the three dimensional center bundle
SO(2)zo x Vy. In these equations we have a Hopf bifurcation in the normal (¢) directions
leading to a periodic solution; and drift along the SO(2) group orbit leading to a quasiperi-
odic ¢(t) — just as in the case of one-armed spirals.

The interpretation of ¢(t) in physical space is that the plane is rigidly rotating by Ryy).
(In the case of one-armed spirals, the plane also translates since p(t) is not constant.) In the
corresponding quasiperiodically varying rotating frame, the spiral is approximately station-
ary. In fact, this spiral also varies quasiperiodically (as a function of ¢()), but close to the
point of Hopf bifurcation, this fluctuation is negligible. [ |
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Remark 5.2 There is an alternative abstract explanation of the failure of the spiral tip
to meander or undergo resonant growth when ¢ and m are not coprime, based on ideas
in [7, 12]. Since the kernel of the action of Z, on Vj is nontrivial, the bifurcating periodic
solutions are fixed pointwise by the kernel Z; of the action. (Here & divides ¢ and k > 1
by assumption.) Hence the bifurcation takes place in the fixed-point subspace Fix(Zy). As
usual, this is a flow-invariant subspace for the underlying SE(2)-equivariant vector field.
Moreover, the largest subgroup of SE(2) that preserves Fix(Z;) is the normalizer SO(2) of
Zy. Hence the flow on Fix(Zy) is an SO(2)-equivariant flow and all drifts take place inside
SO(2). In particular, the translation coordinate on the center bundle remains constant.

Hopf Bifurcations with Meandering

Now assume that ¢ and m are coprime. As usual, let w; denote the frequency of the basic
{-armed spiral solution and let wy be the frequency coming from Hopf bifurcation. Our main
result is that the conditions for resonant growth depend on both ¢ and m in the following
manner.

Theorem 5.3 Assume that ¢ and m are coprime and let mq be the smallest positive integer
such that
mmg =1 (mod ).

Then codimension two resonant growth occurs when

Wy ~ % <m - ;> Wi, (5.2)

_].E-i-m()

where j is an integer.

For example, when ¢ = 2 and m = 1, the resonance condition becomes

2N

27 +1°0

where j is an integer.
The proof of Theorem 5.3 is organized as follows.

e First, we calculate the equivariant vector field on the center bundle. To make the
analysis of this vector field tractable, we consider a pull-back to a vector field on the
group. This step is a special case of the more general approach of Fiedler et al. [6].
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Indeed, we wish to thank Bernold Fiedler for showing us that certain computational
difficulties can be circumvented by pulling the differential equation from the center
bundle over the group orbit back to a differential equation on a bundle over the group
itself

e Second, we compute necessary and sufficient conditions for resonant growth in the
pull-back equations.

e Finally, we reinterpret these results for the original vector field on the center bundle.

The action of SE(2) on the center bundle V' is given in Lemma 3.6. Unlike the ¢ =1
case, the ¢ and ¢ equations depend on ¢. In fact, the general SE(2)-equivariant system of
differential equations on V' when ¢ > 1 has the form

p = FP(p,q)
¢ = F*(p,q) (5-3)
q = Fip,q),

where
FP(p + £0,e™0q) = e FP(p, q)

Fe(p+00,e™%q) = F*(p,q) (5.4)
Fi(p+£0,e™%q) = e™Fi(p, q).

The techniques which were used in the £ = 1 case to study resonances will not work
for equations (5.3) because of the dependence of the equations on ¢. To circumvent this
difficulty, define the local diffeomorphism

p:SE2)x Vg —V

Py, v, v) = (y, (o, ™),
where 0 < 1 < 27. Define an action of SE(2) on the bundle SE(2) x 1} by:

(,0)(y,¥,v) = (e%y + 2,9 +0,v), (x,0) € SE(2). (5.5)
With this action, p is SE(2) equivariant. To verify this point, calculate

p((2,0)(y, %)) = p(e”y + =, + 0,v) = (¢°y + 2, £(¢p + 0), ™),
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and, using (3.2), calculate

(z,0)p(y, ¥, v) = (z,0)(y, (0, €™v) = (e”y + z, L3 + €0, ™™V v).

Using p, the differential equation (5.3) pulls back to a differential equation on SE(2) x V}
that is equivariant under the action (5.5) of SE(2). Since this action is identical to the £ = 1,
m = 0 action encountered in Section 4, it follows from Lemma 4.1 that the pull-back has
the form

gy = e¥g(v)
b o= GY(v) (5.6)
v = G(v).

Proposition 5.4 The pull-back equations on the group are related to the original equations
on the group orbit as follows.

glv) = F?(0,v)

GY(v) = 3F*(0,v)
G (v) F(0,v) — 2vF?(0,v).

Proof The function (y(¢),%(t),v(t)) is a solution to the pull-back differential equation
(5.6) if and only if p(y(t), ¥ (t),v(t)) = (y(t), Lap(t), e™¥Du(t)) is a solution to (5.3). Thus,
differentiation leads to

y = FP(&y,e™v)
b) = Fe(ly), em™y)
mie™Vugp + eV = F4(ly), ™).
Comparing the y-component with the y-component in (5.6), we have
e VP (0, ™) = g(v),
independent of 1. Setting ¢ = 0 yields the relation g(v) = F?(0,v). The remaining relations

are verified similarly. |
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Not every system of equations of the form (5.6) arises as the pull-back of a system (5.3)
on the center bundle: the pull-back equations are additionally equivariant with respect to an
action of the isotropy subgroup Z,. It follows from the following lemma that the full group
of symmetries of the pull-back equations is a semi-direct product of SE(2) and Z,.

Lemma 5.5 The pull-back equations are equivariant under the action (5.5) of SE(2) and
under the following action of Z,:

(y, 9, 0) = (77 0y, 1, 27 ). (5.7)
There are no further restrictions on the pull-back equations.

Proof  We have already established that the pull-back equations are SE(2)-equivariant
under the action (5.5) and hence have the form (5.6). Next, we verify the Z,-equivariance
for the GY-component:

G'(v) = FY0,v) — ZoF?(0,v) = F!(2m,v) — v F?(27,v)
— e—27rmi/£Fq(0’ eQﬂmi/Z,U) _ mTiUFcp(O, e?ﬂmz’/f,u) (by (54))
— 6727rmi/€Gv(627rmi/Ev)'
The verification of (5.7) for the remaining components is similar.
Conversely, suppose that we are given a system of equations on SE(2) x Vj that is

equivariant under the actions (5.5, 5.7). By SE(2)-equivariance, we can write the equations
in the form (5.6) where g, G¥, G depend on v. Define

FP((‘p’q) — eiip/fg(e—imga/éq)
Frleg) = (G¥ (ol 59
Pilgnd) = emIGE(e mI) 4 minG (e ol

Then the system on SE(2) x V} is the pull-back of the system defined by (5.8). It remains to
show that (5.8) is well-defined and equivariant under the action (3.2). Again concentrating
on the third component, note that F'? is well-defined if and only if

Fip+2m,q) = F(p,q).

But this equality follows from the Z, equivariance of G¥ and G. Similarly, it is easily
checked from definition (5.8) that F'? satisfies the required SE(2)-equivariance condition. B
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This completes the first stage of the proof of Theorem 5.3. Next, we analyze the pull-back
equations, emulating Theorem 4.2. Let v(t) be a 2w /@, periodic solution to v = G”(v). We
suppose that this periodic solution is a result of Hopf bifurcation in the v equation. Define
@1 = G¥(v(0)). As in Subsection 4.2, we solve 1) = G¥(v(t)) for 1 (t) and § = e¥®g(v(t))
for y(t) to obtain a solution (y(t), ¥ (t), v(t)).

Theorem 5.6 Let (y(t),1(t),v(t)) be the solution constructed above for the pull-back equa-
tions (5.6). Generically, y(t) undergoes unbounded resonant growth if and only if

@1+ kiy =0 (5.9)

for some integer k satisfying
km =1 (mod /). (5.10)

Proof The condition (5.9) is immediate from Theorem 4.2. We show that the additional
condition (5.10) is a consequence of the Zs,-equivariance (5.7) and, furthermore, that these
are the only restrictions on k.

Since £ and m are coprime, Zg-equivariance is equivalent to the conditions

(a) g(e™™/fv) = emltg(v)
(b) G¥(e*ty) = GY(v) (5.11)
(C) GV 6271'1'/@,0) — 627”/er(’0).

It follows from (5.11)(c) and the uniqueness of periodic solutions in (generic) Hopf bifur-
cation that the periodic solution to the ¥ equation satisfies

27 2mi/t
— | = e ™ ) 12
v <t+ 611)2) e u(t) (5.12)

This observation is a special case of the spatio-temporal symmetries of symmetric Hopf

bifurcation discussed in [8]. '
It follows from (5.12) and (5.11)(b) that solutions to the ¢) equation have the form

Y(t) = @t +1p(t)
~ . 2
where 1 is E—zr periodic. Finally, using (5.11)(a), we can rewrite the § equation as
W2
y = e"1th(t),
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where h is 27/, periodic and

X/ (t). (5.13)

Write h as a Fourier series

It follows from (5.13) that hy = 0 unless k satisfies condition (5.10). In particular, these are
the only values of k for which the resonance (5.9) is possible.

Finally, we write down pull-back equations that exhibit the required resonances. Set
G¥(v) = @ and G®(v) = i@yv. These functions clearly satisfy conditions (5.11)(b,c) and
yield a 27 /&, periodic solution v(¢). The function g(v) = v* satisfies conditions (5.11)(a)
provided k satisfies condition (5.10) and yields those resonances (5.9) for which £ > 0. To

obtain the remaining resonances, consider g(v) = v*. [

The third stage of the proof of Theorem 5.3 is to relate the frequencies w; in the pull-back
equations with the frequencies w; in the original equations on the center bundle. Recall that
the periodic solutions in the v equations arise via Hopf bifurcation and hence the frequencies
@;(A) vary smoothly with the bifurcation parameter A. As in Subsection 4.3, we redefine
@; = @;(0). Then Theorem 5.6 implies that resonant growth occurs when

- 1.
Wo —Ewl (514)
for some integer k satisfying condition (5.10).
It follows from Proposition 5.4 that the frequencies w; and w; are related as follows:

1 1
o =G¥(0) = ZF‘»"(o,o) = @1

and ] ]
ia)g = (de)o = (quq)(),O - %FW(O, 0) = ’l:u)g — %wl.
Substituting these expressions into condition (5.14) yields the resonance criterion
km —1
Wy v k w1 (515)

where k satisfies (5.10).

Finally, we observe that equation (5.10) always has solutions for £ and m coprime. If we
let mg be the smallest positive integer k satisfying (5.10), then, since £ and m are coprime,
all solutions to (5.10) have the form k = j¢ 4+ my for some integer j. This completes the
proof of Theorem 5.3.
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6 Takens-Bogdanov Bifurcation

As mentioned previously, our approach can be applied to study other bifurcations from
spiral waves. To illustrate this point, we consider two other bifurcations from one-armed
spirals: steady-state bifurcation and the codimension two Takens-Bogdanov bifurcation. By
Corollary 3.2, the associated center bundle will be a trivial bundle (this is not necessarily
the case for these bifurcations from a many armed spiral).

Steady-state bifurcation leads to a saddle-node (or limit point) bifurcation of rotating
wave spiral solutions with frequency close to w;. We omit the details and pass to the more
interesting Takens-Bogdanov bifurcation. In this case, the operator (dF),, o in Subsection 4.3
has a nonsemisimple double zero eigenvalue and the corresponding center subspace V; is
identified with R?. Let ¢ = (x,y) € R?> = V. In normal form, the ¢ equation in (4.1) can
be written as

T =y
(6.1)
y = i+ pey+ 2’ + by,
where 1, and gy are unfolding parameters and b = 1 (cf. [9]). We consider the case b = —1,

since it leads to stable limit cycles in (6.1).

A schematic of the phase portraits corresponding to regions in the unfolding space is
given in Figure 5. Of particular interest is region A which is bounded by a curve of Hopf
bifurcations and a curve of homoclinic bifurcations. Consider a path P, through this region.
As P; crosses into region A, there is a Hopf bifurcation from one of the equilibria. The
resulting periodic solution of (6.1) generates quasiperiodic motion for the full system (4.1).
As the homoclinic bifurcation curve is approached, the period of the periodic solution gets
larger and tends to infinity (that is, its frequency gets smaller and tends to zero). Hence P,
crosses an infinite number of resonance points. Consequently, in parameter space, p(t) will
experience unbounded growth for an infinite number of parameter values along P;. However,
as mentioned in the previous section, only the first one or two resonances should exhibit a
well-defined change in petality in addition to unbounded growth.

Finally, consider a path P, through the saddle-node variety p; = 0. The interpretation
of this bifurcation is the following. In region B, a spiral wave is observed. As P, crosses
into region C, the spiral wave disappears and the dynamics enters a part of phase space not
modeled by the center manifold equations.
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A Appendix

In recent work, Sandstede et al. [17, 18] have generalized the center bundle construction of
Krupa [12], described in Section 2, from compact groups to noncompact groups and from
finite dimensions to infinite dimensions. In particular, they prove Conjecture 4.3 and provide
a rigorous justification of the techniques in this paper. A major technical difficulty overcome
in the work of [21, 17, 18] is the lack of smoothness of the action of SE(2) on functions
u: R?>—R.

Independently, we have obtained a simplified reduction under the assumption (S1), see
below, that the action of the Lie algebra of the group is ‘smoother’ than the linearized
vector field defining the dynamical system. This assumption fails for actions of SE(2) but is
satisfied in many important cases. Examples include the group SO(2) acting on L?(12) for a
circular bounded domain (2, and the noncompact group of translations T(2) & R? inside of
SE(2) acting on L?(R?), see Example A.1. Hence our reduction, which is presented in this
appendix, can be viewed as a rigorous and nontrivial extension of the methods of [12]. At
the same time, our reduction hints at the full picture for noncompact group actions without
addressing the technical difficulties resolved by [21, 17, 18].

Under assumption (S1), we obtain the required decomposition f = fy + fr into normal
and tangent vector fields and we obtain the factorization (2.2) into normal dynamics coupled
with drift along group orbits. To obtain a smooth center bundle, it is necessary that the
critical eigenfunctions for the normal vector field are acted upon smoothly by the group, see
assumption (S2). (It turns out that assumption (S2) is automatically satisfied for reaction-
diffusion equations, see Sandstede et al. [17, 18].)

Throughout the appendix, smooth means C* for k sufficiently large. We do not require
that the group acts smoothly (or even continuously) on the whole of the infinite-dimensional
space.

A.1 The generalized center bundle reduction

Let T be a finite dimensional Lie group (not necessarily compact) acting by unitary trans-
formations on a Hilbert space H. Let xq € H. We assume that the group orbit X = 'z, is
a smoothly embedded submanifold of . Let 7 : N(X)—X denote the normal bundle in #,
with fibers N, = (T, X)*. Write points in N(X) as (z,v) where x € X and v € N,. The
map f§: N(X)—=H, f(z,v) =z + v is a local diffeomorphism.

Since the action of ' is unitary, N(X) is invariant under the action (x, v)—(yz,yv) and
B : N(X)—H is I'-equivariant. Since (3 is one-to-one on the homogeneous space X, it follows
that [ restricts to a diffeomorphism on some I'-invariant neighborhood of X.
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The dynamical system We suppose that f : H—H is a I'-equivariant ‘infinite dimen-
sional vector field’ on H (a nonlinear partial differential operator say). Suppose that f
satisfies the usual technical conditions so as to generate a smooth local semiflow on H. That
is, f = A+ N where the linearity A is sectorial and the nonlinearity N is sufficiently smooth
on the domain H* of a fractional power A* of A for some « € [0, 1) see Henry [10] for the
precise definitions). We note that H* is a dense and I'-invariant subspace of H. The graph
norm ||ul|q = ||u|| + ||A%u|| makes H* into a Hilbert space and f is smooth when regarded
as an operator f : H*—H.

We suppose from now on that o has been chosen with these properties. Roughly speaking,
a quantifies the ‘semilinearity’ of f where the nonlinearity N is strictly smoother than A (so
« is required to be strictly less than 1).

The Lie algebra The Lie algebra L(I") consists of linear operators ¢ : H—H defined
by fu = %%uhzo where v, € I' is a curve at the identity. Typically, the operators &

are unbounded and hence are not defined on the whole of H. We let H denote the common
domain of the elements of L(I") and note that # is -invariant. It follows from our assumption
on X that X C H.

Recall that « € [0,1) is chosen so that f : H*—H is smooth. It is natural to make the
simplifying assumption

(S1) H™ C .

In particular, each infinitesimal generator £ € L(T") is bounded as an operator £ : H*—H.
(Roughly speaking, the Lie algebra elements are strictly smoother than the linear vector
field A.)

Under assumption (S1), we obtain a complete generalization of the results in [12]. The-
orems A.2 and A.6 correspond to [12, Theorems 2.1 and 2.2].

Example A.1 Suppose that H = L?(R?) consists of functions v : R?>—R and that the
group I' = SE(2) acts by u(z) — u(y~'z). A calculation shows that L(SE(2)) is generated
by 0 0 0 0
u U U u
51U—a—xl, 52“_072’ fsu—$16—x2—$28—$1-

Suppose that the linear part A of the evolution operator f is the Laplacian A = A. The
generators &, & corresponding to translation have less derivatives than A and are rela-
tively bounded with respect to A. In particular, we can choose a € [1/2,1) in assumption
(S1). However, the generator &3 corresponding to rotation includes multiplication by the
unbounded functions z; and x, and hence violates assumption (S1) for all c.
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Note that the group of translations T(2) & R? satisfies assumption (S1). In addition, the
rotation group SO(2) satisfies (S1) provided we restrict to L2(f2) for 2 a bounded circularly
symmetric subset of R?.

In the remainder of this subsection we suppose that zy has discrete isotropy subgroup ..
(This assumption is relaxed in Subsection A.2 below.)

Theorem A.2 Suppose that assumption (S1) is valid. Suppose further that X = 'z is a
submanifold of H and that the isotropy subgroup ¥ of xy is discrete. There is a I'-invariant
netghborhood U of X = I'zy in D4 and smooth I'-equivariant nonlinear operators fy, fr :
U—H such that

(7’) f|U = fN+fT7
(i) fn(u) € Nuqw) for allu € U, and
(111) fr(u) € T,Tu.

Proof For v € X we trivially have H = N;() @ T,['u. Observe that this splitting
remains valid for u close to X in the graph norm since T,I'u = L(T")u varies smoothly with
respect to this norm. Now define fy(u) and fr(u) by projecting f(u) onto Ny, and T,['u
respectively. Again, the subspaces Ny, and T,['u vary smoothly with u and hence the
associated projections are smooth. |

The operators fy andfr are called the normal and tangent components of f. Note that fr
is tangent to group orbits everywhere but fy is normal to group orbits only when restricted
to X. Let g = f| N.,nu denote the restriction of the normal operator to the normal fiber over
xg. Observe that g is Y-equivariant.

The standard results relating (dg),, with (df)s, are valid in this general setting, as we
now describe. Suppose that X is a relative equilibrium, so f(zq) = {zo where £ € L(T).
Define f(u) = f(u) — &u, so that z, is an equilibrium for f. Then (df),, is a linear operator
on Tp,N(X) = Ny @ Ty X = N,, ® L(I'). Moreover, (df)s, is sectorial, since (df)q, is
sectorial and £ is defined on the domain of a fractional power.

Proposition A.3 Regarded as an operator on Ny, @ L(T"), (df)s, has the form

(df)%:((dg)” 0 ) (A1)
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Proof Restricting to the dense subspace H C H ensures that the mappings f, g and so
on are smooth. Recall that f has the decomposition f = fy + fr into normal and tangent
components, so f has the corresponding decomposition f = fy+fr where fr(u) = fr(u)—E&u.

We show first that
(di)acg = ( (dg)l‘o * ) ; (d.fT)aco = ( 00 ) y
* * * %

thus verifying the entries in the first column of (df)g,.

The form of (dfy)s, follows from the definition g = fu|n,,. Now recall that fr(u) =
Q(u) f(u) where Q(u) : H—H is the projection onto T,,['u with kernel Nyq). Since {u €
T,Iu, we have fr(u) = Q(u)f(u). For all w € T,,N(X), we compute that

(diT)wow = ((dQ)wow)fN(‘rO) + Q(ﬂ?o)(df)wow = Q(xo)(df)wow € Tona

since f(xo) = 0. Hence (dfr)s, has the required form. .
It remains to verify the entries in the second column of (df)g,. Let nzg = 7(s)Zo|s=0 €
T,,X and observe that

(@)eatmo = (W)ea GO0 = ZFOG)| = Lo r0)|  =nf(e0) = nezo
Hence,
(df)zanzo = ((df )ao — €) 10 = (M€ — &n)zo = —ad(€) (n)0-
Identifying T,, X with L(I'), we have (df)4,n = —ad(€)n as required. |

Remark A.4 It follows that modulo the eigenvalues of —ad(&), the spectrum of (dg)s,
coincides with the (relatively computable) spectrum of (df),,. The eigenvalues of —ad(€)
are viewed as neutral. Indeed, when I' is abelian we have ad(£) = 0.

When I' is compact, the adjoint action of I' preserves an inner product and it follows
that ad(§) is a skew-symmetric matrix. In particular, the eigenvalues of —ad(&) are purely
imaginary. This is the case also for noncompact groups, provided that the trajectory through
xg is compact (in other words, the closure of {expt&, t € R} is a compact subgroup of T').

In general, however, the eigenvalues of —ad(£) need not be purely imaginary. A somewhat

hypothetical example is provided by the group of matrices

a b
P:{(O O)’ a,bER,a#O}.
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A basis for the Lie algebra is given by

10 01
61_(00>a 62_<00>a

and we calculate that ad(&;) has eigenvalues 0 and 1.
Corollary A.5 The normal vector field g generates a smooth local semiflow on Ny, .

Proof  Recall that (df),, is sectorial. By Proposition A.3, the spectra of (df)s, and
(dg)s, differ by finitely many eigenvalues of finite multiplicity. Substituting vectors of the
form (x,0) into the formula (A.1), we obtain the estimate

1(dg)a0 = 1) < 1((@F)z0 = 1),

for all y in the resolvent of (df),,. Hence, sectoriality of (df),, implies sectoriality of
(d9)z, [10, Definition 1.3.1]. The domain D(qg),  is given by Dag),, = Dar),, N Nz, and the
nonlinearities in g are as smooth as those in f, hence g generates a smooth local semiflow.

Theorem A.6 Suppose that the hypotheses of Theorem A.2 and Corollary A.5 are valid.
Let u(t) and v(t) be the solution trajectories for the initial value problems defined by the
vector fields f and g with initial condition vg € N,,. Then, there is a smooth curve at the

identity y(t) € I' such that
u(t) =~ (t)o(t).

Proof Since fr(v(t)) € L(I')v(t) and X is discrete, we can uniquely write fr(v(t)) =
&(t)v(t) for a smooth curve £(t) € L(T"). Let v(t) be the solution to the initial value problem
%7 ~v€, 7(0) = e. Then () is a smooth curve at the identity as required.

Define (t) = y(t)v(t). We show that () is a solution for the vector field f. It follows
by uniqueness of solutions that & = u and hence that u = yv.

The solution v(t) lies inside H* N N,, for ¢ > 0 and is smooth as a function (0, co)—>H*
where defined (see [10, Sections 3.3 and 3.4]). It follows from assumption (S1) that 4(t) is a
priori at least once differentiable as an H-valued map for ¢ > 0. (A postieri, 4(t) = u(t) i
smooth as an H*-valued map.) Applying the chain rule, we compute that

S00) = 2000 = 205100+ e+ 9000
= y(t)g(v(t)) + v(t)€(t)v(t)
= () fn () + (@) fr(v(t))

= (@) f(v(®) = f(a®).

~—
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It follows from Theorem A.6 that bifurcation from a relative equilibrium can be under-
stood abstractly in terms of bifurcation from an equilibrium for the Y-equivariant evolution
operator g coupled with drifts along the group.

If the spectrum of the linearization (dg),, of the normal vector field intersects the imag-
inary axis, and the remainder of the spectrum is bounded away from the imaginary axis,
then the center manifold theorem applies on N,,. Since the action of I is unitary, the norm
on H is smooth and I'-invariant. Hence, we can choose a smooth I'-invariant ‘cut-off’ func-
tion y : H—R and we can construct a unique smooth Y -invariant center manifold W, for
the cut-off normal vector field x fy|y, on each fiber N, N H* x € X. By construction,
W,z = yW, and hence the resulting center bundle W = U,cx W, is ['-invariant and at least
once differentiable since I' acts differentiably on H“. In addition, each W, is a local center
manifold for f|y, so that W is a local center bundle for f. In order to proceed as in the
main part of the paper, we require that

(S2) T acts smoothly on elements in the center manifold W, for the normal vector field g.

It follows from assumption (S2) that W is a smooth bundle and that I' acts smoothly on
W. (Again, we note that [17, 18] have recently shown that assumption (S2) is automatically
satisfied for reaction-diffusion equations.)

A.2 Reductive isotropy subgroups

In this subsection, we show that the results of Section A.1l, in particular Theorems A.2
and A.6, are valid for more general classes of isotropy subgroup ¥. We continue to as-
sume that I" is a finite dimensional Lie group acting by unitary transformations on #, that
assumption (S1) is valid, and that X = I'zq is a smooth submanifold of #.

The proof of Theorem A.2 breaks down when z( has isotropy subgroup ¥ of positive
dimension. For example, there may be points u of lower dimensional isotropy near zy in
which case dim 7,I'u is not constant. This difficulty is present even for compact Lie groups
acting on R™ and is the main technical difficulty overcome in Krupa [12]. We now use
the ideas in [12] to enlarge the class of isotropy subgroups ¥ for which Theorems A.2 and
Theorem A.6 are valid.

Recall that X is reductive if 3 has a faithful finite dimensional representation and every
finite dimensional representation of ¥ is completely reducible (every Y-invariant subspace
has a ¥-invariant complement). In particular, compact groups are reductive. The next result
generalizes [12, Lemma 2.3].
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Lemma A.7 Suppose that assumption (S1) is valid, that X = Tzq is a submanifold of
H, and that the isotropy subgroup Y of xq is reductive. There exists a smooth I'-invariant
subbundle K C TN(X)|ya such that for all u in a T-invariant neighborhood U C H® of X,

(i) K, C T,T'u, and
(ZZ) Nn(u) SK,=H.

Proof The subspace L(X) C L(I') is invariant under the adjoint action of ¥ and hence,
by reductivity, there is an invariant subspace Y C L(I") such that

L) =L(E)aY.
Let u = (yxo,v) € H* C N(X) and define
K, = (Ad,Y)u.

Note that K, is well-defined due to the invariance of Y. For suppose that y;2¢ = v922¢. Then
Y5 'y € ¥ and so Ad,,Y = Ad,,Y. Hence K is a subbundle of N(X) satisfying condition (i).
In contrast to the tangent spaces T,I'u, the subspaces K, are of constant dimension near X
and condition (ii) is satisfied.

To show that K is I-invariant, we prove that K., = vK,. Indeed, if u = (dz¢, v), then

K., = (AdysY)yu = (Ad,AdsY)yu = 7(AdsY )u = vK,.
Finally, smoothness of the bundle is proved as in [12]. |

It is now straightforward to extend Theorem A.2 from discrete isotropy subgroups to
reductive isotropy subgroups. Simply project f(u) onto Ny and K,. Similarly, the curve
£(t) in the proof of Theorem A.6 is chosen to lie in K, ;). The remaining proofs in Section A.1
are unchanged.

Remark A.8 The assumptions underlying our generalization of Krupa’s center bundle re-
duction can be summarized as follows. The simplifying assumption (S1) ensures that the
generalization from finite dimensions to infinite dimensions runs smoothly. We require that
the relative equilibrium X = I'zg is a smooth embedded submanifold of H. Assumption (S2)
guarantees that the center bundle is smooth and not merely once differentiable.

Our results are proved for two classes of isotropy subgroups of zy: X discrete and X
reductive. Actually, we require only that there is an invariant complement for L(X) C L(T)
under the adjoint action of ¥ (this is trivially the case when ¥ is discrete even if 3 is not
reductive). An example where this property is violated is provided by the subgroup ¥ = T'(2)
of translations in I' = SE(2). We conjecture that there is no analogue of Theorems A.2
and A.6 in such cases.

34



Acknowledgments

We wish to thank Dwight Barkley, Mike Field, lannis Kevrekidis, Martin Krupa, Zhenya
Nikolaev, Qi Ouyang, lan Stewart, and Harry Swinney for helpful conversations concerning
the meandering of spirals. In particular, we wish to thank Bernold Fiedler for his suggestion
of how to analyze meandering Hopf bifurcations from multi-armed spirals. In addition, we
thank the referees for a number of helpful remarks.

This research was supported in part by NSF Grant DMS-9403624 (MG, IM), ONR Grant
N00014-94-1-0317 (MG, VGL, IM), the Texas Advanced Research Program (003652037)
(MG), and an NSERC Post-Doctoral Fellowship (VGL). VGL also acknowledges the support
of the Department of Mathematics of the University of Houston.

References

[1] D. Barkley. A model for fast computer-simulation of waves in excitable media. Physica
D 49 (1991) 61-70.

[2] D. Barkley. Linear stability analysis of rotating spiral waves in excitable media. Phys.
Rev. Lett. 68 (1992) 2090-2093.

[3] D. Barkley. Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev.
Lett. 72 (1994) 165-167.

[4] D. Barkley, M. Kness and L.S. Tuckerman. Spiral-wave dynamics in a simple model of
excitable media: The transition from simple to compound rotation. Phys. Rev. A 42
(1990) 2489-2492.

[6] V.N. Biktashev, A.V. Holden and E.V. Nikolaev. Spiral wave meander and symmetry
in the plane. Intern. J. Bifur. & Chaos 6 (1996).

[6] B. Fiedler, B. Sandstede, A. Scheel and C. Wulff. Bifurcation from relative equilibria
of noncompact group actions: skew products, meanders and drifts. Documenta Math. 1
(1996) 479-505.

[7] M. J. Field. Equivariant dynamical systems. Trans. Amer. Math. Soc. 259 (1980) 185-
205.

[8] M. Golubitsky and I.N. Stewart. Hopf bifurcation in the presence of symmetry. Arch.
Rational Mech. & Anal. 87 No. 2 (1985) 107-165.

35



[9] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bi-
furcations of Vector Fields. Appl. Math Sci. 42, Springer-Verlag, New York, 1983.

[10] D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math.
840, Springer, Berlin, 1981.

[11] R. Kapral and K. Showalter. Chemical Waves and Patterns. Kluwer Academic Publish-
ers, Amsterdam, 1995.

[12] M. Krupa. Bifurcations from relative equilibria, STAM J. Math. Anal. 21 (1990) 1453—
1486.

[13] W. Jahnke, W. E. Skaggs and A. T. Winfree. Chemical vortex dynamics in the Belousov-
Zhabotinsky reaction and in the two-variable Oregonator model. J. Phys. Chem. 93
(1989) 740-749.

[14] G. Li, Q. Ouyang, V. Petrov and H. L. Swinney. Transition from simple rotating chem-
ical spirals to meandering and traveling spirals. Phys. Rev. Lett. 77 (1996) 2105-2108.

[15] D. Rand. Dynamics and symmetry. Predictions for modulated waves in rotating fluids,
Arch. Rational Mech. & Anal. 79 (1982) 1-38.

[16] M. Renardy. Bifurcation from rotating waves, Arch. Rational Mech. & Anal. 79 (1982)
49-84.

[17] B. Sandstede, A. Scheel and C. Wulff. Center-manifold reduction for spiral waves. C.
R. Acad. Sci. To appear.

[18] B. Sandstede, A. Scheel and C. Wulff. Dynamics of spiral waves in unbounded domains
using center-manifold reductions. Preprint.

[19] A. Vanderbauwhede, M. Krupa and M. Golubitsky. Secondary bifurcations in symmet-
ric systems. In: Proc. Equadiff Conference, 1987, (C.M. Dafermos, G. Ladas and G.
Papanicolaou, Eds.) Lect. Notes in Pure & Appl. Math., 118 Marcel Dekker, New York,
1989, 709-716.

[20] A.T. Winfree. Scroll-shaped waves of chemical activity in three dimensions, Science 181
(1973) 937-939.

[21] C. Wulff. Theory of Meandering and Drifting Spiral Waves in Reaction-Diffusion Sys-
tems. Freie Universitat Berlin, Thesis, 1996.

36



