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Abstract

We consider discrete equivariant dynamical systems and obtain
results about the structure of attractors for such systems. We show,
for example, that the symmetry of an attractor cannot, in general,
be an arbitrary subgroup of the group of symmetries. In addition,
there are group-theoretic restrictions on the symmetry of connected
components of a symmetric attractor.

Our methods are topological in nature and exploit connectedness
properties of the ambient space. In particular, we prove a general
lemma about connected components of the complement of preimage
sets and how they are permuted by the mapping.

These methods do not themselves depend on equivariance. For
example, we use them to prove that the presence of periodic points in
the dynamics limits the number of connected components of an attrac-
tor, and, for one-dimensional mappings, to prove results on sensitive
dependence and the density of periodic points.

1 Introduction

Our goal in this paper is to describe mathematical properties of symmetric at-
tractors that have been observed in the numerical simulations of equivariant
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discrete dynamical systems in [3],[5],[9]. These properties include connect-
edness, sensitive dependence on initial conditions and, indeed, the actual
symmetry of the attractor. While pursuing this goal we have used tech-
niques that are equally valid for systems possessing no symmetry, and these
techniques lead to interesting results for asymmetric systems as well.

In contrast with much of the literature on discrete dynamical systems
we make no assumptions on the mapping other than continuity, but our
definition of attractor includes the requirement that the basin be open (on
the other hand, we do not require that there is a dense orbit). We will prove
results of the following type.

(a) If an attractor contains a point of period k, then it has at most k
connected components (see Theorem 2.9). Symmetry often forces the
origin to be fixed. So when an attractor for such a system contains the
origin, it must be connected. (Such attractors also have full symmetry
(see Proposition 4.8).) In addition, topologically mixing attractors are
connected (see Theorem 2.6).

(b) For continuous maps on the line, attractors (and, more generally, w-
limit sets) are contained in the closure of the set of periodic points
(see Theorem 3.1). This ‘closing lemma’ holds without the usual as-
sumptions of genericity and differentiability. In addition, nonminimal
attractors of continuous maps on the line display sensitive dependence
on initial conditions (see Theorem 3.2).

(c) There are representation-theoretic restrictions on the symmetry of at-
tractors (see Theorem 4.10).

(d) There are group theoretic restrictions on the symmetry of connected
components of symmetric attractors (see Theorem 4.6).

(e) Mappings of the plane having D,,-symmetry (where D,, is the dihe-
dral group of symmetries of the regular m-sided polygon in the plane)
cannot have attractors with symmetry Dy where 2 < k& < m (see The-
orem 5.2). Also, if a D,,-equivariant mapping has an attractor with
symmetry D,,, then each of its components must have D,,-symmetry
(see Theorem 5.7).

We will also show that the proofs of all of these theorems rely in part on a
single topological lemma (see Lemma 2.1) which uses connected components
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of the complement of a preimage set to cover invariant sets. This and re-
lated results are described in Section 2. Results concerning one-dimensional
mappings are given in Section 3. In Section 4 we discuss how symmetry is
brought into the study of attractors of mappings and prove some general
results; our main theorems about symmetric attractors for mappings with
dihedral symmetry are proved in Section 5.

It was observed in [3] using computer experimentation that symmetry-
increasing bifurcations seem to be the rule in the discrete dynamics of maps in
the plane with dihedral D,,, symmetry. These bifurcations occur through the
collision of conjugate attractors. In [4] we use the results about preimage sets,
in particular Theorems 3.5 and 5.8, as the basis for a numerical algorithm
for the computation of certain types of symmetry increasing bifurcations.

An important observation in the theory of equivariant steady-state bi-
furcations states that there are restrictions on the possible symmetry of bi-
furcating equilibria. Our results in Sections 4 and 5 indicate that a similar
remark holds for general attractors.

2 Topological dynamics using preimage sets

In this section we introduce the main topological results that we use. The
main observation (see Lemma 2.1) states that w-limit sets are either con-
tained in the closure of a preimage set or are covered by a finite number of
connected components of the complement of that preimage set. This result
along with the definition of preimage sets is presented in Subsection (a).
This observation has a number of applications which appear throughout this
paper. In Subsections (b) and (¢) we show how Lemma 2.1 can be used to
prove the connectedness theorems promised in the Introduction and a general
result concerning sensitive dependence.

(a) Preimage sets

Let X be a finite-dimensional Euclidean space and suppose that f: X — X
is a continuous mapping. (In fact, we need only assume that X is a locally
connected metric space for our results to be valid.) Recall that if z € X,
the w-limit set of x is defined to be the set w(x) consisting of points y € X
for which there is an increasing sequence {n;} of positive integers such that
f™(z) — y. Basic properties of w(z) include



1. w(z) is closed,

2. w(f(z)) = w(=),
3. f(w(z)) C w(z) with equality if w(z) is compact.

We call a set A topologically transitive if A = w(z) for some z € A. Equiva-
lently, A has a dense orbit. The set A is topologically mizing if for any open
subsets U,V € A there exists a positive integer N such that f"(U)NV # ()
for all n > N. If A is topologically mixing, then A is topologically transitive
under f* for all & > 1.

Let S be a subset of X. We define

o0

Ps(f) = JU™™(S)

n=0

to be the set consisting of S and all of the preimages of S under f. Usually,
when the context is clear we write Ps(f) = Ps. Observe that f~'(Ps) C Ps.
It follows that f induces a mapping

f:X*'PS—)Xflps.

Since f is continuous, connected components of X — Pg are mapped into
connected components.
The following topological lemma is used repeatedly throughout the paper.

Lemma 2.1 Let z € X and let S be a subset of X. Then either w(x) C Ps
or the following are valid.

(a) w(x) —Ps is covered by finitely many connected components Cy, . .. ,Cr_q

OfX *PS.
(b) These components can be ordered so that f(C;) C Ciiimod -
(¢c) wx) cCoU---UC,_;.

Proof: We assume that w(z) ¢ Ps. Choose y € w(z) — Ps and € > 0 such
that B.(y) C X — Ps where B,(y) is the open ball of radius € centered at y.
Since B(y) is connected it lies inside a connected component Cy of X — Ps.
Since y € w(x), there exist a smallest integer k£ > 0 such that f*(z) € B.(y).



Also, there is a smallest integer £ > k such that f*(z) € B.(y) If r = ¢ —k,

then f"(B(y)) N Be(y) # 0 and it follows by continuity that f"(Cy) C Cy.
Write 2/ = f*(x) and let C; be the connected component of X — Pg

containing fi(z') for i = 0,... ,r — 1. It follows by continuity that f(C;) C

Cit1mod > and so

fi(z)eCyu---UC, 1, i>0.

Hence,

w(r) =w(@) cCoU---UC,_; =CoU---UC,_;.

In addition, since there are only finitely many connected components, they
have no limit points lying in another connected component of X — Pg. Hence

w(z) CCoU---UCr_1UPg

from which (a) follows. |

An f-invariant set A is stable if for any neighborhood U of A there is
a smaller neighborhood V' such that f*(V) C U for all n > 0. A is called
asymptotically stable if it is stable and upon iteration all points in V' converge
to A.

Definition 2.2 An attractor is an asymptotically stable w-limit set.

We note that there are more general definitions of attractor where the
open basin requirement is relaxed and many of our results hold under these
more general definitions.

Proposition 2.3 Let S and A be closed sets and suppose that A is a stable
f-tnvariant set. Then the following statements are equivalent,

(a) ANS =10,
(b) ANPs =0.
Proof: Since S C Ps, it is clear that (b) implies (a). Now suppose that (a)

is valid. Since A and S are closed, there is an open set U containing A with

UNS =10. Let V be a smaller neighborhood of A such that f"(V) C U for
n=20,1,2,.... It follows that V NPg =0 and so ANPgs = P as required. &



Corollary 2.4 Suppose that A is an attractor, S is closed and AN S = (.
Then

ACCyU---UC,_.
Lemma 2.5 Let M and S be closed subsets. Assume:
(a) A is an attractor and ANS = (.
(b) C is a connected component of X —Pg and ANC # .
(¢c) M is f-invariant and AN M # ().
Then M intersects C.

Proof: By (b) A intersects C; hence C' must be one of the connected
components guaranteed by Lemma 2.1. These connected components are
permuted cyclically by f; by (a) and Corollary 2.4 they cover the whole of
A. By (c), M intersects at least one connected component; invariance implies

that M intersects all the connected components. In particular, M intersects
C. |

(b) Connectedness results

We can now prove two rather strong connectedness results for attractors.

Theorem 2.6 Let A be a topologically mizring attractor for a continuous
mapping f. Then A is connected.

Proof: Suppose that A is not connected. Then we may write A as the dis-
joint union of two closed sets A; and As. Let S be a closed subset of X such
that A; and Aj lie inside distinct connected components of X — S. By Corol-
lary 2.4, A C Cy U ---C,_y, where Cy,...,C,_; are connected components
of X — Ps and are permuted cyclically by f. Also » > 2 by construction.
In particular A N Cy and A N C; are invariant under f”, so that f" has no
attractor containing both of these subsets of A. Hence A is not an attractor
for f™ which contradicts the assumption that A is topologically mixing. N

Corollary 2.7 If A is a topologically mizing attractor topologically conjugate
to a subshift then A is a fired point.



Proof: It is well-known that spaces topologically conjugate to a subshift
are totally disconnected, see for example Proposition 11.9 in Mané [10]. Com-
bining this with Theorem 2.6, we see that A is both connected and totally
disconnected. |

Remark 2.8 The standard examples of nontrivial topologically mixing spaces
conjugate to subshifts are not attracting by any definition. On the other
hand, it is not difficult to construct examples of nontrivial topologically mix-
ing attractors that are semiconjugate to subshifts and even conjugate to
subshifts off a negligible subset.

Theorem 2.9 Let A be an attractor for a continuous mapping f. Suppose
A contains a periodic point of period k. Then A has at most k connected
components.

Proof: Suppose we can write A as a disjoint union of closed sets
A:A]_U"'UA]C_H_.

Choose S to be a closed set that separates the A;s and such that SN A = (.
By Corollary 2.4

ACC()U"'UC,«_l

where Cy, ... ,C,_; are connected components of X —Pg. Since S separates
the A;s at most one A; can intersect a given C;. It follows that
k+1<r.

Now we let M be the periodic trajectory consisting of k£ points that is

assumed to exist in A. Since M is f-invariant, we may apply Lemma 2.5 to
conclude that M N C; # 0 for each C;. If follows that

k>r.

This contradicts the assumption that we can write A as a disjoint union of
k + 1 closed subsets. [ |

There are a number of consequences of Theorem 2.9 — we mention two.

Corollary 2.10 (a) If an attractor contains a fized point, then it is con-
nected.

(b) If an attractor contains a periodic point, then it cannot be a Cantor
set.



(c) Sensitive dependence

We begin by recalling the notion of sensitive dependence on initial condition.
The following definition is essentially due to Guckenheimer [6] (the only
difference being that we speak of sensitive dependence of A rather than of

f)-

Definition 2.11 An invariant set A has sensitive dependence if there is a
set Y D A of positive (Lebesgue) measure and an € > 0 such that for every
x € Y and every § > 0 there is a point y that is d-close to x and an integer
m > 0 such that

[f™ () = " ()| > e

We also introduce a weaker notion than sensitive dependence that is
equivalent to Definition 2.11 for invariant sets of positive measure.

Definition 2.12 An invariant set A has weak dependence if there isane > 0
such that for every x € A and every § > 0 there is a point y that is d-close
to z and an integer m > 0 such that

[f™ (@) — ()] > e

Proposition 2.13 Let f: X — X be continuous, and x € X. Suppose that
S C X satisfies the following conditions:

(¢) £(S) CS,

(b) w(z) C Ps, and
(c) w(@) ¢ S.

Then w(z) has weak dependence. If, in addition, w(x) has positive measure,
then w(x) has sensitive dependence.

Proof: Using (c) choose a point p in w(z) — S. Let d be the distance from
p to S and choose € to be less than d. Let y € w(z) and let § > 0. In the
d-neighborhood of y there exists a point 2’ = f*(z), some k, and a point z
that iterates to S (by (b)) — say in £ iterates. Since p € w(z) there exists
an m > ¢ such that f™(z') is (d —¢)-close to p. By (a) f™(z) € S and hence
is distance at least € away from f™(z'). n



3 Omne-dimensional maps

In this section we prove results about maps on the line which illustrate
the methods of the previous section, in particular Lemma 2.1 and Propo-
sition 2.13. Our main results deal with the two issues of density of periodic
orbits and sensitive dependence for w-limit sets of these one-dimensional
maps. Many authors have considered these issues but usually when assum-
ing stronger hypotheses on the mappings. We focus on results that can be
obtained for a general class of mappings using the topological methods of Sec-
tion 2. We note that the results in this section are not required in subsequent
sections.

Let f: R — R be continuous and let Per(f) denote the periodic points of
f. Then Ppeysy is the set of eventually periodic points of f. An w-limit set
is minimal if it contains no proper closed invariant subsets.

We now state our two main theorems.

Theorem 3.1 Let f: R — R be a continuous map, and x € R. Then

(a) w(x) C Prex(s)-

(b) The limit points of w(x) lie in Per(f). In particular, if w(x) is topolog-
ically transitive, then w(z) C Per(f).

Theorem 3.2 Let f : R — R be a continuous map and x € R. If w(x) is
compact and is not minimal then w(zx) has weak dependence. If, in addition,
w(z) has positive measure, then w(x) has sensitive dependence.

Corollary 3.3 Suppose that w(x) C R consists of a finite union of closed
intervals. Then w(x) is topologically transitive, periodic points are dense in
w(z) and there is sensitive dependence.

Proof: Topological transitivity is clear since w(z) has interior in R. Hence
by Theorem 3.1(b), w(z) C Per(f). Again using the fact that w(z) has
interior, the dense set of periodic orbits can be taken to lie in w(z).
Suppose that w(z) consists of k intervals. Then f* maps a single interval
into itself and has a fixed point. This implies that w(z) contains a period
k point and is not minimal. In addition, w(x) has positive measure and

sensitive dependence follows from Theorem 3.2. |



Remark 3.4 (a) Theorem 3.2 holds also for continuous circle maps. In

addition, Theorem 3.1 is valid for mappings of the circle provided the
set of periodic points is nonempty. The proofs are completely analogous
to those for mappings on the line.

Theorem 3.1 is reminiscent of Pugh’s closing lemma [11], [12]. Note
however that no genericity or differentiability assumptions on f are
required, in contrast with mappings of the circle or higher-dimensional
manifolds. However, even in R, it is true only generically that the
nonwandering set Q(f) is equal to Per(f), see Young [13]. Part (a) of
Theorem 3.1 was proved previously by Block [2] using similar methods.
We present a proof here to focus on the way Lemma 2.1 is used in the
proof.

If A is an attractor in the sense of Definition 2.2 then Theorem 3.1
implies that A must contain a periodic point. But then by Theorem 2.9
A has finitely many connected components. In particular, an attractor
for a mapping of the line must be a periodic orbit or a finite union of
closed intervals, and cannot be a Cantor set. Of course there are more
general definitions of attractor that do not exclude Cantor sets.

There are examples of minimal Cantor sets both with zero and positive
measure for continuous mappings on an interval. Moreover these Can-
tor sets attract almost every point in the interval and do not display
weak dependence. See, for example, [7] and [8].

We end with a result that is useful in the computation of symmetry-
increasing bifurcations, see [4]. Let p be a periodic point for f and let S
denote the corresponding periodic orbit. We call p (or S) unstable if there
exists a neighborhood U of S such that dist(f(z),S) > dist(z,S) for all
z € U. Note that if p has period k, f is differentiable and |(f*)'(p)| > 1,
then p is unstable.

Theorem 3.5 Suppose that x € R and that the orbit of x under f is bounded.
If p € A is an unstable periodic point, then

w(z) C P,

Corollary 3.6 Suppose that an odd continuous mapping f : R — R has a
compact attractor A containing the unstable fixed point 0. Then
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(a) ACP,.
(b) A is connected.
(c) A has sensitive dependence.

(d) Periodic points are dense in A.

Proof: Statement (a) follows from Theorem 3.5, (b) follows from Theo-
rem 2.9, (c) follows from Theorem 3.2 and (d) follows from Theorem 3.1 N

We now turn to the proofs of Theorems 3.1, 3.2 and 3.5.

Proof of Theorem 3.1: (a) Setting S = Per(f) in Lemma 2.1 implies that
either w(z) C Pper(y) or w(z) C Co U ---UC,_; where the C; are connected
components of R — Ppey(y) and are cyclically permuted by f. We show that
the second alternative implies that w(x) C Pper(s) which proves part (a).

Let w; = w(z) N C;. Then wj is an w-limit set for f". By construction,
f has no periodic points in C;. Therefore f" has no fixed points in C; and
either f"(x) > x for each z € C; or f"(z) < z for each z € C;.

Since wj is an w-limit set for f, w; lies in the boundary of C;. It follows

that w(z) is finite (possibly empty). If y € w(z) then the orbit of y under f
consists of finitely many points and so y € Pper(s) as required.
(b) Let (a, b) be an open interval containing y. We show that (a, b)NPer(f) #
() thus proving the first statement in part (b). By part (a), there is an
eventually periodic point z € (a,b). Suppose that z iterates to a periodic
orbit of period r. Let ¢ = f". Then z iterates under ¢ to a fixed point p,
g*(2) = p for some k. If p = 2 then we are finished, so we may assume that
p> 2.

Let w;(z) denote the w-limit set of f7(z) under g. Then y is a limit point
of wj(x) for at least one j, 1 < j < r. Hence, there are points y1 < yo
contained in w;(z) N (a,b). Let € = (y» — y1)/2. Since g-transitive points are
dense in w;(z), there is a transitive point 2’ € (a,b) within distance ¢ of y,.
Now g*(x') is also transitive and so g‘(z') is within distance € of y; for some
¢ > k. Therefore, we have

‘@) <2, ¢'(z)=p> 2

It follows from the intermediate value theorem that ¢ has a fixed point
between z’ and z and hence in (a,b). This is the required periodic point for

f.
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Suppose now that w(zx) is topologically transitive. To complete the proof
of part (b) it is sufficient to show that w(z) is either a periodic orbit or a
perfect set. That is, either every point is periodic or every point is a limit
point. Since w(zx) is topologically transitive we can assume without loss of
generality that x € w(z). If f™(z) = f™(x) for positive integers n; # ng,
then w(z) is a periodic orbit. Otherwise the orbit {f"(z);n = 1,2,...}
consists of distinct points. Let y € w(z). Then there is an increasing sequence
ng such that f™(x) — y. The points f™(z) lie in w(z) and are distinct so
that y is a limit point of w(z) as required. |

Next we turn to the proof of Theorem 3.2. We require two preliminary
results. The first of these, Lemma 3.7, is used also in the proof of Theo-
rem 3.5. The second result, Lemma 3.8, contains the technical part of the
proof of Theorem 3.2.

Lemma 3.7 Suppose that f : R — R is continuous, z € R and w(z) is
compact. If z € w(x) — Per(f), then w(z) C P,.

Proof: Since f(w(z)) = w(x), there exists a sequence z, € w(x), n > 0 such
that f(z,) = z,_1- We have assumed that z is not periodic, so the points
in the sequence are distinct. Hence w(z) NP, is an infinite set. Suppose
that w(z) ¢ P,. By Lemma 2.1, w(z) C Co U --- U C,_; where each C; is a
connected component of R — P,. But then w(x) NP, consists at most of the
union of the end points of the intervals C; and hence has at most 2r points.
This is a contradiction. |

Lemma 3.8 Suppose that f : R — R is continuous and x € R. Suppose
further that w(z) C Per(f) and w(x) N Per(f) # 0. Then either w(x) has
sensitive dependence or w(x) is a periodic orbit.

Proof: The proof divides into two cases depending on whether or not the
following property (1) is satisfied.

(t) For any positive integer ¢, there is a periodic orbit S C R such that at
least ¢ connected components of R — S intersect w(x).

Suppose first that property () is valid and let y be a periodic point in
w(z) with period k. We may choose a periodic orbit S C R so that at
least k& + 1 components of R — S intersect w(z). Suppose that w(z) ¢ Pg.
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Then there are at least £ + 1, but by Lemma 2.1 finitely many, components
of R — Ps that cover w(z) and that are cyclically permuted by f. One of
these components contains y and there is a contradiction. Hence w(z) C Ps.
Either w(z) = S in which case w(z) is a periodic orbit or S satisfies the
hypotheses of Proposition 2.13, so that w(z) has weak dependence.

It remains to consider the case when property (}) is not valid. Since
w(z) C Per(f) it follows that w(z) C Fix(f*) for some k. By continuity,
w(x) C Fix(f*) and consists entirely of periodic orbits. We show that if w(z)
contains more than one periodic orbit, then there is sensitive dependence.

It is sufficient to show that w(z) has sensitive dependence under g = f*.
Suppose that P; and P, are distinct periodic orbits in w(z) and define

min _ |p; — pol.
P1EP1,p2EP

=

E =

Suppose that y € w(z) and § > 0. Choose an iterate z = f¢(x) that is d-close
to y. There are integers myi, my > 0 such that ¢™i(z) is within distance ¢
of points p; € P;, 7 = 1,2. On the other hand, y is fixed by g so that
9™ (y) = y. Hence |[g™i(y) — g™ (2)| = [y — g™ (y)| > e for j =1 or j =2,
thus proving sensitive dependence. [ |
Proof of Theorem 3.2: We shall prove weak dependence. Strong de-
pendence then follows from the additional assumption that w(z) has positive
measure. The strategy of our proof is to reduce, under the assumption that
w(z) does not have weak dependence, to the situation where the hypotheses
of Lemma 3.8 are valid in which case the theorem follows.

The proof varies depending on whether or not w(x) is topologically tran-
sitive. Suppose first that w(z) is topologically transitive. Since w(z) is not
minimal, there is an invariant closed subset S contained properly in w(z).
If z € S is not periodic, then by Lemma 3.7, w(z) C P, C Pg and weak
dependence follows from Proposition 2.13. So we may assume that S, and
hence w(x), contains periodic points. In addition, w(xz) C Per(f) by Theo-
rem 3.1(b) so that the hypotheses of Lemma 3.8 are satisfied as required.

Next suppose that w(zx) is not topologically transitive. We claim that
either w(x) C Per(f) or w(x) has sensitive dependence. If the first possibility
holds, the hypotheses of Lemma, 3.8 are satisfied.

We prove the claim by assuming that w(z) ¢ Per(f) and showing that
w(z) has sensitive dependence. Choose z € w(z) — Per(f) and let S =
{f"(2); n > 0}. By Lemma 3.7, w(z) C P, C Ps. Note that if S is a proper
subset of w(x) then we are finished by Proposition 2.13.
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Choose y € w(x) such that f(y) = z. By the above discussion we may
assume that y € S. So either z iterates onto y under f or z € w(z). Since
z ¢ Per(f) it is the second possibility that is valid: z € w(z). Hence we
may again apply Lemma 3.7 to deduce that w(z) C P,,). Since w(z) is
not topologically transitive, w(z) is a proper subset of w(z) and sensitive
dependence follows from Proposition 2.13 |

Proof of Theorem 3.5: Let S be the periodic orbit corresponding to p.
We show that there are points in w(z) that iterate to S and do not lie in S.
Such a point ¢ is not periodic and hence w(x) C ﬁq C 5], by Lemma 3.7.

Since the orbit of z under f is bounded, w(x) is compact. Hence, w(x)
lies in the interior of a closed interval I. Let U be the neighborhood of S in
the definition of unstable periodic point. We may assume that U C R. Let
V' C U be a smaller neighborhood of S and let W C R be a neighborhood of
w(z).

We claim that there must be a point ¢ € W — U such that f(q) € V.
Choose a sequence of neighborhoods V; converging to S and a sequence of
neighborhoods W; converging to w(z). By the claim we obtain a sequence of
points ¢; € W; — U, such that f(g;) € V;. The sequence g¢; liesin I — U which
is compact, so passing to a convergent subsequence, we have that ¢; — ¢.
Moreover it follows from the construction of the sequence that ¢ € w(z) — S
and f(q) € S as required.

It remains to verify the claim. First observe that there is an integer
K > 0 such that f*(z) € W for all K > K. For otherwise f’(z) € R— W for
infinitely many integers j, and since this set of points is bounded there would
ba an w limit point in R — W. This contradicts the fact that w(z) C W.

So without loss of generality, we may assume that f7(z) € W for all
j > 0. Since S C w(zx), = eventually iterates into V. Let k£ be the least
integer satisfying f¥(x) € V. Then ¢ = f*~!(x) € W - U. For if ¢ € U, then
g € U — V and must iterate out of U before entering V. |

4 Symmetry of an attractor

Suppose that I' is a finite group acting linearly on X, and that f is I'-
equivariant, that is

flyz) = ~vf ().
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If x € X, we define the isotropy subgroup of z to be the subgroup
Yo.={yeTl : vz =1z}
If 3 is a subgroup, then it has a fized-point subspace
Fix(¥X)={z € X : cr=zforaloeX}.

We can now define the symmetry of a nonempty set A C X. The subgroup
of I' that fixes each point in A is denoted by

TA: ﬂ 21‘7

T€A

and the isotropy subgroup of A consists of the group elements that preserve
the set A, and is denoted by

Ya={yel : yA= A}
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Proposition 4.1 Let z € X, and A=w(z) # 0. Then
(a) A C Fix(Ty).
(b) T4 is a normal subgroup of 4.
Proof: These statements follow easily from the definitions of 7’4 and ¥ 4. i

By Proposition 4.1, ¥4 is contained in the normalizer N(7T4) of T,4. The
symmetry group S, of A is defined to be the quotient group

Sa= ZA/TA C N(TA)/TA
Note that if A consists of a single point, then S4 is the trivial group.

Remark 4.2 It is the group S4 that plays the most significant role in the
theoretical issues discussed in this paper. However it is interesting to compare
the meaning of the three groups 74, ¥4 and S4 in applications, particularly
to nonequilibrium solutions of PDEs. The group 7’4 refers to the symmetries
of a solution at each instant in time while ¥ 4 refers to symmetries of the
time-average of that solution. The important observation for applications is
that ¥4 can be larger than Ty, [4]. In this sense, Sy = ¥ 4/T4 are the new
symmetries that appear in solutions by taking time-averages.

If Ty = 1 then ¥4 can be identified with S4 and we say that A is X-
symmetric.

Proposition 4.3 Assume:
(a) Y is a finite set with |Y|=r.
(b) The finite group Z, acts transitively on Y.
(c) ¥ is a group acting fized-point free on Y.
(d) The actions of ¥ and Z, commute.

Then ¥ is isomorphic to a subgroup of Z,, that is ¥ = Z;, where k divides r.
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Proof: Let a be a generator of Z,, fix y € Y, and let o € 3. Since oy € Y,
there is a unique a? € Z, such that oy = aPy, using (a) and (b). Define
X : X = Z, by x(0) = a?. We show that x is a monomorphism. The
proposition follows with k& = r/p.

To see that x is a homomorphism, suppose that x(o;) = a? for j =1, 2.
Then o;y = aP’y and

001y = 020y = a" oay
since by (d) the actions of ¥ and Z, commute. Hence

o901y = aP'aP?y = aP?*aP'y
since Z, is commutative. It follows that

x(0201) = x(02)x(01)

We now show that y is injective. Suppose that x(¢) = 1. Then oy =y
and o = 1 since by (c) X acts fixed-point free. |

Corollary 4.4 Suppose that f : X — X is I'-equivariant and A is a periodic
orbit of period r. Then S4 = Zy where k divides r.

Proof: LetY = A= {z, f(x),...,f!(x)}. Note that the action of f on
Y is a transitive Z, action. Moreover Yy, = Ty for each j from which it
follows that S, acts fixed-point free on Y. Since I'-equivariance means that
the actions of S4 and Z, commute, the result follows from Proposition 4.3.

Remark 4.5 Often we shall discuss properties of I'-symmetric attractors
A for I'-equivariant mappings f so that S4 = I'. This assumption can be
verified in two distinct ways. First, when A contains a point with trivial
isotropy then 74 = 1 and we can identify Sy with ¥4, Cc I'. If ¥4 # T
discard the elements of I' that are not in ¥4 and redefine I' = ¥ 4. Then f
is still ['-equivariant and A is I'-symmetric.

Second, even when A does not contain points with trivial isotropy this
hypothesis can be satisfied — if in addition we restrict f. Suppose that Ty # 1.
Note that A C Fix(Ty4) by Proposition 4.1(a) and Fix(Ty) is an f-invariant
subspace. Let g = flpixr,)- Then g is a A-equivariant mapping where
A = N(T4)/Ta. Inside A, Sy =X 4 and we are back in the first case.
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Theorem 4.6 Let f : X — X be a I'-equivariant map with an attractor A,
Sa =T. Suppose that A s the disjoint union of two compact sets A, and A,.
Then Sy4, is a normal subgroup of T and the quotient group T'/Sy4, is cyclic.

Proof: Choose Sy to be a closed set separating A; and A, such that ANSy =
0. Let S = U, er 7S0- Since A is I'-symmetric we have that AN .S = 0. By
Corollary 2.4, we have

ACcCyU---UC,,

where the C; are connected components of X —Pg. Moreover the connected
components are permuted cyclically by f and permuted by elements of I'.

It is easy to check that S4, is a normal subgroup of I'. Suppose that
vC; = C} for some 7y € I' and some connected component C;. We claim that
v € Sa,. It follows that I'/S4, acts fixed-point free on {Cy,...,C,_1} and
hence is cyclic by Proposition 4.3.

It remains to verify the claim. First observe that by equivariance of f, the
element + fixes some Cj if and only if y fixes all the components Cy, ... ,C,_;.
But S4 = I' so that v(ANC;) = ANC; for each j. The choice of Sy guarantees
that if a C; intersects A; then C; N Ay = 0 so that y(A4, N C;) = A, N C;.
Thus A; is made up of y-symmetric pieces and is itself y-symmetric. |

Remark 4.7 (a) Suppose in Theorem 4.6 that I' is a simple noncyclic
group and S4 =T'. Then S4, =T'. (Recall that a group G is simple if
the only normal subgroups are G and 1.) An example of such a group I’
is given by the symmetry group of the icosahedron which is isomorphic
to the alternating group As.

(b) Suppose that I' = D,, in Theorem 4.6. Then Sy, = Dy, or Z,, if m is
odd, and Sy, = Dy, Zy, or Dy, /5 if m is even. It is easily verified that
these subgroups obey the hypotheses of the theorem. The remaining
normal subgroups Zj, where k£ divides m, may be ruled out thanks to
the isomorphism D,,, /Z; = Dy, .

(c) For certain representations of a group I', there may be further restric-
tions on the symmetry of disjoint parts of the attractor. For example
we show in Theorem 5.7 that if D,, is acting faithfully on R?, m > 3,
then Sy, = Dy,.
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We have seen that there are goup-theoretic restrictions on the symmetry
groups of periodic orbits (Corollary 4.4) and on the symmetry of connected
components of symmetric attractors (Theorem 4.6). We now show that there
are restrictions on the symmetry groups of attractors. In contrast to the
previous results, these restrictions are not purely group-theoretic, but depend
on the representation of the group. Suppose that [' C O(n) is a compact
Lie group and let ¥ be a subgroup of I'. Recall that 7 € I' is a reflection if
Fix(7) is a hyperplane in R". Let Ky be the set of reflections in I' — ¥ and
define

Ly = U Fix(7).

TEKE

The connected components of R® — Ly are permuted by elements of X.
We will use the fact that a X-symmetric attractor for a I'-equivariant map
cannot intersect Ly. This is a consequence of the following result proved in
(3], Proposition 1.1.

Proposition 4.8 Let f : R" — R" be continuous and commute with a ma-
triz p. Let A C R"™ be an attractor for f. If

Anp(4) #0,
then
p(A) = A.

Proposition 4.9 Let I' C O(n) be a compact Lie group with subgroup X..
Suppose that f : R® — R" is a continuous I'-equivariant mapping with a
Y.-symmetric topologically mizing attractor. Then there is a connected com-
ponent of R" — Ly, that is preserved by ..

Proof: By Proposition 4.8, any Y-symmetric attractor A must satisfy AN
Ly = (. In addition, A is connected by Theorem 2.6. Hence A lies inside a
single connected component C' of R” — Ly. But X fixes A and hence C. 1

If we drop the topological mixing assumption in Proposition 4.9 then the
situation is more complicated, but there is still a representation-theoretic
restriction on ..
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Theorem 4.10 Let I' C O(n) be a compact Lie group with subgroup A.
Suppose that f : R® — R" is a continuous I'-equivariant mapping with a
A-symmetric attractor. Then there is a subgroup X such that

(a) X is a normal subgroup of A,
(b) A/X is cyclic, and
(c) ¥ fizes a connected component of R" — Ly,.

Proof: Let A be a A-symmetric attractor for a ['-equivariant continuous
mapping f. Let L be the union of the reflection hyperplanes that are not
intersected by A. The connected components of R" — L that intersect A are
permuted by the elements of A.

By Corollary 4.4, A is covered by finitely many connected components
C1,...,C, of R" — P, and these connected components are permuted cycli-
cally by f. Let 3; denote the subgroup of A that fixes the connected compo-
nent containing C;. It is an easy argument using equivariance of f to show
that ¥ = 3; is independent of 7 and that X is normal in A.

Now suppose that 7 € I' is a reflection and that Fix(7) ¢ L. Then
ANFix(7) # 0 and by Proposition 4.8, 7 € A. Moreover there is a connected
component, C say, of R” — Py, intersecting Fix(7) and hence 7 € ¥; = ¥,
so that Fix(7) ¢ Lyx. It follows that Ly C L and so ¥ fixes a connected
component of R" — Ly,.

It remains to show that A/Y is cyclic. But A/ acts fixed-point-free on
the set of connected components {C1,...,C,} (by definition of ¥). Since f
commutes with this action and permutes the C; cyclically, the result follows
from Proposition 4.3. [
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Remark 4.11 (a) In Section 5 we apply Theorem 4.10 when I' = D,,, act-
ing on R? and show that not all subgroups of D,,, can be the symmetry
group of an attractor for a D,,-equivariant mapping.

(b) Suppose that I is finite. Then the representation-theoretic restriction
obtained in Theorem 4.10 is necessary and sufficient, see Ashwin and
Melbourne [1]. In particular, there are no restrictions on cyclic sub-
groups of I' nor on subgroups of I' that contain all the reflections in
I'. (For the case of cyclic subgroups, see also King and Stewart [9]).
Proposition 4.9 is also optimal except when I' is a cyclic subgroup of

0(2) (1))

Definition 4.12 Let D be a finite collection of closed subsets of X. The
collection D is a fundamental decomposition for the action of I' if

(a) X =Ugep B

(b) int(B) = B, for each B € D.

(
(d

)
)
c¢) The sets int(B) are pairwise disjoint.
) The group I' acts on D; that is, 7(B) € D for all B € D and y €T
)

(e) If v(B) = B for some B € D and nontrivial v € T', then there is an
element § € I' such that v0B # §B.

Remark 4.13 (a) Definition 4.12(e) states that I acts fixed-point free on
group orbits in D.

(b) This definition is similar to that of a fundamental domain. However, we
allow the possibility that vB = B for some B € D and some nontrivial
vyel.

(c) A natural way to produce fundamental decompositions is to choose a
hyperplane in X passing through the origin. Let Sy denote a half-plane
inside this hyperplane, and let S = U’yGF vSp. Let D be the collection of
closures of connected components of X —S. It is clear that D satisfies
Definition 4.12 a-d. Condition (e) must be verified in each case.

Recall that Pg is defined to be the set of preimages of a set S under f.
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Proposition 4.14 Suppose that I' is not cyclic and A is an w-limit set with
Sa=T. Let D be a fundamental decomposition for I' and let S be the closed
set |Jgep 0B. Then

(a) AC Ps.
(b) If A is an attractor, then AN S # 0.

(c) If A is an attractor and D is constructed as in Remark 4.13(c), then
A intersects vSy for each v € T.

Proof: (a) Suppose that A ¢ Pg. Then by Lemma 2.1, A — Pg is covered
by connected components Cjy,...,C,_1 of X — Pg, and these connected
components are permuted cyclically by f. We claim that [" acts fixed-point
free on the connected components. Then it follows from Proposition 4.3 that
I' is cyclic which we had assumed not to be the case. When applying that
proposition, set ¥ =T and Y = {Cy,... ,C, 1}.

It remains to verify the claim. Suppose that vCy C Cy. Then the I'-
equivariance of f implies that vC; C C; for each j. Let B, denote the
unique subset of D that contains C; — note that uniqueness follows from
Definition 4.12(c). Then yB; = B; for every j. Since A is I-symmetric,
the collection of subsets {B;} consists of a collection of group orbits of I' by
Definition 4.12(d), each of which is fixed by . But Definition 4.12(e) states
that ' acts fixed-point free on group orbits, so v = 1 as required.

(b) follows from Proposition 2.3.

(c) If S = U,er 750 then A intersects Sy for some v € T', and hence for
all v € T' since S4 =T. |

5 Planar maps with dihedral symmetry

The dihedral group D,, consists of the symmetries of the regular m-sided
polygon and is generated by a rotation 6 through 27/m and a reflection .
The irreducible representations of D,,, are one- or two-dimensional and the
faithful representations are given on C by

2£7m/mz’

0-z=ce€ K-z2=2

where ¢ and m are coprime. We consider here only the standard two-dimen-
sional representation ¢ = 1; the results for the other two-dimensional irre-
ducible representations are identical.
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The subgroups of D,, are D, and Z;, k > 1, where k divides m. There
are m axes of symmetry for D,, which we label Lq,..., L,,.

Proposition 5.1 Suppose that f is D,,-equivariant with a X-symmetric topo-
logically mixing attractor. Then ¥ = D,,, D or 1.

Proof: Suppose that ¥ # D,,. Then there are reflections in D,, that do not
lie in ¥ so that Ly, # (). Observe that any nontrivial rotation in D,, cannot

preserve a connected component of R? — Ly.. It follows from Proposition 4.9
that X = D; or 1. ]

Theorem 5.2 Suppose that f is D,,-equivariant, m > 2. Suppose further
that A is an attractor for f and X4 = Dy,.

(a) If m is odd, then k =1 or m.
(b) If m is even, then k =1,2 or m.

We note that the first nontrivial consequence of Theorem 5.2 occurs when
m = 6.
Proof: By Theorem 4.10, D; must have a subgroup X satisfying conditions
(a)—(c) of that theorem. Condition (c) together with Proposition 4.9 and
Proposition 5.1 implies that > = D,,, D; or 1. Now D,, is not a subgroup
unless £ = m, and D, is normal in Dy, (condition (a)) only if £ = 1 or 2.
Finally Dy/1 is cyclic (condition (b)) only if & = 1. n

Remark 5.3 King and Stewart [9] prove that there exist attractors with
cyclic symmetry for any cyclic subgroup. It is shown in Ashwin and Mel-
bourne [1] that there exist attractors with D,, and D, symmetry.

Lemma 5.4 Suppose that A is a D,,-symmetric attractor for a D,,-equivar-
tant mapping f. If m > 3 then A intersects each half-line emanating from
the origin. If m = 2 then A intersects at least one line of symmetry.

Proof: Let Sy be any half-line emanating from the origin and define S =
U%Dm vSo. The set S generally consists of 2m half-lines and is illustrated
for the case m = 4 in Figure 1. Note that when Sj lies on an axis of symmetry,
then S consists of m half-lines. When m > 3 it is easy to check that for any
choice of Sy, the collection D of connected components of C — S is indeed a
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Figure 1: half-lines for m = 4.

fundamental decomposition. It follows immediately from Proposition 4.14,
that if A is an attractor with ¥4 = D,, and m > 3, then for any choice of
So, A C Pgand AN Sy # 0.

In the case m = 2 let S be the union of the two axes of symmetry. Then
the connected components of C — S form a fundamental decomposition. It
follows that A C Pg, and AN S # (). |

Corollary 5.5 Let A be a D,,-symmetric w-limit set for a D,,-equivariant
mapping f. Then A has weak dependence. Moreover, if A has positive mea-
sure, then A has sensitive dependence.

Proof: Let S be the union of the axes of symmetry for Dy,,. Choosing Sy
to be a half-axis of symmetry in the proof of Lemma 5.4 shows that A C Ps.
It follows that A and S satisfy the hypotheses of Proposition 2.13. |

Proposition 5.6 Let f be D,,-equivariant where m is even and m > 4. Let
A be an attractor with X4 = Dy. Then A intersects precisely one axis of
symmetry.

Proof: Let L and M denote the two axes of symmetry for the subgroup
D,. By Lemma 5.4, A intersects at least one of the axes, say L. Moreover,
by Proposition 4.8, A does not intersect any other axis of symmetry with the
possible exception of M.

Let S denote the union of the two axes of symmetry for D,, that are
adjacent to L. Then ANS = ). Since A intersects L, A intersects a connected
component of C — S that intersects L. But such a connected component
cannot intersect M. Therefore AN M = () by Lemma 2.5. |

As promised, we can improve Theorem 4.6 for the faithful representations
of D,, on C.
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Theorem 5.7 If A is a D,, symmetric attractor, m > 3, and A is the
disjoint union of two compact subsets A1 and Ay, then these subsets are D,,-
symmetric.

Proof: Let Sy be a closed set with the property that A; and A, lie in
distinct connected components of C — Sy. Define S = U%Dm vSy. By Corol-
lary 2.4, A is covered by finitely many connected components Cy, ... ,C,_;
of C - Ps.

We claim that these components are D,,-invariant. It is sufficient to
show that reflections leave the components invariant since D,, is generated
by reflections. Let L be an axis of symmetry corresponding to a reflection
k and observe that k permutes connected components by the D,,-invariance
of S. But A intersects L by Lemma 5.4 and hence L intersects one of the
connected components, say Cy. Since k fixes L pointwise we have kCy = Cj.
In addition, the equivariant map f permutes the connected components so
that kC; = C; for each j thus verifying the claim.

Now let v € D,,. Then yA = A and by the claim yC; = C; for each
j. Hence y(ANC;) = AN C;. But S is constructed so that only one of
Ay or Ay may intersect a given C;. If A; say intersects C; then we have
v(A1NCj) = A;NCj. Thus A; and A, are unions of D,,-symmetric subsets
and are themselves D,,-symmetric. |

The following result is useful for computing symmetry-increasing bifur-
cations. See [4].

Theorem 5.8 Let f be a D,,-equivariant mapping, m > 3, with an attractor
A.

(a) If Sy = D,, then A C Pg where S is the union of any two lines through
the origin.

(b) If X4 = Dy, then A C Py, for some line of symmetry L.
Proof: (a) Suppose that A ¢ Pg. Then by Lemma 2.1,
AcCyU---UC, 4,

where Cy,...,C,_; are connected components of C — Pg, and these con-
nected components are permuted cyclically by f.
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Since m > 3 there is an axis of symmetry M, M ¢ S. By Lemma 5.4
AN M # (. Hence one of the connected components, Cy say, intersects M.
It follows that C; N M # @ for j = 0,...,r — 1. In particular, A intersects
only the two connected components of C — S that intersect M. But A is
D,,-symmetric and hence intersects all four connected components of C — §
giving a contradiction.

(b) Let S = Ly U Ly where L; and L, are the axes of symmetry for Ds.
By the proof of Lemma 5.4, A C Pg. It follows from Proposition 2.3 that
A C Pans. By Proposition 5.6, A intersects precisely one of these axes L;
say. In particular AN S C L;. Therefore A C Py,. |
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