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Abstract

We provide a systematic approach for deducing statistical limit laws via
martingale-coboundary decomposition, for nonuniformly hyperbolic systems
with slowly contracting and expanding directions. In particular, if the asso-
ciated return time function is square-integrable, then we obtain the central
limit theorem, the weak invariance principle, and an iterated version of the
weak invariance principle.

1 Introduction

We consider dynamical systems f : M → M that are nonuniformly hyperbolic in
the sense of Young [32, 33]. Roughly speaking, this means that there is a uniformly
hyperbolic induced map F : Y → Y where Y ⊂M . Here F = T r where r : Y → Z+,
and the probability that the return time r exceeds n decays exponentially [32] or at
least at some polynomial rate [33]. (It is not assumed that F is the first return map
to Y .)

This set up includes the Axiom A case for which it is classical since [5, 28, 29]
that Hölder observables satisfy properties such as exponential decay of correlations
and strong statistical limit laws. Many of these properties go over to systems that
are modelled by Young towers with exponential tails [32]. The latter framework is
flexible enough to include many important nonuniformly hyperbolic systems such
as dispersing billiards [32, 8] and Hénon-like attractors [4]. The results are first
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proved in the noninvertible setting (one-sided subshifts with finite or countably infinite
alphabet) before passing to the underlying invertible system f : M →M .

The case of polynomial tails is more complicated. Indeed the original paper of
Young [33] is concerned entirely with the noninvertible situation, so there is nonuni-
form expansion and no contracting directions. In this situation, Young proved poly-
nomial decay of correlations, and again various statistical limit laws hold if the poly-
nomial decay rate is strong enough. For example, the central limit theorem (CLT)
and associated invariance principles hold if the decay rate is summable [15, 20, 22, 33].

Turning to the nonuniform hyperbolic situation with polynomial tails, if it is
assumed in addition that there is exponential contraction along stable manifolds [2,
20], or sufficiently rapid polynomial contraction [1], then it is straightforward to pass
from the noninvertible nonuniformly expanding case to the underlying dynamical
system on M .

However, there is so far no systematic treatment of the general case where F :
Y → Y is uniformly hyperbolic but no contraction or expansion is assumed except
on returns to Y . This is the case for many important examples including billiards. In
various situations, the reliance on extra conditions regarding contraction along stable
manifolds has been overlooked leading to unproved claims in the literature.

Recently there have been some attempts to remedy this situation. We note the
following results.

(a) By Bálint & Gouëzel [3], the CLT for nonuniformly expanding maps passes over
to the nonuniformly hyperbolic setting.

(b) By Chazottes & Gouëzel [7], moment estimates and concentration inequalities for
nonuniformly expanding maps pass over to the nonuniformly hyperbolic setting.

(c) The moment estimates in (b) imply polynomial large deviation estimates by [21,
19].

(d) The method in [7] can be adapted [14] to yield polynomial decay of correlations
for nonuniformly hyperbolic systems. This idea was used in [23] for more general
decay rates.

Our purpose in this paper is to give a simple but general method for passing
from noninvertible to invertible systems deducing a variety of statistical limit laws
in one shot. In particular, we obtain the central limit theorem, the weak invariance
principle, and an iterated version of the weak invariance principle. The latter is
crucial for understanding systems with multiple timescales and their convergence to
stochastic differential equations [16, 17]. (See in particular [16, Section 10.2] which
makes use of Corollary 2.3 below.) It is possible that existing methods could be
adapted to cover the results presented here, but it seems useful to have a general
result of this type.

A successful strategy for deriving various statistical limit laws has been the fol-
lowing:
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(i) Quotient along stable manifolds to reduce to a nonuniformly expanding (non-
invertible) map f̄ : M̄ → M̄ .

(ii) Induce to reduce to a uniformly expanding map F̄ : Ȳ → Ȳ .

(iii) Obtain a martingale-coboundary decomposition for observables on Ȳ following
Gordin [13].

(iv) Apply probabilistic results for martingales.

The main problem when the contraction along stable manifolds is subexponential
is that in general the quotienting step cannot be done in isolation. Our revised
strategy is to induce first and then perform the quotienting and decomposition steps
simultaneously (bypassing the nonuniformly expanding map f̄ altogether). That is,
we carry out the steps in the order: first induce (ii) to a uniformly hyperbolic map
F : Y → Y ; then perform the quotienting and Gordin steps (i) and (iii) together; and
finally apply the martingale results (iv).

The remainder of this paper is organised as follows. In Section 2, we state our
main result Theorem 2.3 which covers the revised steps (i) and (iii) above. We also
show how various statistical limit laws follow from this result. In Section 3, we present
the proof of Theorem 2.3. In Section 4, we give illustrative examples.

2 Main result

Let f : M → M be a diffeomorphism (possibly with singularities) defined on a
Riemannian manifold (M,dM). We assume that f is nonuniformly hyperbolic in the
sense of Young [32, 33]. The precise definitions are somewhat technical; here we
are content to focus on the parts necessary for understanding this paper, referring
to [32, 33] for further details.

As part of this set up, there is a subset Y ⊂M , a countable partition {Yj} of Y and
an inducing time r : Y → Z+ constant on partition elements such that f r(y)(y) ∈ Y
for all y ∈ Y . We refer to F = f r : Y → Y as the induced map. (It is not required
that r is the first return time to Y .) The separation time s(y, y′) of points y, y′ ∈ Y
is the least integer n ≥ 0 such that F ny, F ny′ lie in distinct partition elements of Y .

Let Ws denote a measurable partition of Y (consisting of “stable leaves”) such
that each partition element Yj is a union of stable leaves. In particular, r is constant
on stable leaves. If y ∈ Y , the leaf in Ws that contains y is labelled W s(y). Let W u

denote a measurable subset of Y such that W u intersects each element of Ws in a
single point. We refer to elements ofWs as “stable leaves” and to W u as an “unstable
leaf”.

We assume

(A1) F (W s(y)) ⊂ W s(Fy) for all y ∈ Y .

(A2) There exist constants C ≥ 1, γ0 ∈ (0, 1), such that

3



(i) dM(f `F jy, f `F jy′) ≤ Cγj0 for all y′ ∈ W s(y), y ∈ Y ,

(ii) dM(f `F jy, f `F jy′) ≤ Cγ
s(y,y′)−j
0 for all y, y′ ∈ W u,

for all j ≥ 0, 0 ≤ ` ≤ r(F jy),

Let Ȳ = Y/ ∼ where y ∼ y′ if y′ ∈ W s(y), and let π : Y → Ȳ denote the natural
projection. By (A1), we obtain well-defined functions r : Ȳ → Z+ and F̄ : Ȳ → Ȳ .
In Section 3.2, we recall the definition for F̄ to be Gibbs-Markov. We assume

(A3) F̄ : Ȳ → Ȳ is a mixing Gibbs-Markov map with ergodic invariant probability
measure µ̄Y and measurable countable partition α consisting of the partition
elements Yj quotiented byWs. Moreover, µ̄Y = π∗µY where µY is an F -invariant
ergodic probability measure on Y .

(A4) r ∈ L1(Ȳ ) (equivalently r ∈ L1(Y )).

Remark 2.1 Properties (A2) and (A3) imply that the induced map F has exponen-
tial contraction along the stable leaves and exponential expansion along the unstable
directions, while no further assumption is made on contraction and expansion for f .

Remark 2.2 There is a standard procedure to pass from the F -invariant ergodic
probability measure µY on Y to an f -invariant ergodic probability measure µM on
M , which we now briefly recall. Define ∆ = {(y, `) ∈ Y × Z : 0 ≤ ` < r(y)}
with probability measure µ∆ = µY × {counting}/

∫
r dµY . Define π∆ : ∆ → M ,

π∆(y, `) = f `y. Then µM = (π∆)∗µ∆ is the desired probability measure on M .
We omit the additional assumptions in Young [32] that guarantee that µM is a

physical measure for f . The results here do not rely on this property.

Let v : M → Rd be a Hölder observable. We define the induced observable V :
Y → Rd by setting V (y) =

∑r(y)−1
`=0 v(f `y). We suppose throughout that

∫
v dµM = 0,

and hence
∫
V dµY = 0. Let L denote the transfer operator corresponding to F̄ ,

defined by
∫
Lφψ dµ̄Y =

∫
φψ ◦ F̄ dµ̄Y for φ ∈ L1(Ȳ ), ψ ∈ L∞(Ȳ ).

We can now state our main result.

Theorem 2.3 Suppose that r ∈ Lp(Y ), where p ≥ 1. Then there exists m̄ ∈ Lp(Ȳ )
and χ ∈ Lp(Y ) such that

(a) V = m̄ ◦ π + χ ◦ F − χ,

(b) m̄ ∈ kerL.

Remark 2.4 The utility of this theorem lies in the following observations:
(i) There are standard methods for reducing from proving statistical limit laws for
v on (M,µM) to proving limit laws for the induced observable V on (Y, µY ) (see for
example [27, 11, 24, 15, 34, 25]).
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(ii) The coboundary χ ◦ F − χ in (a) has little or no effect on statistical properties,
so limit laws for V on (Y, µY ) often reduce to limit laws for m̄ on (Ȳ , µ̄Y ).
(iii) Property (b) implies that {m̄ ◦ F̄ j : j ≥ 0} forms an ergodic stationary sequence
of Lp reverse martingale increments (see for example [13] or [12, Remark 3.12] for more
details). There are many limit laws for such sequences in the probability literature.

Thus we can prove statistical limit laws for m̄ : (Ȳ , µ̄Y )→ Rd and then pass (via
V : (Y, µY )→ Rd) to the original observable v : (M,µM)→ Rd.

Now we describe some results that follow from our main theorem. (The list is not
intended to be exhaustive.)

Corollary 2.1 (CLT) Suppose that p ≥ 2. Then n−1/2
∑n−1

j=0 v◦f j →d G where G is

a d-dimensional normal distribution with mean zero and covariance matrix Σ ∈ Rd×d.

Proof As mentioned already, it is standard that n−1/2
∑n−1

j=0 m̄ ◦ F̄ j →d G̃ where

G̃ ∼ N(0, Σ̃) with Σ̃ =
∫
m̄ m̄T dµ̄Y . Since π∗µY = µ̄Y ,

n−1/2

n−1∑
j=0

(m̄ ◦ π) ◦ F j =
(
n−1/2

n−1∑
j=0

m̄ ◦ F̄ j
)
◦ π =d n

−1/2

n−1∑
j=0

m̄ ◦ F̄ j →d G̃.

Next,
∑n−1

j=0 V ◦ F j =
∑n−1

j=0 (m̄ ◦ π) ◦ F j + χ ◦ F n − χ. Now |χ|2 ∈ L1(Y ), so it

follows from the ergodic theorem that χ ◦ F n = o(n1/2) a.e. Hence the distribu-
tional limits of n−1/2

∑n−1
j=0 V ◦ F j and n−1/2

∑n−1
j=0 (m̄ ◦ π) ◦ F j coincide, yielding

n−1/2
∑n−1

j=0 V ◦ F j →d G̃.

At the same time, the observable r : Y → Z+ is well-defined in L2(Ȳ ) and constant
on partition elements a ∈ α, so it standard (see for example [20]) that r satisfies the
CLT in the form n−1/2(

∑n−1
j=0 r ◦ F j − n

∫
r dµY )→d G̃ for some normal distribution

G̃.
Finally, it follows for example from [24] that the limit laws for V and r on

(Y, µY ) imply one for v on (M,µM), namely n−1/2
∑n−1

j=0 v ◦ F j →d G where

G = (
∫
r dµY )−1/2G̃. (In other words, G ∼ N(0,Σ) where Σ = (

∫
r dµY )−1Σ̃.)

Next we consider the functional CLT (FCLT), also known as the weak invari-
ance principle. Let D([0,∞),Rd) denote the space of d-dimensional cadlag processes
(continuous on the right, limits existing on the left) with the sup-norm topology.

Corollary 2.2 (FCLT) Suppose that p ≥ 2. Define the cadlag process Wn ∈
D([0,∞),Rd) by setting Wn(t) = n−1/2

∑[nt]−1
j=0 v ◦ f j. Then Wn →w W in

D([0,∞),Rd) where W is a d-dimensional Brownian motion with covariance ma-
trix Σ.

Proof Let Mn(t) = n−1/2
∑[nt]−1

j=0 m̄ ◦ F̄ j. Again it is standard that Mn →w W̃

where W̃ is a d-dimensional Brownian motion with covariance matrix Σ̃. Also, the
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fact that n−1/2χ ◦ F n → 0 a.e. easily implies that supt∈[0,T ] n
−1/2χ ◦ F [nt] → 0 a.e

for any T . It follows that n−1/2
∑[nt]−1

j=0 V ◦ F j →w W̃ in D([0, T ],Rd) and hence in

D([0,∞),Rd). Finally, it follows from standard arguments (for example as a special
case of [25]) that the limit law for V again implies the one for v, namely Wn →w W

where W = (
∫
r dµY )−1/2W̃ .

Corollary 2.3 (Iterated FCLT) Suppose that p ≥ 2. Define the cadlag processes
Wn ∈ D([0,∞),Rd) and Wn ∈ D([0,∞),Rd×d) where Wn is as in Corollary 2.2 and

Wβγ
n (t) =

∫ t

0

W β
n dW

γ
n = n−1

∑
0≤i<j≤[nt]−1

vβ ◦ f i vγ ◦ f j, 1 ≤ β, γ ≤ d.

Then
(Wn,Wn)→w (W,W) in D([0,∞),Rd × Rd×d),

with W as in Corollary 2.2 and Wβγ(t) =
∫ t

0
W β dW γ + Eβγt, where E ∈ Rd×d and

the stochastic integral
∫ t

0
W β dW γ is given the Itô interpretation.

Proof The iterated FCLT is immediate for V by [16, Theorem 5.2] and implies the
same for v by the inducing method described in the proof of [16, Theorem 10.2].

3 Proof of the main theorem

This section is concerned with the proof of Theorem 2.3. In Subsection 3.1, we show
how to relate the induced observable V : Y → Rd with a quotiented observable
V̄ : Ȳ → Rd. In Subsection 3.2, we recall the definition and properties of Gibbs-
Markov maps. In Subsection 3.3, we complete the proof of Theorem 2.3.

3.1 The quotienting step

Given v : M → Rd Hölder with
∫
v dµM = 0, define the induced observable V : Y →

Rd, V (y) =
∑r(y)−1

`=0 v(f `y). Then
∫
V dµY = 0, and moreover |V | ≤ |v|∞r so that

V ∈ Lp(Y ) whenever r ∈ Lp(Y ). (Here | | denotes the Euclidean norm on Rd.) Now
define χ1 : Y → Rd,

χ1(y) =
∞∑
j=0

V (F j ŷ)− V (F jy),

where ŷ is the unique point in W s(y) ∩W u. Then

V = V̂ + χ1 ◦ F − χ1, (3.1)
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where

V̂ =
∞∑
j=0

Aj, Aj(y) =

{
V (ŷ), j = 0

V (F j ŷ)− V (F j−1F̂ y), j ≥ 1
.

Note that V̂ : Y → Rd is constant on stable leaves and hence projects to V̄ : Ȳ → Rd.
Similarly Aj : Y → Rd projects to Āj : Ȳ → Rd for j ≥ 0.

Set γ = γη0 where η is the Hölder exponent for v. Let |v|η denote the Hölder
constant of v.

Proposition 3.1 If r ∈ Lp(Y ) for some p ≥ 1, then V̂ and χ1 lie in Lp(Y ) (and
hence V̄ ∈ Lp(Ȳ )). Moreover, |A0|p ≤ |r|p|v|∞ and |Aj|p ≤ C|r|p|v|ηγj for j ≥ 1.

Proof For j ≥ 1, we have

Aj(y) =

r(F jy)−1∑
`=0

v(f `F j ŷ)− v(f `F j−1F̂ y),

and so |Aj(y)| ≤
∑r(F jy)−1

`=0 |v|ηdM(f `F j ŷ, f `F j−1F̂ y)η. Now F ŷ and F̂ y lie in the

same stable manifold, so by property (A2)(i), dM(f `F j ŷ, f `F j−1F̂ y) ≤ Cγj−1
0 � γj0.

Hence |Aj| � (r ◦ F j)|v|ηγj and so |Aj|p � |r ◦ F j|p|v|ηγj = |r|p|v|ηγj. The simpler
calculation for A0 is omitted.

It is now immediate that V̂ ∈ Lp(Y ) and the calculation for χ1 is similar.

3.2 Gibbs-Markov maps

From now on, we write µ̄ instead of µ̄Y . Suppose that (Ȳ , µ̄) is a Lebesgue probability
space with countable measurable partition α. Let F̄ : Ȳ → Ȳ be an ergodic measure-
preserving Markov map transforming each partition element bijectively onto a union
of partition elements. Fix θ ∈ (0, 1) and define dθ(y, y

′) = θs(y,y
′) where as before

the separation time s(y, y′) is the least integer n ≥ 0 such that F̄ ny and F̄ ny′ lie in
distinct partition elements. It is assumed that the partition α separates orbits of F̄ ,
so s(y, y′) is finite for all y 6= y′ guaranteeing that dθ is a metric. Given V : Ȳ → Rd

Lipschitz, we define ‖V ‖θ = |V |∞+ |V |θ where |V |θ = supy 6=y′ |V (y)−V (y′)|/dθ(y, y′).
Define g = dµ̄/d(µ̄ ◦ F̄ ) : Ȳ → R. We require that supa∈α supy,y′∈a:y 6=y′ | log g(y)−

log g(y′)|/dθ(y, y′) < ∞. We also require the big image condition infa∈α µ̄(F̄ a) > 0.
Then F̄ : Ȳ → Ȳ is called a Gibbs-Markov map.

Let αn =
∨n−1
j=0 F̄

−jα denote the set of n-cylinders in Ȳ . Write gn = (g ◦
F̄ n−1) · · · (g ◦ F̄ ) · g. A consequence of the above definitions is that there exists a
constant C1 > 0 such that

gn(y) ≤ C1µ(a), and |gn(y)− gn(y′)| ≤ C1µ(a)dθ(F̄
ny, F̄ ny′), (3.2)
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for all y, y′ ∈ a, a ∈ αn, n ≥ 1.
Gibbs-Markov maps are mixing if and only if they are topologically mixing (that

is, for all a, b ∈ α there exists N ≥ 1 such that b ⊂ F̄ na for all n ≥ N). In the Young
tower setting of Section 2 it is always possible to choose F̄ to be mixing. (Often F̄
is assumed to have full branches, F̄ a = Ȳ for all a ∈ α, which certainly suffices for
mixing.)

The transfer operator L : L1(Ȳ )→ L1(Ȳ ) is given by

(LV )(y) =
∑
a∈α

g(ya)V (ya)

where ya is the unique preimage of y in the partition element a ∈ α under F̄ . Similarly,
(LnV )(y) =

∑
a∈αn

gn(ya)V (ya) where ya is the unique preimage of y in a ∈ αn under
F̄ n.

3.3 Completion of the proof

Proposition 3.2 Let θ = γ1/2. Then for all j ≥ 1

‖LĀ0‖θ ≤ C|r|1(|v|∞ + |v|η) and ‖Lj+1Āj‖θ ≤ C|r|1|v|ηγj/2.

Proof We give the proof for j ≥ 1, omitting the simpler case j = 0. Observe that
for any n > k ≥ 0,∑

a∈αn

µ(a)r(F̄ ka) =
∑

b∈αn−k

∑
a∈αn:F̄ka=b

µ(a)r(b) =
∑

b∈αn−k

µ(F̄−kb)r(b)

=
∑

b∈αn−k

µ(b)r(b) = |r|1. (3.3)

Also by the proof of Proposition 3.1,

|Āj| � (r ◦ F j)|v|ηγj. (3.4)

Let y ∈ Ȳ . Then

(Lj+1Āj)(y) =
∑

a∈αj+1

gj+1(ya)Āj(ya).

Hence by (3.2), (3.3) and (3.4),

|Lj+1Āj|∞ ≤ C1

∑
a∈αj+1

µ(a)|1aĀj|∞ �
∑

a∈αj+1

µ(a)r(F̄ ja)|v|ηγj = |r|1|v|ηγj.

Next, let y, y′ ∈ Ȳ . Then

(Lj+1Āj)(y)− (Lj+1Āj)(y
′) = I + II,
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where

I =
∑

a∈αj+1

(gj+1(ya)− gj+1(y′a))Āj(ya), II =
∑

a∈αj+1

gj+1(y′a)(Āj(ya)− Āj(y′a)).

By (3.2), (3.3) and (3.4),

|I| ≤ C1

∑
a∈αj+1

µ(a)dθ(y, y
′)|1aĀj|∞ � |r|1|v|ηγjdθ(y, y′).

We estimate II in two ways depending on whether j is large or small relative to the
separation time s(y, y′). If j is large, we estimate the two terms Āj separately as done
for the sup norm to obtain |II| � |r|1|v|ηγj. But alternatively, we can pair up the
two terms in Āj as a difference and write II = Z + Z ′ where

Z(y) =
∑

a∈αj+1

gj+1(y′a)(V (F j ŷa)− V (F j ŷ′a)),

with a similar formula for Z ′. By (A2)(ii),

|V (F j ŷa)− V (F j ŷ′a)| ≤
r(F jya)−1∑

`=0

|v|η dM(f `F j ŷa, f
`F j ŷ′a)

η �
r(F jya)−1∑

`=0

|v|η γs(ya,y
′
a)−j

=

r(F jya)−1∑
`=0

|v|η γs(y,y
′)+1 = r(F ja)|v|η γs(y,y

′)+1.

By (3.2) and (3.3),

|Z(y)| �
∑

a∈αj+1

µ(a)r(F ja)|v|ηγs(y,y
′) = |r|1|v|ηγs(y,y

′).

Similarly for Z ′(y), and hence |II| � |r|1|v|ηγs(y,y
′). It follows from these two esti-

mates that |II| � |r|1|v|ηγmax{j,s(y,y′)}. But

γmax{j,s(y,y′)} ≤ γj/2γs(y,y
′)/2 = γj/2dγ1/2(y, y

′).

Taking θ = γ1/2 we obtain that |II| � |r|1|v|ηγj/2dθ(y, y′).
This completes the estimate for |Lj+1Āj|θ and hence ‖Lj+1Āj‖θ.

Lemma 3.1 Suppose that r ∈ Lp(Y ) where p ≥ 1. There exists C > 0, τ ∈ (0, 1),
such that |LkV̄ |p ≤ Cτ k‖v‖η for all k ≥ 1.
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Proof By Proposition 3.1 the series
∑∞

j=0 Āj converges absolutely to V̄ in Lp and

hence in L1, and
∫
V̄ = 0, so V̄ =

∑∞
j=0(Āj −

∫
Āj). Hence, since L1 = 1,

|LkV̄ |p ≤
∞∑
j=0

|LkĀj −
∫
Āj|p =

∑
j≥k

|LkĀj −
∫
Āj|p +

∑
j<k

|LkĀj −
∫
Āj|p

≤ 2
∑
j≥k

|Āj|p +
∑
j<k

‖LkĀj −
∫
Āj‖θ

for all k ≥ 1. By Proposition 3.1,∑
j≥k

|Āj|p =
∑
j≥k

|Aj|p �
∑
j≥k

γj � γk.

Since F̄ is a mixing Gibbs-Markov map, the transfer operator L has a spectral gap in
the space of Hölder continuous observables, and hence there exists C > 0, τ ∈ (0, 1)
so that ‖LnV ‖θ ≤ Cτn‖V ‖θ for all mean zero V and n ≥ 1. Thus, by Proposition 3.2,
for k > j we have

‖LkĀj −
∫
Āj‖θ = ‖Lk−j−1(Lj+1Āj −

∫
Āj)‖θ � τ k−j‖Lj+1Āj‖θ

� τ k−jγj/2 = τ kγ′j

where γ′ = τ−1γ1/2. We can increase τ ∈ (0, 1) if necessary so that γ′ ∈ (0, 1). Then

∑
j<k

‖LkĀj −
∫
Āj‖θ �

∞∑
j=0

τ kγ′j � τ k,

completing the proof.

Proof of Theorem 2.3 By Lemma 3.1, χ̄2 =
∑∞

k=1 L
kV̄ ∈ Lp. Write V̄ = m̄ +

χ̄2 ◦ F̄ − χ̄2; then m̄ ∈ Lp and Lm̄ = 0. Now define χ = χ1 + χ̄2 ◦ π, so χ ∈ Lp by
Proposition 3.1. By equation (3.1), V = V̄ ◦ π + χ1 ◦ F − χ1 = m̄ ◦ π + χ ◦ F − χ.
This finishes the proof of the theorem.

4 Examples

In this section we mention some examples to which the results in this paper apply.

Example 4.1 Consider an intermittent baker’s transformation f : M → M , M =
[0, 1]× [0, 1], of the form

f(x) =

{
(g(x1), g−1(x2)), x1 ∈ [0, 1

2
), x2 ∈ [0, 1]

(2x1 − 1, (x2 + 1)/2), x1 ∈ [1
2
, 1], x2 ∈ [0, 1]
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where g : [0, 1
2
]→ [0, 1] is a branch of a one-dimensional intermittent map [26] with a

neutral fixed point at x1 = 0. For definiteness, take

g(x1) = x1(1 + 2γxγ1),

with γ ∈ (0, 1). Then the first coordinate of f is a nonuniformly expanding map
f1 : [0, 1]→ [0, 1] of the type studied in [18].

Note that f maps [0, 1
2
]× [0, 1] diffeomorphically onto [0, 1]× [0, 1

2
] and [1

2
, 1]× [0, 1]

diffeomorphically onto [0, 1]× [1
2
, 1], with a neutral fixed point at x = (0, 0). Moreover

(df)(0,0) = I.
Let Y = [1

2
, 1]× [0, 1] with first return time r : Y → Z+ and set F = f r : Y → Y

and F1 = f r1 : [1
2
, 1]→ 1

2
, 1]. Note that F1 is the first return map of f1 to [1

2
, 1].

It is easily checked that F is a uniformly hyperbolic map satisfying (A1)–(A4) with
physical measure µM . The stable foliationWs consists of vertical lines. The quotient
uniformly expanding map F̄ : Ȳ → Ȳ can be identified with F1 : [1

2
, 1] → [1

2
, 1] and

has a unique absolutely continuous invariant measure µ̄Y by [18]. The partition α
consists of the intervals {y ∈ Ȳ : r(y) = n}. Moreover, r ∈ Lp(Ȳ ) for all p < 1

γ
so

Corollaries 2.1, 2.2 and 2.3 apply for γ < 1
2
. It is immediate from the construction

that contraction rates along stable manifolds are identical to expansion rates along
unstable manifolds, making necessary the methods in this paper.

Example 4.2 A rather different set of examples can be constructed along the lines
of the Smale-Williams solenoids [30, 31]. First modify the map f1 from Example 4.1
near 1

2
so that f1 is C2 on (0, 1). Let M = [0, 1] × D where D is the closed unit

disk in Rn−1 and define f(x1, x2) = (f(x1), h(x1, x2)) for (x1, x2) ∈ [0, 1] × D where
h : M → D is C2 and h(x1, x2) ≡ x2 near (0, 0). We require that |∂x2h| < 1 on
[1
2
, 1] × D. Note that the invariant set {0} × D is neutral in all directions. Finally,

perturb to obtain a C2 embedding f : M →M such that f is unchanged near (0, 0).
Let Y = [1

2
, 1] × D and define the first return time r : Y → Z+ and first return

map F = f r : Y → Y . For small enough perturbations, F is uniformly hyperbolic
and conditions (A1), (A2) and (A4) are easily checked. Moreover, (A3) is satisfied
provided the perturbation f is chosen so that F̄ is Markov.

Finally, since contraction and expansion is achieved only off a neighbourhood of
(0, 0) it is again clear that the contraction for f is as weak as the expansion.

Example 4.3 It was discovered by Bunimovich in the 1970s that billiard tables with
focusing boundary components may show hyperbolic behaviour. For the first exam-
ples of such tables, constructed for example in [6], the boundary components are either
dispersing, or focusing arcs of circles, subject to some further technical constraints.
Given their typical shape, such billiards are often called Bunimovich flowers. Cher-
nov & Zhang [9] show that the billiard map has decay of correlations O((log n)3/n2).
(The logarithmic factor appears to be an artifact of the proof and it is expected that
1/n2 is the optimal rate.)
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The method in [9] shows in particular that these billiard maps are modelled by
a Young tower with return time function r ∈ Lp(Y ) for all p < 3. It follows that
the quotient nonuniformly expanding map satisfies statistical limit laws such as those
discussed in this paper as well as the almost sure invariance principle (see for ex-
ample [20]). To deduce similar results for the billiard map itself, it is necessary to
either

(i) Verify that there is sufficient contraction along stable manifolds so that the map
χ1 in Section 3.1 can be shown to be dθ-Lipschitz for some θ, hence enabling
the application of the results in [20], or

(ii) Proceed as in the current paper.

We do not know whether the verification in (i) can be carried out. Nevertheless the
main results in our paper apply, and we obtain the CLT together with its functional
and iterated versions.

Remark 4.4 The same caveat regarding the nonuniformly hyperbolic billiard map
and the quotient nonuniformly expanding map applies to estimating rates of decay of
correlations. Strictly speaking, [9] prove decay of correlations at rate O((log n)3/n2)
for the quotient map; the decay for the billiard map itself then follows from [14, 23].

Example 4.5 Chernov & Zhang [10] study a class of finite horizon planar periodic
dispersing billiards where the scatterers have smooth strictly convex boundary with
nonvanishing curvature, except that the curvature vanishes at two points. Moreover,
it is assumed that there is a periodic orbit that runs between the two flat points,
and that the boundary near these flat points has the form ±(1 + |x|b) for some
b > 2. The correlation function for the billiard map decays as O((log n)β+1/nβ)
where β = (b+ 2)/(b− 2) ∈ (1,∞). Again, a byproduct of the proof is the existence
of a Young tower with r ∈ Lp for all p < β + 1. Hence the main results in this paper
apply for the full range of parameters b > 2.
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