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Abstract

For maps equivariant under the action of a finite group I'" on R",
the possible symmetries of fixed points are known and correspond to
the isotropy subgroups. This paper investigates the possible sym-
metries of arbitrary, possibly chaotic, attractors and finds that the
necessary conditions of Melbourne, Dellnitz and Golubitsky [15] are
also sufficient, at least for continuous maps.

The result shows that the reflection hyperplanes are important
in determining those groups which are admissible; more precisely a
subgroup ¥ of I is admissible as the symmetry group of an attractor
if there exists a A with /A cyclic such that A fixes a connected
component of the complement of the set of reflection hyperplanes of
reflections in T" but not in A. For finite reflection groups this condition
on A reduces to the condition that A is an isotropy subgroup. Our
results are illustrated for finite subgroups of O(3).

*Appeared: Arch. Rat. Mech. Anal. 126 (1994) 59-78

tSupported by an SERC research fellowship

tSupported in part by NSF Grant DMS-9101836, by the Texas Advanced Research
Program (003652037) and by NSF US-Australia Grant INT-9114207



1 Introduction

An important observation in the theory of discrete equivariant dynamical
systems is that there are representation-theoretic restrictions on the symme-
try groups of fixed points. Indeed the symmetry group of the fixed point
must be the isotropy subgroup of that point. This is a restriction since not
every subgroup is an isotropy subgroup. There are also restrictions on the
symmetry groups of periodic orbits. Let A be the common isotropy sub-
group of the points in the periodic orbit. Then the symmetry group % of the
periodic orbit must be a cyclic extension of A, that is A is normal in ¥ and
Y /A is cyclic, see for example [15].

Even the symmetry groups of chaotic attractors are subject to restrictions,
see Melbourne, Dellnitz and Golubitsky [15]. For example, mappings that
are equivariant with respect to the standard action of D, on R? cannot have
Dg-symmetric attractors for 3 < k£ < m. On the other hand, there is a great
deal of numerical evidence (see for example [5], [7], [9], [14]) suggesting the
existence of D,,,-symmetric attractors, and also of Dy-symmetric attractors if
m is even. In addition, King and Stewart [14] have proved that there exist
attractors with cyclic symmetry for all cyclic subgroups of a finite group I.

In [15] a necessary condition was given for a subgroup X to arise as the
symmetry group of an attractor of a continuous ['-equivariant mapping. In
this paper we demonstrate that when I is finite, this condition is optimal.
The main result is Theorem 2.2 which gives a completely representation/group-
theoretic characterization of the dynamical issues being discussed. The exis-
tence of connected X-symmetric attractors can be characterized representation-
theoretically. Taking cyclic extensions of such subgroups ¥ yields the sym-
metry groups of general (not necessarily connected) attractors. (This is anal-
ogous to the characterization of the symmetry groups of periodic orbits as
cyclic extensions of isotropy subgroups.)

We discuss two special cases of Theorem 2.2. If I' is a finite reflection
group, then the subgroups X are precisely the cyclic extensions of the isotropy
subgroups of I', see Corollary 3.3. It follows that for the afore-mentioned
representations of D, there do, as expected, exist attractors with D,,, (and Dy
for m even) symmetry. At the other extreme, if the representation contains
no reflections, as is typically the case in applications, then there are no
restrictions on the symmetry of an attractor.

The remainder of the paper is organized as follows. In Section 2 we state
precisely our main results expressing necessary and sufficient conditions for



existence of Y-symmetric attractors. The conditions rely both on group
theory and representation theory; as it stands, the representation-theoretic
conditions are not easily computable. However, in Section 3 we reduce the
representation-theoretic condition to one depending only on isotropy sub-
groups and reflections. This is more easily computable, and in addition leads
to our result about finite reflection groups.

The first step in the proof of Theorem 2.2 is to construct connected sym-
metric graphs supporting the appropriate equivariant dynamics. This step
is carried out in Section 4. Then the existence of connected Y-symmetric
attractors reduces to the embeddability of these graphs in R". Also there is
an extendability property of graphs corresponding to cyclic extensions of X
and the existence of disconnected attractors when there is no connected at-
tractor with the required symmetry. These notions of embeddability and
extendability of symmetric graphs, and their implications for Theorem 2.2
are discussed in Section 5. Then the embedding and extension problems are
solved in Section 6 for n > 3.

When n = 1 and n = 2, there arises the possibility of topological obstruc-
tions in the embedding problem. Hence these cases are treated separately
in Section 7. It turns out that topological obstructions only occur when
n = 2 and [ is cyclic. Finally, in Section 8 we apply our results to the finite
subgroups of O(3).

2 Admissible symmetries of attractors

Suppose that f: R" — R" is a continuous function, and z € R". As in [15],
we say that the w-limit set A = w(z) of z under f is an attractor for f if
the set A is stable, that is for any neighborhood U of A, there is a (smaller)
neighborhood V' of A such that f™(V) C U for n > 0.

Let I' € O(n) be a finite group acting orthogonally on R". Recall that
if A is a nonempty subset of R" then we define the symmetry group of A to
be the subgroup of I,

Ya={yel,vA=A}.
The set A is X-symmetric if
(i) Ta=5,
(i) yYANA=0Qforyel - %, and



(iii) A contains points of trivial isotropy.

Condition (iii) implies that A does not lie in a proper fixed-point subspace.
By Proposition 1.1 in [5], condition (ii) is redundant if A is an attractor. We
note that our definition of a YX-symmetric set is more restrictive than the
definition in [15].

Definition 2.1 A subgroup ¥ C I' is admissible if there is a continuous I'-
equivariant mapping f : R" — R" with a Y-symmetric attractor A. The
subgroup X is strongly admissible if f and A can be chosen so that A is
connected.

Admissibility (or more precisely, strong admissibility) of a subgroup de-
pends crucially on the geometry of those reflection hyperplanes in R" that
correspond to reflections contained in I" but not in ¥. Recall that 7 € ' is a
reflection if Fix(7) has dimension n — 1. Let

Ky ={r € ' = %; 7 is a reflection},
and define

Ly = U Fix(7).

TEKE
Theorem 2.2 Suppose that I is a finite subgroup of O(n), n > 3.

(a) A subgroup ¥ C T is strongly admissible if and only if ¥ fizes a con-
nected component of R" — Ly.

(b) A subgroup ¥ is admissible if and only if it is a cyclic extension of a
strongly admissible subgroup A, that is A is normal in ¥ and X/A is
cyclic.

Remark 2.3 (a) Necessary conditions for admissibility and strong admis-
sibility were obtained in [15] for arbitrary compact Lie groups I' C O(n),
n > 1. Theorem 2.2 asserts that these necessary conditions are also suffi-
cient when n > 3 and I is finite.

(b) In low dimensions (n = 1, 2) there are topological obstructions in addition
to the group and representation-theoretic obstructions. The low-dimensional
situations are treated on a case-by-case basis in Section 7. It transpires that
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the end effect of the topological obstructions are quite mild. Part (b) of
Theorem 2.2 is valid for all n > 1. Moreover, part (a) fails only when n = 2
and ' C O(2) is cyclic. In this case, the strongly admissible subgroups are T’
and 1.

(c) Provided n > 3, if the representation of I' contains no reflections then
any subgroup of I' is strongly admissible. More generally, any subgroup X
that contains all the reflections present in I' (so that Ky = () is strongly
admissible. In particular I is strongly admissible.

(d) Any isotropy subgroup of T is strongly admissible (see Theorem 3.2 be-
low). Hence the trivial isotropy subgroup 1 is strongly admissible and any
cyclic subgroup is admissible by part (b) of Theorem 2.2. In particular, we
recover the result of [14] on cyclic subgroups.

(e) The attractors constructed in the proof of Theorem 2.2 possess several
interesting properties:

1. The attractors have an open basin of attraction, that is there is a open
neighborhood V' of A such that w(y) C A for all y € V. Moreover,
w(y) = A for y lying in a residual subset of full (Lebesgue) measure in
V.

2. The attractors are topologically transitive: there is a point x € A with
w(z) = A. In addition, periodic points are dense, and there is sensitive
dependence on initial conditions in the following sense: there is an open
neighborhood V' of A and an € > 0 such that for any y € V and § > 0
there is a point z with |z —y| < ¢ and an integer n > 0 such that f™(y)
and f"(z) are at least distance e apart.

3. The connected attractors are topologically mixing: for any open sub-
sets U and V in A, there is an integer N such that f~™(U) NV # ()
for all n > N. In [15] it is shown that topologically mixing attractors
are automatically connected. Hence there exists a topologically mixing
Y-symmetric attractor if and only if X satisfies the condition for strong
admissibility.

4. Each attractor consists of a finite union of one-dimensional manifolds
on which there is a finite Lebesgue-equivalent f-invariant Y-invariant
ergodic measure. (Lebesgue-equivalent means that the sets of measure
zero are the same for the ergodic measure and the Lebesgue measure
induced on the one-dimensional sets). Moreover, the measure is a Sinai-
Bowen-Ruelle measure. (See [16] for information about SBR measures.)
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There are several related issues to those discussed in this paper that we
have passed over. For example, we could ask what additional restrictions are
imposed on the symmetry groups of (connected) attractors for differentiable
maps, homeomorphisms, diffeomorphisms and flows. It is clear that there are
further restrictions for invertible maps. However we conjecture that differ-
entiability assumptions do not alter the results. Also we conjecture that the
symmetry groups for attractors of flows are the same as those of connected
attractors for homeomorphisms and diffeomorphisms.

We have only considered attractors that contain points with trivial isotropy
and hence do not lie in a proper fixed-point subspace. In [15] it was indi-
cated how the necessary conditions for admissibility translate naturally into
necessary conditions for admissibility of symmetry groups of attractors in
fixed-point spaces. However, there may be additional restrictions due to the
presence of so-called hidden symmetries, see [11].

Finally, we have assumed that the underlying group of symmetries I is
finite. It should be possible to obtain similar results when I' is a compact
Lie group. This and the other issues will be the subject of future work.

3 A computable criterion for strong admissi-
bility, and finite reflection groups

In this section, we give a convenient rephrasing of the criterion in Theorem 2.2
that ¥ fixes a connected component of R" — Ly,.

Lemma 3.1 Suppose that Y fizes a connected component C of R" — Ly.
Then C NFix(X) # 0.

Proof Choose vy € C and set v = ) _oovy. Then v lies in Fix(X).
Since X fixes C, ovy € C for each o € ¥. But C is a cone and hence v € C.
[ |

If I is a subgroup of I', we define I to be the subgroup of I that is
generated by reflections. Note that Ir C I N ['g but that equality does not
hold in general.

Theorem 3.2 Let T' C O(n) be a finite group with subgroup 3. Then ¥ fizes
a connected component of R" — Ly, (equivalently X is strongly admissible) if



and only if there is an isotropy subgroup I C T' such that

IrCcX¥XcCl.

Proof Suppose that Iz C ¥ C I for I an isotropy subgroup. Let x € R"
be a point with isotropy I. Since Iz C ¥, v € R® — Lx. Let C be the
connected component of R" — Ly, containing z. Since ¥ C I, z € CNFix(X)
and hence the connected component C' intersects itself under the action of
elements in X. But ¥ acts on the connected components of R® — Ly and
hence fixes C.

Conversely, suppose that ¥ fixes a connected component C' of R" — Ly.
If Ly = (), then 'y C ¥ and we can choose I = I'. Otherwise, by the lemma,
there is a point z in C that is fixed by X. Let I be the isotropy subgroup
of z so that ¥ C I. Since x ¢ Ly, it follows that if x € Fix(7), 7 a reflection,
then 7 € ¥. Hence I C X. [ |

Corollary 3.3 Suppose that I' C O(n) is a finite group generated by re-
flections. The strongly admissible subgroups of I' are exactly the isotropy
subgroups of I'. Moreover, the admaissible subgroups of I' are precisely those
subgroups that are cyclic extensions of isotropy subgroups.

Proof It is a basic fact about finite reflection groups that all isotropy
subgroups are generated by reflections, see for example [3]. The statement
about strongly admissible subgroups follows immediately from this fact and

the theorem. The statement about admissible subgroups now follows from
Theorem 2.2(b). [

4 Equivariant dynamics on graphs

In this section, we introduce the notion of a ¥-graph, and prove the existence
of topologically transitive Y-equivariant dynamics on certain X-graphs. In
Subsection (a) below we recall a basic result about continuous equivariant
extensions of mappings. Then in Subsection (b) we review some graph theory
and in particular define what we mean by a X-symmetric graph. Our main
results of this section appear in Subsection (c).



(a) An equivariant extension lemma

Lemma 4.1 Suppose that I' is a finite group acting on topological spaces
Y and Z. Let X C Y be a closed subset such that Y = {J v X and let
f X — Z be a continuous mapping. Assume that if z,vx € X for some
v €T, then f(yz) = vf(x). Then f can be uniquely extended to a continuous
['-equivariant mapping g : Y — Z.

Proof Let y € Y. Then y = vz for some v € I',; z € X. To obtain
equivariance we must define g(y) = v f(z). This proves uniqueness of g. To
show that g is well-defined suppose that y = y121 = Yx2 where z; € X,
v; € T for j = 1,2. We must prove that v f(z1) = y2f(z2). Let vy = v3'm
so that z9 = yz;. Then xy,vx; € X and

Yf(@1) = v2vf(21) = 2 f (y21) = 72f (22),

as required.
Next we show that ¢ is I'-equivariant. Suppose that v € ' and y € Y.
Then y = 7'z where ' € T" and z € X. Hence

9(vy) = g(vv'z) = vy f(z) = vg(y).

Finally we show that g is continuous. The set Y is the union of finitely
many copies 7X of the closed set X and it is sufficient to show that g|,x is
continuous for each . But g|,x = 7f7'|,x which is continuous. |

Remark 4.2 The assumption that I' is finite is not crucial in Lemma 4.1.
With slightly more work it can be shown that the conclusion is still valid if
I' is a compact Lie group.

(b) Some graph theory

We shall now summarize the graph theory that we require. See [2] for further
details. A finite graph G consists of a finite set of vertices and a finite set of
edges that join pairs of vertices. A subset J C G is a subgraph of G if J is
a graph and the vertices and edges of J are vertices and edges of G. A path
in (G is a sequence of oriented edges where the initial vertex of each edge is
the final vertex of the previous edge. A graph is connected if there is a path
between any two vertices. If each pair of vertices in G is joined by an edge,
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the graph is completely connected. A completely connected oriented graph is
one where each pair of distinct vertices is joined by two edges with opposite
orientations.

Each edge of a graph G can be made into a metric space isometric to
the unit interval. Then the length of a path in G can be defined in the
obvious way, and the distance between any two points in the same connected
component is defined to be the length of the shortest path between the points.
If we define the distance between points in distinct connected components
to be 1, then G becomes a compact metric space. Moreover the concepts of
connectedness in the metric space and in the graph coincide.

The degree of a vertex is the number of edges emanating from that vertex.
A connected graph is said to be Fulerian if each vertex has even degree. To
avoid trivialities, we shall not consider the graph consisting of one vertex
and no edges to be Eulerian. A completely connected oriented graph is
an example of an Eulerian graph provided there are at least two vertices.
We define the completely connected oriented graph on one vertex to be the
Eulerian graph consisting of one vertex and one edge.

The sum of the degrees of the vertices of a graph is even (twice the
number of edges) and it follows easily that an Eulerian graph cannot be
disconnected by removing a single edge. It is well-known that Eulerian graphs
are characterized by the property that there is a continuous path tracing
through each edge precisely once such that the initial vertex and the final
vertex are the same. More generally, there exists a path tracing through
each edge of a graph precisely once if and only if the graph is connected and
there are either two vertices or no vertices of odd degree. Any vertices of odd
degree lie at the endpoints of the path.

Suppose that X is a finite group. A graph G is a X-graph if

(a) 3 acts isometrically on G,

(b) The set of edges (equivalently the set of vertices) of G is invariant under
the action of X, and

(c) X acts fixed-point-free on the set of edges (but not necessarily vertices)
of G, that is if E' is an edge and o E = FE for some ¢ € ¥, then 0 = 1.

A subgraph J C G is a fundamental subgraph if
(a) G= U oJ, and

oEX



(b) If E,oF € J for some 0 € ¥, then 0 = 1.

Assumption (c) in the definition of ¥-graph is equivalent to assuming the
existence of a fundamental subgraph.

(c) Dynamics

Theorem 4.3 Suppose that G is an Eulerian X-graph. Then there exists a
continuous X-equivariant mapping f : G — G such that

(a) G is topologically mizing.
(b) Periodic points are dense in G and there is sensitive dependence.

(c) There is a unique f-invariant L-invariant Lebesgue-equivalent ergodic
measure on G.

Proof Let m be the number of edges in G and suppose first that m > 3.
Let J be a fundamental subgraph of G and suppose that E is an edge of J
with vertices v and w. Since G is an Eulerian graph, G — E is a connected
graph with precisely two vertices of odd degree, namely v and w. It follows
that there is a continuous path fz : E — G such that fr(v) = v, fr(w) = w,
and such that fg passes precisely once through each edge of G — E.

Define f; : J — G by f;(z) = fe(z) if x € E. Since distinct edges inter-
sect only in vertices, and since the mappings fg fix vertices, the mapping f;
is well-defined and continuous. Moreover, since J is a fundamental subgraph
of G and f; fixes vertices, the hypotheses of Lemma 4.1 are satisfied and f;
can be extended to a continuous Y-equivariant mapping f : G — G.

Denote the edges of the graph G by I;. Reparametrizing the paths fg
if necessary, we may arrange that properties (i)—(iii) in the appendix are
satisfied. For example, by defining the paths to be piecewise linear, we can
arrange that ¢ = 1 and § = m — 1 > 1 in (iii). Finally, compute that
f(l;) = G—1I; and f(G — I;) = G (since m > 3) so that property (iv)’
in the appendix is satisfied with p = 2. The proposition now follows from
Proposition A.1.

To deal with the case where m < 3, define a new graph G' where G and
G' are equal as sets, but the vertices of G’ consist of the vertices of G together
with the midpoints of the edges of G. Then G’ is still an Eulerian Y-graph
but has twice as many edges as G. Repeat if necessary until G’ has at least 4
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edges. Now define a mapping f : G' — G’ as before. This gives the required
mapping on G. |

An example of an Eulerian Y-graph is given by the following construction.
Define G(X) to be the completely connected oriented graph with vertices
o € X.. The action of X on the vertices of G(X) by left multiplication induces
(and uniquely determines) an orientation-preserving isometric action of ¥ on
G(X): if E; .+ denotes the oriented edge joining the vertex 7 to the vertex 7/,
and 0 € X, then oF, .+ = By o, Let J, = By ,.

Proposition 4.4 G(X) is an Eulerian X-graph with fundamental subgraph
J = U,ex Jo- Moreover, ¥ acts fized-point-free on the edges and vertices of
G(%).

Proof G(X)isacompletely connected oriented graph and hence is Eulerian.
It is clear that the action on the vertices and hence the edges is fixed-point-
free, and it follows immediately that G(X) is a X-graph.

It remains to show that J is a fundamental subgraph. Suppose that £ ./
is an edge. Then 7J,-1,» = E, »» and hypothesis (a) is satisfied. In addition,
it oJ; = Jp then E,,, = E; . Since the action of X preserves orientation
of edges, 0 = 1 thus verifying hypothesis (b). [ |

We shall refer to G(X) as the complete X-graph. In Figure 1(a) we il-
lustrate the complete ¥-graph for ¥ = Zs. In part (b) of the figure we
demonstrate graphically the mapping f defined in the proof of Theorem 4.3.

5 Construction of attractors as embedded graphs

In this section we define the notions of embeddability and extendability of
a Y-graph, and prove that the existence of embeddable, extendable Eulerian
Y-graphs leads to Theorem 2.2.
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(b)

Figure 1

Figure 1: The complete Zs-graph is shown in (a). The edges marked p
and p? form a fundamental subgraph. The map f defined in the proof of
Theorem 4.3 is illustrated in part (b). The edge marked p is mapped onto
the whole graph minus the edge p in such a way that there is a uniform
expansion everywhere.
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An (equivariant) embedding of G in R" is a continuous one-to-one map
i: G — R" (here we are viewing G as a metric space rather than a graph)
such that

1. 7 is X-equivariant.
2. vi(G)Ni(G) =0 for all y e T — X.

Since GG is compact, ¢ is a homeomorphism onto its image. If there is an
embedding of G in R", we say that G is embeddable.

Proposition 5.1 Suppose that I' C O(n) is a finite group with subgroup X.
Ifi: G — R" is an embedding of a X-graph G, then i(G) is a X-symmetric
subset of R".

Proof Since G is Y-invariant, it follows from property 1 that i(G) is
Y-invariant. Moreover there are points in G (those that are not vertices)
that have trivial isotropy. Since i is one-to-one, the corresponding points
in i(G) have trivial isotropy. We conclude from property 2 that i(G) is -
symmetric. |

Let N(X) denote the normalizer of ¥ and let p € N(X) - X. If 0 € ¥
let 0, denote the element p~'op € X. Suppose that G is a X-graph. Then
pG can be made into a Y-graph as follows: the edges of pG are given by pE
where E is an edge of G and o(pFE) is defined to be po,E.

Definition 5.2 Suppose p € N(X)—3. A X-graph G is p-eztendable if there
exists a Y-equivariant isometry h : G — pG. The isometry h is called an
extension. If G is p-extendable for all p € N(X) — X, then G is extendable.

Remark 5.3 If p lies in the centralizer of X, then any X-graph G is p-
extendable. Simply define h : G — pG by h(x) = px and use the fact that
o,=oc forall o € X.

Theorem 5.4 Suppose that G is an FEulerian, embeddable, extendable X-
graph. Then X 1s strongly admissible, and any cyclic extension of X is ad-
massible.
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Proof By Theorem 4.3 there is a continuous topologically transitive (even
mixing) ¥-equivariant mapping f : G — G. Let i : G — R" be an em-
bedding, and set A = i(G). Then A is a YX-symmetric subset of R" by
Proposition 5.1. The mapping f = ofoi * : A — A is topologically conju-
gate to f and hence A is an w-limit set. We claim that it is possible to extend
f continuously and equivariantly to a closed Y-invariant neighborhood U of
A in such a way that A is an attractor for the extended mapping. Strong
admissibility follows easily from the claim: shrink U if necessary so that U
is Y-symmetric (YU NU = § for all v € T' — X) and define U' = |, 7U.

By Lemma 4.1 f extends to a I'-equivariant mapping on U’. Now apply the
Tietze-Glaeser extension theorem [4] to obtain the required mapping on R".

In order to verify the claim, we first consider the case when A is homeo-
morphic to a circle. Then A has a X-invariant tubular neighborhood U that is
homeomorphic to the cross product A x E where F is the (n—1)-dimensional
disk. Clearly f(a,e) = (f(a),0) satisfies the requirements in the claim. (It is
more natural to take the less degenerate extension f(a,e) = (f(a),e/2) but
this does not generalize so easily to the case when A is not a circle.)

If A is not a circle, there are degeneracies at the set of vertices A°. How-
ever we can find a X-invariant neighborhood U of the form U = U; UU,; where
U =(A- A% x Fand U, = Uyea, Bvs for E, a union of half disks. Define

f on U; as before. Since f fixes points in A° we can define f(v, e) = (v,0)
on U, and obtain the required continuous mapping on U. This completes
the proof of the claim and hence the proof that ¥ is strongly admissible. (If
we try to use the less degenerate extension mentioned before, then there is
a difficulty not at the vertices but at the points that map directly onto the
vertices.)

Next, suppose that A is a cyclic extension of ¥. We must show that A is
admissible. Choose p € A — ¥ such that the cyclic group A/ is generated
by the coset pX. Let k be the order of A/Y and define

G'=GUpGU---Up'aG.

Then G’ is a (generally disconnected) A-graph. Let A : G — pG be an
extension, and define g : G — G' by g = hof. By Lemma 4.1, g extends
uniquely to a continuous A-equivariant map ¢ : G' — G'. Provided that we
can verify properties (i)—(iv) in the appendix, Proposition A.1 implies that
G' is topologically transitive under g. The embedding of G then extends to
an embedding of G’ leading to admissibility of A by identical arguments to
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those used in the proof of strong admissibility of > above.

Let I; denote the edges of G'. It follows from the proof of Theorem 4.3
and the fact that h is an isometry that properties (i)-(iii) are satisfied (with
g = 1). Moreover, provided G has at least 3 edges, we compute that for any
edge I; in G, ¢*(I;) = p*G. By equivariance, we have

k+1

U gZ(IJ) = Gla
1=2

for all edges I; in G’ and property (iv) is satisfied. Finally, if G has less
than 3 edges, we can modify the mapping f just as we did in the proof of
Theorem 4.3. |

6 Existence of embeddable, extendable Eule-
rian >-graphs

Suppose that n > 3 and I is a finite subgroup of O(n) with subgroup X.
In this section we prove that if ¥ fixes a connected component of R" —
Ly, then there exists an embeddable, extendable Eulerian -graph. This
combined with Theorem 5.4 proves Theorem 2.2. We must consider two
cases depending on whether or not ¥ contains reflections. In Subsection (a)
we show that the complete Y-graph is extendable, and is embeddable if and
only if ¥ contains no reflections. Then in Subsection (b) we construct the
required graphs when Y contains reflections.

(a) X contains no reflections

Theorem 6.1 Let I' be a finite subgroup of O(n) with subgroup X.
(a) The complete Y-graph G(X) is extendable.

(b) Suppose that ¥ fizes a connected component of R" — Ly. and that n > 3.
Then G(X) is embeddable if and only if ¥ contains no reflections.

Proof (a) Let E, . denote the edge joining the vertices 7 and 7’ in G(X)
and define h(E; /) = pE:, . (Recall that 7, = p~'7p.) We must show that
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h(oE; ) = oh(E; ). Now oh(E ;) = opE,, . which by definition of the
action of ¥ on pG(X) is given by po,E; ;. Now compute that

Tps

po—pETp,'r; = pE(O'T)p,(U'T’)p
h(EUT,UT’)
hoEr)

as required.

(b) First we show that ¥ must contain no reflections if G(X) is to be em-
bedded. Suppose that i : G(X) — R" is an embedding and let 7 € X be a
reflection. Then the vertices 1 and 7 in G(X) map into distinct connected
components of R” — Fix(7). Hence the image of the edge joining 1 to 7 in-
tersects Fix(7) which contradicts the fact that all points in G(X) and hence
in i(G(X)) have trivial isotropy.

Finally, we show that G(X) is embeddable provided ¥ contains no reflec-
tions. Suppose that C is a connected component of R" — Ly, fixed by 2. Since
[ is finite, there is an open dense subset of R" consisting of points with trivial
isotropy. Let C' consist of those points in C' with trivial isotropy. Then C’
is open and dense in C' and moreover C’ is connected since ¥ contains no
reflections. We proceed to embed G(X) into C'.

Choose a point x € C’ with trivial isotropy. Then oz € C' for o € ¥, and
for 0 # 1 there is a continuous one-to-one path i, : J, — C" with i,(1) =
and i,(0) = oz. By Proposition 4.4, J = |, .y, J» is a fundamental subgraph
of G(X) and it follows from Lemma 4.1 that there is a unique continuous X-
equivariant mapping i : G(3) — R" such that i|;, = i,. The image i(G(X))
consists of the paths 7i, where 0,7 € 3. Let Xx denote the image of the
set, of vertices of G(X) under the map i. Then i is one-to-one if and only if
the paths 7i, intersect only at points in ¥z. Moreover, ¢ satisfies in addition
the second condition in the definition of embedding if and only if paths i,
intersect only at points in 'z for 0 € 3, v € T.

To show that such a choice of paths i, is possible, we pass to the orbit
space R"/I'. The set 'z becomes a point represented by z and the set
i(J) becomes a union of loops at z. Our requirements reduce to demanding
that these loops have no intersections other than at the point z. Any other
intersections are nontransverse (since n > 3 and I is finite) and the paths i,
can be perturbed so that the loops in R" /T intersect only at x as required. W
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(b) X contains reflections

When ¥ contains reflections, it is easy to modify G(X) so as to make it
embeddable. Unfortunately, it is not clear that the resulting Y-graph is
extendable. For this reason, we embark on an entirely different construction
of a X-graph.

First, consider the case when X is generated by reflections. Let C be a
connected component of R" — Ly, fixed by ¥ and choose D C C' a fundamental
domain for the action of ¥ on C (for information on fundamental domains,
see [10]). Let D denote the closure of D in the relative topology on C' (so D
is the the closure of D in R" intersected with C'). Similarly, let 9D denote
the boundary of D in the relative topology.

We may write 0D as a union of reflection hyperplanes Fix(r;) for reflec-
tions 7; in ¥ (where we only consider those hyperplanes satisfying dim(Fix(7;)N
0D) = n —1). For each i we can choose a point x; in D such that the only
nontrivial element of I" that fixes x; is 7;. We can choose the z; so that no
two of these points lie on the same I'-orbit.

Let J be the complete (nonoriented) graph with vertices z; and define
G = U,ex 0J. Then G is a X-graph with fundamental subgraph J and is
clearly Eulerian. Moreover, provided n > 3, G is embeddable by the same
arguments used to prove embeddability of G(X) in Theorem 6.1.

Next we show that G is extendable. Since X fixes C it is clear that
Fix(7) N C # § for all reflections 7 € ¥. If p € N(X) — X, then X also fixes
the connected component pC. In particular, all the reflection hyperplanes
that make up 0D intersect pC'. It follows that there is a fundamental domain
D' C pC whose boundary is made up of the same reflection hyperplanes that
comprise the boundary of D. Let A = i(G) denote the embedded graph and
set y; = pANFix(r;). If E is an edge of J joining z; to x; then we define
h(E) to be the edge of pG joining y; to y;. In this way we obtain an isometry
h : J — pG satisfying the hypotheses of Lemma 4.1. Hence we obtain the
required extension h : G — pG.

Now we turn to the case where ¥ contains reflections but is not gener-
ated by reflections. Let X denote the subgroup of ¥ that is generated by
reflections. We may define an embeddable, extendable Eulerian Y g-graph
Gr with fundamental subgraph Jg using the above construction.

Elements of ¥ permute the fundamental domains for the action of Xg.
Let Xy denote the subgroup of X that preserves D. Then Ji and oJg are
disjoint graphs in D for ¢ € Y. Since elements of 3y permute the subspaces
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Fix(r;), oJg has vertices z,(; € Fix(r;). For each o € ¥y, introduce an edge
in D with vertices at z; € Jg and x,(;) € oJg. Let J be the graph consisting
of Jr together with these additional edges and define G = |J, .y, 0J. Then G
is an embeddable Eulerian ¥-graph. The embedding can be chosen so that
J is embedded in D.

It remains to define an isometry h : J — pG satisfying the hypotheses of
Lemma 4.1, thus verifying that G is extendable. Take h|Jg as before. We
have used the fact that pXg - Jg intersects each reflection hyperplane in pC'
in a single point. The same is true of pXgo - Jg for each o € ¥,. Define
Yos) to be the vertex of pXro - Jg lying in Fix(7;). If E is the edge of J
connecting ; to z,(;), we define h(E) to be the edge of J. joining y; t0 Y-
The resulting isometry h : J — pG gives the required extension.

7 Admissibility in one and two dimensions

In this section we consider analogous results when n = 1 and n = 2 to those
described in Theorem 2.2 for n > 3. For these remaining values of n, the
conditions for admissibility can be verified on a case by case basis. The case
I' C O(2) cyclic is different from the others.

We begin with the case n = 1. Now O(1) = {+1} so that we need only
consider the groups ' =1 and I' = Z,.

Proposition 7.1 If ' C O(1) then all subgroups of I' are strongly admissi-
ble.

Proof Strong admissibility of the subgroup 1 is easily verified both for
[ =1 and I = Z,. Strictly speaking, the mapping f(z) = 3(z — 23)/2 will
suffice in both cases, since there is an attracting fixed point at \/m that
has no symmetry. If we want to have a ‘nontrivial’ attractor we can use the
logistic mapping or variants thereof.

For the subgroup ¥ = Zs of I' = Z, we are forced to construct a
nontrivial attractor. (We cannot take A = {0} since then A contains no
points with trivial isotropy.) The (unnormalized) Tchebycheff polynomial
f(z) = 42® — 3x is Zy-equivariant, and is known to have a Zy-symmetric in-
variant set A = [—1,1] C R. Moreover, f|4 is topologically conjugate to the
mapping g = 30 on S!, see Exercise 1 in Section 1.8 of Devaney [8]. The
desired properties of A follow easily. |
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The finite subgroups of O(2) are given up to conjugacy by
Ly, Dp, m 21,

where Z,, is generated by rotation through angle 27 /m and D,, is generated
by this element together with a reflection.

Theorem 7.2 (a) Suppose that Z,, C O(2), m > 1. The strongly admissible
subgroups are Z,, and 1. The remaining subgroups are Zy where k divides
m, 1 < k <m, and are admissible.

(b) Suppose that D,, C O(2), m > 1. The strongly admissible subgroups
are Dp,, Dy and 1. The subgroups Zy, k > 1, (k divides m) are admissible
as is Dy when m is even (so that Dy is a subgroup of Dy,). The remaining
subgroups are Dy, 2 < k < m, (k divides m) and are inadmissible.

Remark 7.3 (a) Much of this theorem is contained in [14] and [15]. The
new information is the admissibility of D,, and of D, for m even, the strong
admissibility of various subgroups, and the fact that certain subgroups of Z,,
are not strongly admissible.

(b) Strictly speaking, we should distinguish the two copies of D that are
conjugate in O(2) but not conjugate in D,,, when m/k is even. (The copies
of Dy are generated by reflectional symmetries of the regular m-gon corre-
sponding to axes joining opposite vertices or joining midpoints of opposite
edges.) We have not done this as it turns out that the analysis for each copy
of Dy, is identical. For subgroups of O(3) the issue of nonconjugate subgroups
plays an important role, see Section 8.

Proof We begin with part (b). In [15], it was shown that the only subgroups
of D,, that can be strongly admissible are D,,,, D; and 1. Moreover, the only
subgroups other than these that can be admissible are Z; where k divides m
and D, for m even.

It remains to show that these subgroups are indeed admissible and strongly
admissible. Strong admissibility of 1 is trivial, and admissibility of the cyclic
subgroups follows from Remark 5.3. We show how to embed Eulerian I); and
D,,-graphs in R? in Figure 2 thus establishing strong admissibility of these
subgroups. Finally, when m is even D, is a subgroup of I,,, and is the direct
sum of Dy and Z,. By Remark 5.3, D, is admissible.
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(b)

Figure 2

(@)

Figure 2: The figures show how Eulerian D; and D,,,-graphs can be embedded
in R? acted on by D,,. In this example m = 5. All the reflection axes are
illustrated. Note that all points on the graphs are of trivial isotropy apart
from the vertices.
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Strong admissibility of 1 and admissibility of the cyclic subgroups in
part (a) is identical to part (b). In addition we can construct a Z,,-symmetric
connected attractor using the same graph that we used for D, in part (b).

It remains to show that Zj is not strongly admissible for 1 < £ < m.
Suppose for contradiction that A is a connected attractor with Z; symmetry.
Let x € A and let U be the connected component of the basin of A that
contains x. The U is open and contains A, so that there is a simple closed
curve S in U that contains the group orbit ox, o € Z.

Let p € Z,, — Zy. We claim that SN pS # (. Tt then follows that the
basins of the attractors A and pA intersect, hence that A N pA # (). By
Proposition 1.1 of [5], A = pA and A is Z,-symmetric. This is the required
contradiction.

To prove the claim, observe that R?> — S consists of two connected com-
ponents, one of which, C say, contains the origin. Let s; € S be a point
where the function |s| attains its minimum. Then ps; € C;. It follows that
pS ¢ Cy. A similar argument shows that pS ¢ C; and hence pS NS # ()
verifying the claim. |

8 Examples

In this section, we list the (strongly) admissible subgroups for each finite
subgroup of O(3). We assume familiarity with the notation in [6], [12] or [13].
Our results are tabulated in Tables 1 and 2. For each subgroup we list
those subgroups that are strongly admissible, nonstrongly admissible and
inadmissible. (Nonstrongly admissible means admissible but not strongly
admissible.)

The subgroups of O(3) fall into classes I, IT and III. We list the conjugacy
classes of finite subgroups in each class

Class1 1,0, T, D, Z,, m>1,
Class I1 1® Z5, 0 ZS, T @ ZS, Dy, © ZS, Loy © Z5,
Class ITII O, DY, D%, Z5 ., m > 1.

It should be noted that not all of these conjugacy classes are distinct. In
particular, D, is conjugate to Zy, Dy @ Z3 is conjugate to Z, @ Z5, D is
conjugate to Z, and I is conjugate to DY inside of O(3). If a finite subgroup
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O~ strongly admissible 07, b3, D3, D, 1
nonstrongly admissible | D}, Z,, Zs, Z,
inadmissible T, Dy
I Z5 | strongly admissible I e Zs, D, D, D, Z,, 1
nonstrongly admissible | D5 @ Z3, D3 & Z3, Dy & Zs3, Z5 & Zs,
Ly ® Ls, Lo & ZLs, L5, Ls, L3, Lo
inadmissible T Zs, I, T, Ds, D3, Dy
O @ Z3 | strongly admissible O e Z;, D}, Dj, Di(e), Z; (e), Z5 (f), 1
nonstrongly admissible | D¢, Di(f), Z, , Dy @ Z5, D3 & Z,
Dy(e) ® ZS, Ly ® L5, T3 ® 75, Zo(e) ® Zs,
Zo(f) @ L3, L3, La, L3, Ls(e), La(f)
inadmissible 0O, T Z O, T, D}, Dy(f) ® Z3,
Dy, D3, Da(e), Dy(f)
T & Z3 | strongly admissible TeoZ;, D5, Z,, Dy & Zs, Z3, 1
nonstrongly admissible | Zs @ Zs3, Zo ® Zs, Zs, Lo
inadmissible T, D,
I strongly admissible I, T, D5, D3, Dy, Zs, Zs3, Zs, 1
0) strongly admissible O, T, Dy, D3, Dy(e), Do(f),
Z4, Zg, ZQ(E), Zz(f), 1
T strongly admissible T, Dy, Zs, Zs, 1

Table 1: Admissible subgroups of the exceptional groups in O(3)

I of O(3) contains these subgroups, it must be determined whether or not
they are conjugate in I'. In addition, there are isomorphic but nonconjugate
subgroups of @ and O @ Z5. These and the resulting notation are described

later.

In the remainder of this section, we give the verification of the entries in
Tables 1 and 2. We follow the strategy described in Section 3. In order to
carry out this program we need certain information about the subgroups of
O(3). This is provided in Propositions 8.1, 8.2 and 8.3.

Proposition 8.1 The finite subgroups of O(3) that are generated by reflec-

tions are

]I@Zga (O)@Zga (0)_: Dfna D

2m»

m odd, D, ® Z5, m even, Z , 1.
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D? m odd

strongly admissible

D¢ D, DI DE 75, 1

nonstrongly admissible
inadmissible

2m» 2m?
nonstrongly admissible | Z;,, Zy
inadmissible DY, (k # m), DF (k #m), Dy
D¢ m even strongly admissible D¢ D, Dy, D 1
nonstrongly admissible | D5, Dy, Z,, Zj
inadmissible DY, (k #m), DZ (k # 2,m), Dy (k # 2)
Dz, strongly admissible D:,. Z,,1
nonstrongly admissible | D5, Z
inadmissible D; (k # 2,m)
Ly, strongly admissible Ly, Ly,
D, ® Z5, m odd | strongly admissible D, & Zs, D?,, D%, Dy, 1

Dm @Zga ]D)l @Zga Dfna Dia ]D)la Zk @Zg’ Zk
Dy, @ Z5, D;, (k # m), Dy,

D,, ® Z3, m even

strongly admissible
nonstrongly admissible
inadmissible

D,, ® Z5, D?, D?, DY, Z;, 1
]D)2 D Zg; ]D)l ) Zga ]D)ga Db Zz_ka Zk S Zg
Dy, ® Z5, Di (k # 2,m), DY, Dy

L, ® Z5, m odd

strongly admissible

Zk Y Zga Zk

Ly, ® Z5, m even

strongly admissible
nonstrongly admissible

Ty, k odd, Zy, ® Zs, k even, Zy,
Ly, k even, Zy ® Zs, k odd

Dy,

strongly admissible

Dy, Zy

Ly

strongly admissible

Ly,

Table 2: Admissible subgroups of the planar groups in O(3) (k divides m,

kE>1)
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Proposition 8.2 (a) The subgroups D?,, m > 2, Z,,, m > 2, DI and D,

m?
have one-dimensional fized-point subspaces.

(b) The subgroups D% and Z, have two-dimensional fized-point subspaces.

(¢) The remaining nontrivial finite subgroups of O(3) have zero-dimensional
fized-point subspaces.

Proposition 8.3 The inclusions between the finite subgroups of O(3) are as
follows

IeZs D 1,D;®Zs, Dy @ Zs, Dy @ Zs
OeZ, D 0,0,D,dZs, D Zs
TeZ; O T,D,dZs, Zs d Zs
0O~ > T, D} Dj
I O T, Ds, Ds
O D T, Dy Dy
T > Dy, Zs
D, ®Z5 > D& Zs k divides m, D%, (m even), D?, D,
L, ®Z5 O 7Ly ®Zs, k divides m, Z,,, (m even)
D¢ > DY, m/k odd, Z,, DZ, D,
Loy O Ly, m/k odd, Ly,
D: DO Dy, k divides m, Zp,
D,, D Dy, k divides m, Z,,
Ly O Ly, k divides m

Using Propositions 8.1 and 8.3, we compute for each finite subgroup I' C
O(3) the isotropy subgroups I of I" and for each I the subgroup Iy of I that is
generated by reflections. By Theorem 3.2, the strongly admissible subgroups
are those that lie between I and Ig for some isotropy subgroup I. Then the
nonstrongly admissible subgroups are given by the nontrivial extensions of
the strongly admissible subgroups.

If ' contains no reflections, every subgroup of I' is strongly admissible.
This accounts for the class I subgroups I' = I, O, T, D,,, Z,, and also for
the subgroups Z,, ® Z; when m is odd and Z;,, when m is even. It remains
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to consider the cases when I' contains reflections. In Table 3 we list the
remaining subgroups I' together with the isotropy subgroups of I' which we
denote by 1.

A useful fact to bear in mind in computing cyclic extensions is that if
> is a nontrivial cyclic extension of a dihedral group A, then A must be of
index two in X.

r 1

I Zs I e Z;, D, D, D, Z,, 1
Oe Zg @@Zg’ Di’ Dga D;(e)a Z;(e)’ Z;(f)’ 1
O~ 07, b3, D3, Df, 1

T & Z; TeZs, D, Z,, Zs, 1
D¢ m odd D¢ D, DY DI Zy, 1
D¢ m even D¢ D, Dy, D1

Dz, D:,Zy, 1

Dy, ® Z3, m odd | D,, ® Z3, D , D}, Dy, 1

D,, ® Z5, m even | D, ® Z5, D, D%, DY, Z;, 1
Ly ® Z, m even | Ly, ® L, Loy , Ly, 1

ZLy,,,, m odd Ligyry Liy y Lo,y 1

Table 3: Isotropy subgroups of the finite subgroups of O(3) that contain
reflections

We end by describing as promised the notation for the subgroups of @ and
O@®Zs;. There are order two rotations in @ that are conjugate in O(3) but not
in @. These are the rotations about axes that connect midpoints of opposite
edges and faces respectively. As a result, Q contains two nonconjugate copies
of Dy, the subgroup Do(f) which contains the three face rotations and is
normal, and the subgroup Ds(e) which contains two edge rotations and a
face rotation.

Corresponding to these subgroups of @, O & Z3 contains three nonconju-
gate class III subgroups isomorphic to Ds. These are obtained by multiply-
ing any two nontrivial elements of Dy(e) and Dy(f) by —I. Of course Dj( f)
arises from Dy(f). In addition we can choose an edge and a face from D, (e)
to obtain DZ(e) or two edges to obtain D4. This distinction is important for
admissibility of the subgroups of the finite reflection group O @ Z3. Of these
three class III subgroups only D (e) is an isotropy subgroup, the others lying
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in ;. Hence only D3(e) is strongly admissible. The other two subgroups are
cyclic extensions of Z, (f) and hence are nonstrongly admissible.

The class II subgroups Di(e) & Z3 and Dj(f) @ Z3 are not isotropy sub-
groups and hence are not strongly admissible. However, D% (e) ®Zs is a cyclic
extension of D3(e) and hence is admissible.

A Dynamics on graphs

We consider continuous mappings f : G — G where G is a finite graph with
edges I1,..., I, and f satisfies the following properties:

(1)
(i)
)
v)

f(Z;) is the union of some I;’s for each j.
flr; is C? and invertible, where for each 7,7, I; = I; N f1(I;).

(iii) There is an iterate f? such that wherever defined, |(f?)'| > 6 > 1.

(iv) Forall j, U,», f*(;) = G.

The subsets I;; form a Markov partition for the mapping f. It is a stan-
dard procedure using symbolic dynamics to show that f is semiconjugate to
a subshift of finite type. Moreover the assumptions of piecewise invertibility
in (ii) and of expansitivity in (iii) imply that the semiconjugacy is finite-
to-one and is actually a conjugacy except on a subset of Lebesgue measure
zero. It follows in the usual way that G is transitive under f, that periodic
orbits are dense, and that there is sensitive dependence on initial conditions.
Moreover, if we replace (iv) by the stronger aperiodicity assumption

(iv)" There is an integer p such that f?(I;) = G for all j,

then G is topologically mixing. Finally, the full strength of (ii) requiring
twice-differentiability implies the existence of a Lebesgue-equivalent ergodic
measure on G, see the Folklore Theorem of Adler and Flatto [1]. To summa-
rize, we have the following result.

Proposition A.1 Suppose that f : G — G is a continuous mapping satis-
fying properties (i)-(iv). Then

(a) G is transitive.
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(b) Periodic points are dense in G, and G has sensitive dependence on
wnitial conditions.

(c) There is a finite Lebesgue-equivalent f-invariant ergodic measure pu on
G. This measure is unique up to a scalar multiple.

If, in addition, [ satisfies property (iv) then G is topologically mizing.

Remark A.2 It follows from the uniqueness in part (c) of the proposition
that if G is a Y-graph and f is ¥-equivariant, then y is X-invariant. To
see this, let o0 € 3. Then the pull-back of y by o is also a finite Lebesgue-
equivalent f-invariant ergodic measure and hence is the same as pu.
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