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Abstract

We give a general method for deducing statistical limit laws in situations
where rapid decay of correlations has been established. As an application of
this method, we obtain new results for time-one maps of hyperbolic flows.

In particular, using recent results of Dolgopyat, we prove that many classical
limit theorems of probability theory, such as the central limit theorem, the law
of the iterated logarithm, and approximation by Brownian motion (almost sure
invariance principle), are typically valid for such time-one maps.

The central limit theorem for hyperbolic flows goes back to Ratner 1973
and is always valid, irrespective of mixing hypotheses. We give examples which
demonstrate that the situation for time-one maps is more delicate than that
for hyperbolic flows, illustrating the need for rapid mixing hypotheses.

1 Introduction

Let A C M be a topologically mixing hyperbolic basic set for a smooth flow T
on a compact manifold M. Let u denote an equilibrium measure supported on A,
corresponding to a Holder continuous potential [7]. In this paper, we are interested in
proving statistical limit laws such as the central limit theorem for the time-one map
T =T of such a flow.
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We note that such limit laws are well-known for the hyperbolic flow itself. See
Ratner [21] for the central limit theorem, Wong [27] for the law of the iterated log-
arithm, and Denker and Philipp [8] for the almost sure invariance principle. See
also [17].

The validity of such results for time-one maps is considerably more delicate than
that for flows. To see this, suppose that X is a mixing hyperbolic basic set and
r: X — R is a Holder roof function. Let X, denote the suspension of X and consider
the suspension flow 7; : X, — X,. Suppose that r is cohomologous to a rational
constant (for example, take r = 1). Then the time-one map T = T} is far from
ergodic and the above statistical limit laws fail abjectly. Nevertheless, these results
are valid for the flow [17]. In Section 4, we discuss the situation when X, is mixing
but not rapidly mixing.

Dolgopyat [9] gave necessary and sufficient conditions for hyperbolic flows to ex-
hibit rapid decay of correlations in the sense that for each n > 1, and all sufficiently
regular observations ¢, : A — R, there exists a constant C(¢, 1, n) such that

|[¢(WoT)dp~ [¢dufvdu| < C(g,%,n)/It]", (1.1)

for all ¢ € R Dolgopyat also proved that a sufficient condition for this result to
hold is that there are periodic points 21,z € A with periods P;, P, such that P,/P,
is Diophantine. Thus most hyperbolic flows are rapidly mixing (whereas previously
Ruelle [23] and Pollicott [20] had proved the existence of mixing hyperbolic flows
whose rates of mixing are arbitrarily slow).

An important feature of this theorem is that, for fixed ¢, condition (1.1) holds for a
large class of “test functions” . Indeed, as a first step, Dolgopyat proves this result for
one-sided subshifts where 9 is required only to be L and C(¢, ¥, n) = D($,n)|¢| -

In this paper, we prove that a simple consequence of such an “L*” rapid decay
result is that any sufficiently regular mean zero observation ¢ is cohomologous in LP
to a martingale for all p € [2,n). Here, n > 4 is sufficiently rapid decay for our
purposes (and n > 2 suffices for the CLT).

As a consequence of the martingale reduction, we derive several classical limit
theorems, the most powerful being the almost sure invariance principle.

Theorem 1.1 Let A C M be a topologically mizing hyperbolic basic set for a smooth
flow Ty with equilibrium measure p, corresponding to a Holder continuous potential.
Suppose that there are periodic points x1,x2 € A with periods Py, Py such that P;/Ps
is Diophantine. Let ¢ : M — R be sufficiently regular ' with mean zero ([ ¢dp=10)

Lit suffices that ¢ is C™ in the flow direction, and that ¢ together with its time derivatives are
Holder continuous for some fixed Holder exponent



and f(f ¢ o Ty ds unbounded. Then there is a Brownian motion W with variance

N-1
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and a sequence of random variables {S(N) : N > 1}, equal in distribution to the
sequence {Z;V;Ol poT;: N > 1}, such that for each 6 > 0,

S([t]) = W(t) + O(t'/4+9) as t — 0o,
almost surely.

Remark 1.2 The ASIP for flows (with Z;.V:_Ol o T; replaced by fON ¢ o Ty dt) is an

immediate consequence of the ASIP for time-one maps, since fol ¢ ol dt satisfies the
hypotheses of Theorem 1.1. As mentioned earlier, the ASIP for hyperbolic flows is
valid even when mixing fails [8, 17].

Consequences of the ASIP include the central limit theorem, the weak invariance
principle and the law of the iterated logarithm, see [19, 11].

We note that Dolgopyat [10], using rather different methods, has proved a version
of the above result for time-one maps of Anosov flows with jointly nonintegrable stable
and unstable foliations.

Remark 1.3 The error term O(t}/4+9) for all § > 0 improves the error term O(¢'/2~%)
for some v < 0 which is more usual in the literature [8, 10, 19]. The improved error
term is obtained also in [11, 17].

In Section 2, we prove a simple (but apparently novel) abstract result relating
rapid mixing and approximation by a martingale. The central limit theorem and
weak invariance principle for suspensions of one-sided subshifts of finite type are then
an immediate consequence of Dolgopyat’s rapid mixing theorem. In Section 3, we
prove Theorem 1.1 by passing in the standard way from one-sided subshifts to two-
sided subshifts [24, 6] and then from suspensions of two-sided subshifts to hyperbolic
flows [5]. In Section 4, we consider the situation where the rapid mixing hypothesis
is relaxed.

2 Decay of correlations and martingales

In this section we prove a simple result that derives statistical limit theorems such as
the central limit theorem as a consequence of rapid decay of correlations.



Proposition 2.1 Let (Y, m) be a probability space and T :' Y — Y be a measure
preserving transformation. Let f € L. Suppose that there exists a constant C > 0
such that

UY (goT)dm| < Clg|oo,

forall g € L*®. DefineUg = goT, soU : L? — LP is an isometry for all 1 < p < oo.
Let U* : L? — L? be the L*-adjoint of U.
Then U*f € L and |U* f|, < CY?| |2 for all p > 1 finite, |[U* floo < |foo-

Proof By assumption, we have

JW ) gl=1[fUgl <Clglw-

By duality, |[U* f|; < C. (Take g = sgn(U*f).)
Next we derive the L estimate. Let ¢ > 0 and suppose that |[U*f| > |f|e + € on
a set A. Take g = xasgn(U*f). Then

A floo +el < [ f) gl < [If Ugl = [ il 1 < (T A floo = p(A)]f oo,

so that p(A) = 0. Hence |U* floo < | f|oo-
Finally, compute that

JIfIP = [lUmfPHuf < U FI U™ flu < [ fIEC

Lemma 2.2 Let (Y, m) be a probability space andT : Y — Y be a measure preserving
transformation. Define U* : L? — L? as in Proposition 2.1. Let ¢ : Y — R be in L™
with fY ¢dm = 0.

Fiz n > 2, and suppose that there is a constant C (depending on ¢ and n) such
that

[y (oT?)dm| < j%zmoo, (2.1)

for all ¢ € L* and j > 1.
Then ¢ = ¢—1—X0T there(bandxlzemLp for all p < n, andU*qﬁ—O.

Proof It follows from Proposition 2.1 that (U *Yi¢ € L*°, and that

(Ui, < W b/ (2.2)

n/p



for all finite p > 1. If p < n, then Z;‘;I(U *)Y¢ converges absolutely in LP. Define
X =.72,(U")¢ and ¢ =¢—Ux+x. Then x and ¢ lie in LP. Moreover U*¢ = 0
(cf. Gordin [12]). |

Remark 2.3 Assume that ¢ and (/5 are as in Lemma 2.2. Define ¢y = Z;Y;Ol Ulg
and define ¢y similarly. Then ¢y = ¢y +xoTN —x. If y € L2, then y2oT¥ = o(N)
almost everywhere by Birkhoff’s ergodic theorem, hence ¢y = ¢ + o( N*/2) almost
everywhere.

Theorem 2.4 (Central limit theorem (CLT)) Let (Y, m) be a probability space
and suppose that T 1Y — Y s ergodic. Let ¢ : Y — R be in L™ with fy ¢dm = 0.
Suppose that ¢ satisfies condition (2.1) for some n > 2 (and all Y € L™, j > 1).
Then ﬁ Z;-V:_Ol ¢ o T7 converges in distribution as N — oo to a normal distribution
with mean zero and variance o? for some o > 0.

Moreover, 0% = limy_,o0 1 fy(Z;.V;Ol ¢ o T9)?dm, and 0® = 0 if and only if ¢ is
an LP-coboundary for all p < n.

Proof Choosen > p > 2in Lemma 2.2 and Remark 2.3. Then ¢y = <75\N +0o(N'?) s0
it suffices to prove the CLT with ¢ replaced by ¢. Passing to the natural extension [22],
we obtain a biinfinite stationary ergodic martingale {X; : j € Z} where X_; =

¢ oT7 for j > 0 (cf. [11, Remark 3.12]). Hence it follows from Billingsley [1] that
ﬁ Z;V:_Ol X converges to a normal distribution with mean zero and variance [ X7

as N — #+oo. In particular, \/—lﬁ Z;_V:_Ol (Z oT7 converges to a normal distribution with

mean zero and variance o2 = [ #?. Moreover, the variance is zero if and only if ¢ = 0
which means that ¢ = x oT — x is an LP-coboundary.

Finally, we verify the formula for o? in the last statement of the theorem. First
note that 0% = [ ¢? = %fqi?v That is, 0 = \/_lﬁ|¢N|2' Writing ¢y = dn+ x0TV —x,
we compute that |¢pn|z < |dn|2 + 2|x|2 so that lim supy_, \LFNWN‘? < ¢. Similarly,

limian_)oo\/iﬁ\qﬁNh > 0. |

Remark 2.5 Suppose that 7; : Y — Y is a semiflow and that the time-one map
T =T, is ergodic and satisfies the rapid decay condition (2.1) for some n > 2. Then
the conclusion of Theorem 2.4 is valid for the time-one map 7. Moreover, replacing ¢
by fol ¢ o Ty dt, we conclude that % fOT ¢ o T dt converges in distribution as 7" — oo

to a normal distribution with mean zero and variance o2 for some & > 0, and 62 = 0
if and only if fol ¢ o Ty dt is an LP-coboundary.



Remark 2.6 Under the hypotheses of Theorem 2.4 (or Remark 2.5), the weak in-
variance principle (WIP) (otherwise known as the functional central limit theorem)
follows by [2].

Remark 2.7 The key hypothesis in Theorem 2.4 is that for the fixed mean zero
observation ¢, the correlation function [, ¢(¢)oT7)dm decays rapidly for all ) € L*°.
Such a hypothesis cannot hold for an invertible mapping 7', since the operator U*
appearing in the proof of the theorem would be a unitary operator and so could
not be strictly contractive. However, this hypothesis is often satisfied when T is
noninvertible.

We note that Theorem 2.4 is both more restricted and more general than a related
result of Liverani [14]. Liverani requires only that [, ¢(¢ o T7)dm decays rapidly (so
Y = ¢), and n > 1 is sufficiently rapid decay. However, Liverani requires an additional
a priori estimate on the contractivity of the transfer operator.

Application to suspensions of one-sided subshifts of finite type

We recall the notion of a symbolic (semi)-flow [5, 18]. Suppose that o : X* — X
is an aperiodic one-sided subshift of finite type. Fix # € (0,1). Define the metric
do(z,y) = 0~ where N is the largest positive integer such that z; = y; for all i < N.
Define the Hélder space Fp(X ™) consisting of continuous functions v : X+ — R that
are Lipschitz with respect to this metric, with Lipschitz constant |v]g. Let p be an
equilibrium measure on X T corresponding to a Holder potential in Fp(X ™).

Let r € Fp(X™) be a strictly positive roof function, and define the suspension
Xt ={(z,s) e XTxR:0<s<r(zx)}/ ~ where (z,7(z)) ~ (0z,0). The suspension
(semi)-flow is given by T3(z, s) = (x, s+t) and the invariant measure y, = pux£/ [rdu
is an equilibrium measure for the flow, where ¢ is Lebesgue measure on R.

Define the space Fyp(X,) consisting of continuous functions ¢ : X;f — R that
are Lipschitz with respect to the metric dy(z,z') 4+ [s — s'| on Xt x R restricted to
{(z,s) € XT xR :0<s<r(x)}. Note that the functions in Fp(X;") are continuous
along the flow direction. Let Fyo(X,") consist of functions ¢ that are C* in the
flow direction such that &/¢ € Fy(X;) for j = 0,1,...,k, and let |@| 4 denote the
maximum of the Lipschitz constants corresponding to 31:7 0.

Theorem 2.8 Let X, be a Hélder suspension of an aperiodic one-sided subshift of
finite type, with Holder equilibrium measure p. Suppose that there are periodic points
y1,y2 € X5 with periods Py, Py such that Pi/P, is Diophantine. Then there is an
integer k > 1 such that the CLT and WIP (for the time-one map as well as the flow)
hold for all observations ¢ € Fy,o(X,") with fXT ¢ du, = 0.



Proof Under the Diophantine hypothesis, Dolgopyat [9] proved that for any n > 1,
there exists an integer £(n) > 1 and a constant C'(n) > 0 such that if ¢ € Fj,o(X;")
and ¢ € L*(X,"), then

[ 0 T)dpy — fédp, [bdp| < C(n)|@lunyolthloe/ (2.3)

for all t > 0.
Take n > 2 in (2.3), and apply Theorem 2.4 and Remark 2.6. |

If the variance o? vanishes (in Theorem 2.4), then the CLT and WIP (for
7% Z;V:_Ol ¢ o T7) are said to be degenerate. We want conditions that exclude this
possibility. Similarly, in the CLT and WIP for % fOT ¢ oT,dt, (Remark 2.5) we wish

to rule out the possibility that 2 = 0. The next result shows that these situations
are highly unlikely in the hyperbolic case.

Proposition 2.9 Assume the set up of Theorem 2.8. The following are equivalent.
(a) % =
(b) fo Tsy)ds = 0 whenever y is a periodic point of period T,

(c) There is a Hélder g : X, — R such that fotqﬁo T,ds =g —goT, for all t, and

(d) fo (Tsy)ds is uniformly bounded (inT >0 and y € X;F).
If 02 = 0, then conditions (a)-(d) hold.

Proof The equivalence of (b) and (c) is the Livsic periodic point theorem [15], [13,
Theorem 19.2.4]. It is clear that (c) implies (d). If (d) is valid, then the CLT is
degenerate, so (d) implies (a).

If (a) is valid, then by Theorem 2.4, 1) = x— x0T} almost everywhere, where y € LP
(2<p<mn)and ¢ = fol ¢oT,du. Define F, = f(fq/;oTs ds and h = fol xoTsds. Then
F, : X,/ = R is a continuous (even Lipschitz) cocycle and h € LP(X,"). Moreover,
Fy = hoT,—h so F'is an LP coboundary. The Livsic regularity theorem for hyperbolic
flows [16, 26] guarantees that h has a Holder continuous version.

Now suppose that y is a periodic point of period 7" and compute that

fo syds_fof() S+uyd8du_FT() 05

proving (b).
Finally, it is immediate from Theorem 2.4 and Remark 2.5 that 0? = 0 implies
that o2 = 0. n



Remark 2.10 Ratner [21] proved the CLT for hyperbolic flows and showed that
% = 0 if and only if ¢ is an L2-coboundary (in some sense). However, verifiable
criteria for nondegeneracy were first given by [17] who proved the equivalence of (a)

and (d) (without requiring rapid mixing).

3 Almost sure invariance principle for hyperbolic
flows

In this section, we prove Theorem 1.1. The proof consists of three ingredients:

(a) Reduction to a suspended flow over a two-sided subshift of finite type, using
the symbolic dynamics of Bowen [4, 5].

(b) Reduction to the situation where the roof function defining the suspension and
the observation ¢ depend only on future coordinates (following [24, 6]).

(c) Application of the martingale approximation of Section 2 and standard tech-
niques from probability theory (cf. Field et al. [11]).

(a) Reduction to a suspended subshift

This step is by now completely standard [4, 5, 7] and we omit the details. After the
reduction, we have a flow on the suspension X, of an aperiodic two-sided subshift
of finite type o : X — X. Here, the roof function r € Fy(X) is strictly positive
and the suspension is defined to be X, = {(z,s) € X xR : 0 < s < r(z)}/ ~
where (z,7(z)) ~ (0x,0). The suspension flow Ty(z,s) = (x,s + t) is weak mixing
with respect to an equilibrium measure p, = p x ¢/ [ rdp where p is an equilibrium
measure on X corresponding to a Holder potential. The reduced observation ¢ lies in
Fy 9(X;) and has mean zero. (The spaces Fy(X) and Fy ¢(X,) for the two-sided shift
are defined analogously to the one-sided case.)

(b) Reduction to future coordinates

By [24, 6], r is cohomologous to a roof function 7’ € Fyi»(X) that depends only on
future coordinates, and the suspension flows on X, and X, are topologically conju-
gate. Unfortunately, 7’ is not strictly positive which introduces a number of technical
difficulties. (In particular, it is not clear how to define Fy(X,-).) To circumvent these

difficulties, define r,, = Z;:& r o 0. There exists an integer m > 1 such that r!,



is strictly positive, and it is possible to pass from observations in Fj ¢(X,) to ob-
servations in Fy¢(X,, ) and then to Fy gi/2(X, ) (cf. [9, 20]). We omit the tedious
details.

The upshot of the discussion above is that without loss of generality we may
suppose from the outset that r € Fy(X) depends only on future coordinates. Suppose
that ¢ € Fyy10(X,). A generalization of the argument of [24, 6] shows that there is a
constant ¢ (depending only on X, and @) such that ¢ is cohomologous in Fy 41/, (X;)
to an element ¢ € F} p1/4(X,) depending only on future coordinates. Since we could
not find this fact mentioned even implicitly in the literature, we give the proof in
detail in the appendix (Theorem A.5).

This completes Step (b), and we may suppose without loss that r and ¢ depend
only on future coordinates.

(c) Martingale approximation

This step is almost identical to that in [11] and we only sketch the details. Since the
class of hyperbolic sets for smooth flows is closed under time-reversal, it is sufficient
to prove the ASIP in reverse time. Hence we consider reverse partial sums ¢_y =
Yjms 00T ;.

By Lemma 2.2 (with n > 4) and Dolgopyat’s results (2.3), ¢ = ¢ +x — xo T}
where 1, x € L*, ¢ depends only on future coordinates, and U*1) = 0. Here, U* is
the adjoint of the (noninvertible) isometry U : L?(X;F) — L*(X,") induced by T;. As
in Remark 2.3, ¢_n = %_y + o(N'/*), hence it suffices to prove the ASIP for 1.

Since ¢ and 77 depend only on future coordinates, the condition U*y = 0 guaran-
tees that the sequence {¢_y, N € Z} is a martingale (with respect to the sequence of
o-algebras Ty (M™T) where M is the o-algebra on X' lifted up to X,). We now ap-
ply the method of Strassen [25]. The version stated in [11, Theorem B.3] is sufficient
for our purposes. (Hypothesis (a) in [11] is automatically valid since % lies in L* and
the sequence 1 o T_; is stationary. Hypothesis (b) follows as in [11] from the strong
law of large numbers for martingales since the partial sums of squares also admit a
martingale approximation.)

4 Counterexamples for nonrapid mixing time-one
maps
Let X, be the suspension by a Holder roof function r of a hyperbolic basic set X.

In the introduction, we mentioned that the hyperbolic flow T; : X, — X, enjoys
statistical properties such as the ASIP, without requiring even ergodicity for the



time-one map 77 : X, — X,. This illustrates the fact that establishing statistical
properties is more delicate for time-one maps than for the flow.

It is natural to ask whether weak mixing is a sufficient condition for the ASIP to
hold for the time-one map. We strongly conjecture that the answer is negative and
that it is necessary to impose rapid mixing hypotheses as in this paper. In this section,
we show that certain aspects of Theorem 1.1 break down when X, is weak mixing
but not rapidly mixing. (The example below is also an alternative counterexample
to rapid mixing of hyperbolic flows, cf. [20, 23].)

We give an example of a suspension X,., and a mean zero observation ¢ : X, — R,
satisfying the following properties:

(i) X is a (one-sided) subshift of finite type on two symbols,

(ii) The suspension flow T; : X, — X, is weak mixing,

(iii) The roof function r is Holder continuous,
)

(iv) The observation ¢ is Holder continuous, C* in the flow direction, and the
derivatives in the flow direction are Holder continuous (with respect to a fixed
Hoélder exponent),

and yet
(v) imyoeo + [ Y % du, does not exist.

As usual, ¢y = ij;ol ¢ oT7 where T = Tj is the time-one map.
In fact, we prove the following result.

Theorem 4.1 The suspension X, can be constructed so that condition (i)-(iv) are
satisfied, and for any € > 0,

1
lim sup N / ¢ Ay = 0o.
X

N—oxo

Construction of X, and ¢ Let b:[0,1] - R be a C* function supported inside
(0,1) (in [1/4, 3/4] say), satisfying fol b(s)ds = 0. We extend b to a smooth 1-periodic
function on R. Then

b(s) = Z by, €27k (4.1)

kEZ

where by = 0 and b, = b;. More importantly, by — 0 as |k| — oo and by # 0
infinitely often.

10



Choose an irrational number « € (1,2) such that the equation

v — | < b (4.2
has infinitely many solutions k € Z, p € Z. (The set of such « is a dense G in R.)
Let A = < (1) 1 and let X = X, denote the corresponding subshift of finite

type. Write X = Cy U C; where (), consists of symbols starting with an m. Define
the roof function r : X — R by r|¢, = 1 and 7|¢, = . Let T; : X, — X, be the
corresponding suspension flow. Since « is irrational, 7} is mixing.
Consider the observation ¢ : X, — R given by ¢(z,s) = b(s) on Cy x [0, 1] and
¢(z,s) = 0on C; x[0,|. Evidently, X, and ¢ satisfy conditions (i)—(iv) listed above.
Since v > 1, and two consecutive 0’s in the symbol of z are forbidden, we have
the following result.

Proposition 4.2 For any x € X, t > 0, the set Ty({z} x [0,1]) N Cy x [0,1] is
connected. |

To prove Theorem 4.1, it suffices to show that lim supy_, # fCo fol @3 dsdy = oc.

We compute that 77(z, s) = (6"x, s+ j — r,(z)) where n = n(z, s, j) is such that
rn(z) < s+ 7 < rpp1(x). Note that 7,(x) = ny + ngar where ny +ny = n. Also, n < j
(since a > 1). In particular, ¢ o T?(z, s) = b(s — nya) or ¢ o T?(x,s) = 0, and we can
write

poTi(z,s) = Ig, (6™ ®*Ix)b(s — ny(z, s, j)a).
By Proposition 4.2, for each x € Cy and j > 0, there exist integers n = n(z, j)
and ny = ny(z,j) such that for each s € [0,1] either n(z,s,j) = n, nao(x, s,j) = no,

or T'(z,s) € Cy x [0,a]. If TV(x,s) € C; x [0,a] for all s € [0, 1], we simply choose
n(z, j) to be any n for which ¢™2 € C;. This means that we can write

b o TI (.73, 8) — ICO (O_n(m,j)x) Z by 627rik:se—27rik:n2(m,j)a’
k

for all (z,s) € Cy x [0,1], 7 > 0. Hence

o (z,8) =D brn(z)e’™,
k

where

N-1
br,n(z) = b Z I, (o™@d)g)e=2mikna(zgo
=0

11



By Parseval’s identity, we have

1
| [ ordsan=3" [ palan
Co JO k Co

The next step is to estimate by y for suitable choices of k¥ and N. By definition of

b and o, we can choose k € Z and N > 1 arbitrarily large such that b, ~ N~%/3 and
|ka — p| < |bg| for some p € Z. Then
|e~2mikn2(i@)a _ 1| = |=2mikma(i@)a _ o=2mina(iap| < Ay (4, 2) ke — pl
< AN |bg| ~ 4m|b '3 < 1)2.
Hence for such k£, N large enough
by ()] > M (z, N)be| (1 — darlb|**/%) > M (x, N)[bx| /2,

where M (z, N) = Z;.V:_Ol I, (o™®D)).

Proposition 4.3 Let K = p,(Co x [0,1]) and T = [ rdu. Then

liminfy_, fCo M(z,N)?/N%du > K.

Proof Let My(z,s,N) = Z;vz_ol Icox0,110T%(z, s). Since T} is mixing, it follows that
T is mixing and hence ergodic. By the ergodic theorem, My(z,s, N)/N — K almost
everywhere. Since My(z,s, N)/N < 1, the dominated convergence theorem implies
that

1 1
lim/ / Mo(x,s,N)Q/Nstd,uz/ / K?*dsdy = K°7.
N—oo Co JO Co JO

By definition of n(z, j),

N—1 N—1
M(z,N) = Z I, 0 o™®ig > Z I, 0 0™ @* g = My(z, s, N),
j=0 i=0
and the result follows. [ |

By Proposition 4.3, [, M(z, N)?/N?du > K°7/2 eventually so that
[ el du> KN,
Co
We conclude that

1 ! 1
N2— / / ¢ dsdp > N / |bk,N|2 dp > K3|bp|*) N7 /8 ~ K3N5/3T/8 — 00,
Co JO Co

as required.

12



Appendix A Reduction to future coordinates

Suppose that o : X — X is a two-sided subshift of finite type. Let § € (0,1), r € Fy(X), and
define the suspension X,. corresponding to the roof function r with suspension flow T;. As described
earlier, we define the ‘metric’ dg((z, s), (y,t)) = dg(z,y) + |s — t|. Let Fy(X,) denote the space of
continuous function v : X, — R that are Lipschitz with respect to the metric dg and let |v|g denote
the Lipschitz constant.

Remark A.1 We have used dy to denote the metrics on X and X, but the context should avoid any
ambiguity. Also, it should be noted that dy is not really a metric on X, due to the identifications,
but this turns out only to be a minor inconvenience. In this regard, we caution that the continuity
assumption for elements of Fy(X,) is not implied by the Lipschitz assumption.

Let (z,s) € X,. Then Ty(z,s) = (o?z,s +t — r;(z)), where s + t € [rj(z),rj41(z)). The lap

number j is a function of z, s,t. Note that j € (¢/ maxr,¢/ minr].

Proposition A.2 Suppose z,z' € X and z; = x} for oll i > 0. Then the limit
N — Joe) — I\ = i . (!
Ale#!) = 0(o7n) = r(0%41) = Jim (r3(e) = 1,6
]:
exists. Moreover, there exists a to > 1 such that if z; = x} for all i > 0 and if j and k are the lap
numbers corresponding to Ty(x, s) and Ty(x',s — Az, ")), then |j — k| <1 for all t > 1.

Proof Note that |r(c/z) —r(o?2')| < |rlgds(c?z,072") < 67|r|y so that A is well-defined.

Let j and k be the lap numbers for T;(x, s) and Ti(z',s — A(z,z")) respectively. Thus s+t €
[rj(2),7j+1(x)) and s + 1 € [re(2") — Az, 2'), g1 (2') — Az, 2)).

As k — oo, the interval [rp(z') — A(z,2'),rr+1(z") — A(z,2')) converges to the inter-
val [rg(x),rk41(x)). Hence, within an arbitrarily small error, the intervals [r;(z),r;41(2)) and
[ri(x), res1(z)) must eventually overlap. But if |j — k| > 2, then these intervals are separated by at
least distance minr. It follows that eventually |j — k| < 1. |

Corollary A.3 There exists N > 1 such that
[v0 Tu(z,5) = voTy(a',s — A, 2"))| < [v]g[L + [r|o/(1 - 6)]6™/I"=,
for allv € Fyp(X,) andn > N.

Proof Denote the lap numbers of Ty, (z,s) and T,(z',s — A(x,2')) by j and k respectively. It
follows from Proposition A.2 that for each n > N large enough, |j — k| < 1. In the case k = j,

[v 0 Tu(z,8) —voTa(a',s — A(z,2")| < |v|g[ds(0”z,072") + |A(z, &) — rj(z) +r;(z)]]
< [0l891 + Irls /(1 = 0)] < [0]o6™/ 11 + [rls /(1 — 0)).
In the case kK = j + 1, we have the estimate
lv(o?z,s +n—rj(z)) —v(o?z,r(0’T))| + [v(0c?t'2,0) —v(c’T' 2!, s — A(z,2') + n — rj31(2"))|
< olo[(r(o? (2)) = (s + 1 —15(2)) + dp (07 2,07 2") + (s — A(z,2') + 1 — 1 ()]
= [vlg[do (0", 07+ 2") + (rj11(2) = 141 (") = Az, 2"))]

< [ulg6 T L+ [rlo/(1 = 6)] < [v]o6™ "= [1 4 |rlo /(1 - 6)].
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The case k = j — 1 is similar. |

Proposition A.4 Suppose that z,z',y,y' € X and z; = = for i > 0 and y; = y} for i > 0. If
do(z,y) < 02N, dy(z',y") < 62N then |A(z,z") — Ay, y')| < 4|r]p0V /(1 - 6).

Proof Write

A(z,2') = Aly,y") = (rn(2) = v (@) = (rn (@) = v () + A, 0™a') = ANy, o™y').

Now,

=
N

N—
Irn(z) —rn(y)| < |r(o?z) —r(0ly) Z rlodg (0’ z, 0ly)
=0

.
Il
<

2

< D Irle0™ do(z,y) < [rle6~Vdo(z,y) /(1= 0) < |r|e8™ /(1 -6),
0

J
and similarly for rn(z') — rn(y'). Next, compute that

oo

ANz, 0N ") Z ) —r(diz")| < |ro 20] [r|8™ /(1 - 6),

j=N

and similarly for A(o™Ny,oNy"). |

Let O;v = (0/0;)(v o T)|¢=o denote the derivative of v : X, — R in the flow direction. Let
F.9(X,) denote the space of functions v : X, — R such that 9}v € Fyp(X,) for j = 0,... ,k and
define |v|x,9 = maxj—,... x |0]v|g.

Theorem A.5 Let 0 : X — X be a two-sided subshift and let r € Fy(X) be a roof function, r > 0.
Suppose further that r depends only on future coordinates. Define ¢ = (4 + 2|1/7|00) || 00 -

Let v € Fry1,0(Xy). Then there exists w,x € Fy g1/4(X;) such that w depends only on future
coordinates, and v =w + x — x o T1.

Proof For each letter a, choose an element z* € X such that (z%)o = a. Given z € X define
p(z) € X as follows: (p(z)); =x; for ¢ > 0 and (¢(z)); = (z*°); for i < 0. So the future coordinates
of p(x) agree with & whereas the past coordinates of ¢(z) depend only on xy. In particular, the
map ¢ : X — X depends only on future coordinates.

By Proposition A.2, we can define ¢(z, s) = (pzx,s—A(z, ¢x)). Define (formally for the moment,)

o0
X=> (oT,—voT,0p).
n=0

Compute that v = w+ x — xoTi wherew =Y">° (voT, 0@ —voT,0@oT;), which clearly depends
only on future coordinates (since ¢ and r (hence T, t > 0) depend only on future coordinates). It
remains to show that x (and hence w) lies in Fj, g1/q(X;).

First, we show that y is C**! in the flow direction. Differentiating x formally term by term
yields the series 8}x = Y00 (((8/v) o Ty, — (8Jv) 0 Ty, 0 @). For fixed 0 < j < k + 1, since dv €
Fy(X,), we deduce from Proposmon A.2 that the n’th term of 9, is bounded in absolute value by

14



|87v]g6™/ 1l [1 + |r|g /(1 — )] and so the series converges uniformly to a continuous function & x. In
particular, x is C**! in the flow direction.

It remains to show that &;x is Lipschitz with respect to the dyi/, metric for all 0 < j < k.
It suffices to show that x is Lipschitz with respect to the dyi,, metric under the assumption that
v € Fy o (the general case follows replacing v by 8]v). Moreover, since x is C' and hence Lipschitz
in the flow direction (which we can identify with the s variable), we may keep the s variable fixed.

Choose N large as in Proposition A.2. In analogy with the proof of Proposition A.4, we have
the decomposition |x(z,s) — x(y, 8)| < A1(z,y) + A2(z,y) + B(z) + B(y), where

A(z,y) =) voTu(z,s) —voTuly,s)l,
As(z,y) =) v o Tu(@(a,8) — v o Tu(B(y, s)),

n=0
o0

B(z) = Z |voTh(x,s) —voT,(p(x,s))|
n=N+1

Let ¢1 = |r|eo and g2 = 2+|1/7|c0. We claim that provided N is large enough (independent of v),
there exists a constant K > 0 such that (i) B(z) < K8N/9 forallz € X, and (ii) 4; (z,v), A2 (z,y)
KON/ for all z,y € X with dy(z,y) < 8V%. Let ¢ = 2q1¢. It then follows that |x(z,s) — x(y, s)|
4K dg1,4(z,y) proving the result.

As before, the n’th term of B(x) is dominated by C8™/I"le = C§™/91 | verifying (i). It remains
to verify (ii). We give the details for the more difficult term As(z,y).

Choose N so large that 4|r|¢8™ /(1 — 8) < minr/2 and NOV/2 < 1.

Suppose that dg(z,y) < §Ve. By Proposition A.4, |A(z, ¢x) — A(y, py)| < minr/2. Also,

<
<

i (pz) —r3(py)| < Irle6 716N /(1= 6) < [r|pg™ @2~ 1/TI=) /(1 - §)

= |r|e6*N /(1 = ) < minr/2,
for all 1 < j < [N|1/r|so] + 1. Hence for this range of j, the intervals [rj(pz) + Az, pz), 741 (pz) +
A(z, pzx)) and [r;(ey) + Ay, oy), rj+1(py) + Ay, ¢y)) almost coincide (the initial points are within
distance minr, as are the final points). It follows as in the proof of Proposition A.2 that the lap
numbers j and k of T,,(¢(x, s)) and T,,(9(y, s)) satisfy |j — k| < 1for all 0 < n < N. The estimation
of the terms in A, (z,y) now splits into three cases as in the proof of Corollary A.3. When j = k,
we obtain the term

v(ofpz, 5 = A, pz) + 1 —1j(p)) —v(0?py,s — Ay, oy) +n —r;(py)),
which is dominated by
[vlo{ do (07w, 07 y) + Irj (pm) = 13 (iow)| + | A(z, o) — Aly, ow)] |
< lolo{[1+ Irlo/ (1 = 0010 do(p, 0y) + 4lrla6™ /(1 - 6)}
< [olo{[1+1rlo/(1 = )V 4 ir]g6N /(1 - 6) ).
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The computations for j = k + 1 lead to the same estimates (just as in the proof of Corollary A.3)
and summing the terms we obtain

As(,9) < folo{[1+ Irlo/ (1~ )]V 1/71=) /(1 — 6) + 4lrlyNOY /(1 — 6) }
< folo{[1+ Irlo /(1= 662 /(1 = 6) + irls0™/2/(1 - 0) ],
(since NO™/? < 1) completing the proof. |
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