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Abstract

Topological transitivity of noncompact group extensions of topologically
mixing subshifts of finite type has been studied recently by Niticd. We build
on these methods, and give the first examples of stably transitive noncompact
group extensions of hyperbolic dynamical systems. Our examples include ex-
tensions of hyperbolic basic sets by the Euclidean group SE(n) for n even,
n > 4.

1 Introduction

In this paper, we consider topological transitivity of noncompact group extensions
of hyperbolic basic sets. In particular, we give examples of such extensions that are
stably transitive. As far as we know, these are the first examples of noncompact group
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extensions that are stably transitive. Our results are based upon work of Nitica [9]
which in turn is based upon work of Brin [2].

Suppose that F' : M — M is a smooth diffeomorphism of a smooth Riemannian
manifold M and that f : X — X is the restriction of F' to a hyperbolic basic set X.
Suppose that ' is a finite-dimensional Lie group. Let r > 1 and define Z, to be the
space of C™ maps or cocycles ( : M — I'. Each cocycle ¢ € Z, induces a I'-extension

fe: X xI' = X x T given by fc(z,v) = (fz,v((x)).

Definition 1.1 Fix r > 1, and define
Z={Ce€Z | fe: X xI' = X xT is topologically transitive}.

If ¢ € Int Z, then f; is stably (topologically) transitive.
If Int Z is dense in Z,, then we say that generically f¢ is stably transitive.
If Z is a residual subset of Z,, then we say that generically f; is transitive.

Let SE(n) = SO(n) x R* denote the (special) Euclidean group generated by
rotations and translations in n-dimensional space.

Theorem 1.2 Let X be a hyperbolic basic set. Suppose that n is even and n > 4.
Then generically fc : X x SE(n) — X x SE(n) is stably transitive.

More generally, let p : G — SO(n) be an orthogonal representation on R" of a
compact connected Lie group G. Form the semidirect product I' = G x R" with
multiplication (g1, v1) - (g2, v2) = (9192, V1 + pg,v2). We call I' a Euclidean-type group.

Our results depend on the following three conditions:

(1) There exists a g € G such that I — p, is a nonsingular operator on R”.
(2) n > 2 and G acts irreducibly on R".
(3) G is semisimple.

Remark 1.3 When n is odd, Condition (1) fails.
Suppose that I' = SE(n). Then Condition (1) holds if and only if n is even,
Condition (2) holds for all n > 2, and Condition (3) holds if and only if n # 2.

Theorem 1.2 is an immediate consequence of the next result.

Theorem 1.4 Let X be a hyperbolic basic set and I" be a Euclidean-type group.
(a) If Condition (1) is satisfied, then generically fc : X x ' = X x ' is transitive.
(b) If Conditions (1)-(3) hold, then generically f¢ is stably transitive.



Remark 1.5 It is an immediate consequence of our work (with n = 0) that exten-
sions of hyperbolic basic sets by compact semisimple Lie groups G are generically
stably transitive. In fact, they are stably ergodic (and stably mixing) see [5]. The
nonsemisimple case requires additional hypotheses on the hyperbolic basic set [5, 12].

Although Euclidean-type groups include R", our results do not apply to R"-
extensions due to the failure of Condition (1). Recently, examples of stably transitive
R"-extensions (with X Anosov) have been obtained by Nitica and Pollicott [10].

The remainder of this paper is organized as follows. In Section 2, we recall the
work of Nitica [9] on topological transitivity of skew products, and give an elementary
proof of Theorem 1.4(a). In Section 3, we prove Theorem 1.4(b).

2 Transitivity of Euclidean-type group extensions

This section is divided into three subsections. In Subsection (a), we recall work of
Nitica [9] on topological transitivity of skew products. In Subsection (b), we col-
lect some elementary results on the structure of Euclidean-type groups. In Subsec-
tion (c), we prove Theorem 1.4(a) which gives a sufficient condition for transitivity
of Euclidean-type group extensions.

(a) Topological transitivity of skew products

Suppose that Y is a complete metric space and that 7' : Y — Y is a homeomorphism.
A partition W = {W(y)} of Y is T-invariant it T(W (y)) € W(T(y)) for all y € Y.
A T-invariant partition W is contracting if for all y;,y, € Y with W(y;) = W(ya),
we have that d(f™(y1), f¥(y2)) — 0 as N — oo. The partition is erpanding if it is
contracting for 77!. Finally, the partition is of foliation type if given € > 0 and any
p € Y and ¢ € W(p) there exists d(p, g, €) such that if C' is a non-empty open set
contained in the ball B(p, ) then the set B(g,€) N (U,ecW (2)) contains a non-empty
open set.

Fix two partitions W; and W, of Y. We say that a subset A C Y is accessible
(with respect to Wi and W) if for any pair of points p,q € A there exists N and a
chain {p =Y1,Y2,... ,Yn = q} such that Yi+1 € Wl(yz) U Wg(yl) for i = 1, cee ,N — 1.
The subset A is e-accessible if instead of yy = ¢, we have d(yn,q) < €.

Theorem 2.1 (Niticd [9, Theorem 2.1]) Let Y be a complete metric space, T :
Y — Y a homeomorphism, and Wy, Wy a pair of T-invariant partitions of foliation
type, one contracting and one erpanding. Assume that

(1) Y is e-accessible for all e > 0,



(i) For any open ball B C'Y and any positive integer N there is a positive integer
m > N such that T"BN B # 0, and

(iii) The conclusion of (ii) holds for T1.
Then T :'Y — Y s topologically transitive.

Now suppose that M is a smooth Riemannian manifold, and let f : X — X be
the restriction of a smooth diffeomorphism F': M — M to a hyperbolic basic set X.
Let T" be a Euclidean-type group, and let f; : X x I' = X x I' be the I'-extension
induced by the C" cocycle ( : M — I

Since I' admits a left-invariant metric, the ['-extension is automatically partially
hyperbolic [3], and the stable and unstable partitions W* and W* for X induce (strong)
stable and (strong) unstable partitions of foliation type W** and W** of X xT', see [9].
To summarize, we have the following result.

Proposition 2.2 Let X be a hyperbolic basic set and I' be a Euclidean-type group.
Then W*, W" are a pair of fe-invariant partitions of foliation type, one contracting
and one expanding.

(b) Structure of Euclidean-type groups

Let I' be a finite-dimensional Lie group. Suppose that ~i,...,% € I' and
let {v,...,7) denote the closed subgroup of I' generated by ~i,...,7. Let
{(7,---,7)" denote the closed semisubgroup generated by ~v1,. .., 7. Define

C ={yeTl:((y) is compact}
Fk:{(fyl"" :f)/k) Erk:<71a'-' afYk>:F}
Er={(v,---sm) €T*: {y,...,m)" =T}

Note that
C*NF, C F} CF,. (2.1)

Now suppose that I' = G x R" is a Euclidean-type group. Define Go C G to be
the set

Gc ={g € G :I— p,is a nonsingular operator on R"}.

Proposition 2.3 (a) g € G¢ if and only if (g,v) € C for allv € R".
(b) If Condition (1) holds, then G¢ is open and dense in G, and C contains the open
and dense subset Go x R* C TI'.



Proof Compute that (g,v)™ = (¢™, vy,), where
Um = (I + pg+ -+ p) .

If g € Gg, then v, = (I — pg)~'(I — pj)v is bounded and (g,v) € C. Otherwise,
choosing v € ker(I — p,) yields an element (g,v) ¢ C. This proves part (a).

To prove part (b), note that G¢ is a Zariski open subset of G. Condition (1) guar-
antees that G¢ is nonempty, and hence open and dense in G. By (a), Go x R* C C. 1

Proposition 2.4 Suppose that I is a Fuclidean-type group. Then F,, 3 is a residual
subset of T™*3.

Proof We use the well-known facts that

(i) If wy,..., w1 € R™, then generically (wy, ..., wyy1) = R”
(cf. [9, Lemma 2.6]), and

(i) If g1, 92 € G, then generically (g1, go) = G (see [1]).

A standard argument shows that F;,.3 is a countable intersection of open subsets
of I™*3 which is Baire space, so it suffices to show that F), 3 is dense in I'"*3. Let
Y ={M,.-. ,Ynt3) and let Xy = (71, 72). We show that ¥ =T for a dense subset of
(n + 3)-tuples (71, ... ,Ynys) € T3,

Write v, = (g;,v;) where g; € G, v; € R". By (ii), we may suppose that (g1, g2,) =
G and hence 7(35) is dense in G. (Without compactness, we cannot deduce directly
that 7(32) = G.) Hence, for j > 3, we can perturb g, to lie in 7(X,). In particular, for
each j > 3, we have two corresponding elements v; = (g;, v;), §; = (g, w;) in ¥ where
w; depends only on 7, and 7. Hence we obtain pure translations (e, z;) = jéj_l,
Jj > 3, where z; = v; — w;. The translations v;, j > 3 are still free to be perturbed,
so by fact (i), we may suppose that zs, ..., 2z,,3 generate R", so that {e} x R” € .
It follows that (g1,0), (g2,0) € X. Hence G x {0} C ¥ and so ¥ =T |

(c) Criteria for transitivity

Corollary 2.5 Let X be a hyperbolic basic set and I' be a Fuclidean-type group sat-
isfying Condition (1). Then generically fr : X x I' = X x T' is e-accessible for all
e > 0.

Proof By Proposition 2.3, we have that C contains an open and dense subset of
I'. By Proposition 2.4, F,,.3 is residual. It follows from (2.1) that F)' , is residual.
Genericity of e-accessibility is immediate from the proof of [9, Lemma 2.2]. |



Proposition 2.6 Let X be a hyperbolic basic set and ' be a FEuclidean-type group
satisfying Condition (1). Then generically, fo : X xI' = X X I' has the property that
recurrent points are dense in X x I

Proof For N > 1, f¥(z,v) = (f¥,7(n(x)), where

Cv(@) = C@)C(fz) - C(f¥ o). (2.2)

If fPx =z, then fé’j(x,’y) = (w,7¢(z)?) for all j > 1. Hence (x,7) is recurrent if and
only if (,(xz) € C. It follows from Proposition 2.3 that this is the case for an open
and dense set of I'-extensions. Since X contains a countable dense set consisting of
periodic points, generically recurrent points are dense in X x SE(n). |

Proof of Theorem 1.4(a) It follows from Proposition 2.2, Corollary 2.5 and Propo-
sition 2.6 that the hypotheses of Theorem 2.1 are generically valid. |

3 Stable transitivity of Euclidean-type group ex-
tensions

In this section, we prove Theorem 1.4(b) which gives a sufficient condition for stable
transitivity of Euclidean-type group extensions. We require the following two results
which strengthen the conclusions of Propositions 2.4 and 2.6 respectively.

Theorem 3.1 Suppose that I' is a Euclidean-type group satisfying Conditions (1)-
(3). Then Fy is (Zariski) open and dense in T2

Theorem 3.2 Let X be a hyperbolic basic set and I' be a Fuclidean-type group satis-
fying Condition (1). Then an open and dense set of I'-extensions fr : X xI' - X xT'
have recurrent points dense in X x I

The proof of part (b) of Theorem 1.4 now follows the proof of part (a). It remains
to prove Theorems 3.1 and 3.2 respectively. This is done in Subsections (a) and (b)
respectively.

(a) Proof of Theorem 3.1

Theorem 3.3 ([7, 4]) Suppose that G is a compact connected semisimple Lie group.
Then Fy is a nonempty Zariski open subset of G2. |

(Openness and density of F; is due to Kuranishi [7]. Zariski openness was proved
recently by Field [4].)



Lemma 3.4 Let ' = G x R* be a Euclidean-type group satisfying Conditions (1)
and (8) and with projection w : I' — G. Suppose that ¥ is a finitely generated closed
subgroup of I such that m(X) = G. Then n(X) = G.

Proof Let m, = (dm). : LY. — LG be the corresponding homomorphism of Lie
algebras. Then it suffices to show that =, is onto.

By Condition (3), LG can be written uniquely as a direct sum of simple Lie
algebras LG = L; & --- & L,. Moreover, (G is a finite cover of a finite product of
simple Lie groups G4, ... ,G, where L; = LG;. Let p; : G — G denote the obvious
projections and 7; = p; o7 : ¥ — G;. Observe that 7,;(X) is dense in Gj.

Let V = 7, (LX). Since m(X) is dense in G it follows that V' is invariant under the
adjoint action of G on LG and so V is an ideal in LG. By the semisimplicity of LG
again, V' is a direct sum of some of the factors Lq,..., L,. Relabelling, we can write
V=L & - -& L, where s <r.

It remains to show that s = r. It suffices to show that for each j, there is a
closed subgroup T' C G; with dim7T > 1 such that 7" € 7;(X). Since 7;(X) is a
finitely generated group of matrices, Selberg’s Lemma [13], [11, p.18] guarantees that
there exists a torsion-free subgroup N C (%) of finite index. By Condition (1),
p;(Gc) is open and dense in G so N Np;(G¢c) # {e}. In particular, there exists an
element g € G of infinite order such that the corresponding element v € X generates
a compact subgroup (y) C X. Let 7' = m;(y). Then T' C 7;(X) is an infinite compact
subgroup of G; and so dim7" > 1 as required. |

Lemma 3.5 Let ' = G x R" be a Euclidean-type group satisfying Condition (2)
and with projection w : I' — G. Suppose that X is a closed subgroup of I such that
7(X) = G. Then either L. =T or X = G.

Proof Identify {e} x R" with R" and let £ =X NR". Then L is a closed subgroup
of R* and is given by £ = RP x Z? where p,q > 0. We claim that G preserves L, so
for any (v, w) € RP x Z? and g € G, we can write p,(v, w) = (vg4, wy) € RP x Z%. Since
G is connected, w, = w so that G acts trivially on Z?. By Condition (2), Z? = 0 so
that £ = RP. Moreover, L = R"” or £ = 0 as required.

To prove the claim, note that for each g € G, there exists a v, € R* such that
(9,v4+ L) C X, and v, is unique modulo £. We have (g,v,+ £)* = (¢?,v,2 + L), and
SO

Vg2 + L = pg(vg + L) + vy + L.

Let w = vg2 — pyvy — vg. Then w + p,£ = L. Since 0 € py L, we deduce that w € £
and hence p,L£ = L as required. |



Lemma 3.6 Suppose that I" is a Fuclidean-type group. Let

A ={(1,72) €T?: (71,72) is not compact}

Then A contains a nonempty Zariski open subset of I'2.

Proof Forj = 1,2, writey; = (g;,v;) where g; € G and v; € R". Define D = G—G¢
which is Zariski closed in G.

Observe that " = (g7, nvy) for all v; € ker(I — py,). Hence v, generates a
noncompact group for all those v; that have a nonzero component in ker(I — pg, ). It
follows that if D = G, then m is noncompact for a nonempty Zariski open set of
v €.

It remains to consider the case when D # G. Define

A'={(n,72) €T%: 91,95 € Go and (I = pg,) "v1 # (I = py,) '0a}.

Clearly, A’ is Zariski open and nonempty. We show that A" C A.

Suppose that ¥ = (v1,72) is compact. We must show that (y1,72) ¢ A’. The
Euclidean-type action of I' on R” (z — p,z + v) restricts to an action of ¥ on R™.
Choose zy € R* and define y = fz oxydp where p is normalized Haar measure on X..
Let 09 = (g0, v9) € X. Then

o0y = / Pgo0To At + v = /(ngO:Eo +vo)dp = / 000To dpt = Y.
b)) b)) b))

Hence ¥ fixes the point y. In particular, v;y = y for j = 1,2. This means that
(I—g1)y = vy and (I —go)y = v2. If g1, 92 € G, then y = (I —g1) " 'vy = (I — g2) ' va.
Hence (y1,72) & A’ as required. |

Proof of Theorem 3.1 Let 3 denote the closed subgroup of I' generated by v; and
v2. By Conditions (1) and (3), Theorem 3.3, and Lemma 3.4, there is a nonempty
Zariski open subset U C I'? consisting of pairs (71, 72) € I'? for which 7(¥) = G. By
Condition (2) and Lemma 3.5, either ¥ = G or ¥ = I'. But by Lemma 3.6, we can
shrink U if necessary so that in addition X is noncompact and hence ¥ =T'. |

(b) Proof of Theorem 3.2

Suppose that G C SO(n) is a compact connected Lie group. Recall that the open set
G ¢ consists of those elements of G such that I — p, is nonsingular.

Let f : X — X be a hyperbolic basic set and let h : X — G. For x € X and
N > 1, define

hw(z) = h(z)h(fz) -+ h(f" " x). (3.1)



Suppose that x € X is a periodic point of period p. We say that x is good if h,(z) €
G¢. Otherwise z is bad. Our main result in this section is the following.

Theorem 3.7 Suppose that h : X — G is Lipschitz. Either good periodic points are
dense in X, or all periodic points are bad.

We require the following (strengthened) version of the Anosov closing lemma.

Lemma 3.8 (Anosov Closing Lemma [6, p. 269]) Suppose that X is a hyperbolic
basic set. There exist constants Cy > 1,¢ > 0 such that if d(f™(v),v) < € for some
v € X, n>1, then there exists w € X with f"w = w such that

d(fiv, flw) < CL ARG (o, v),
forg=1,2,... n. |

Proof of Theorem 3.7 Suppose that good periodic points are not dense, and fix
the periodic point g € X. We show that zy is bad. By passing to a power of f,
we may suppose without loss that zg is a fixed point. Let go = h(z¢) and define
D =G — G¢. We show that gy € D.

Since good periodic points are not dense, there is a nonempty open subset Uy C X
such that all periodic points in Uy are bad. Let U = [, f/(Up). Then U is an open
dense subset of X and all periodic points in U are bad.

Let C', ¢, u be as in Lemma 3.8. Choose a periodic point z such that

(i) z and fz are within distance €/2 of xy,
(ii) There is a j > 1 such that points within distance C1d(z, fz) of f/z lie inside U.

(This can be achieved by first fixing y € U, and then shadowing a pseudo-orbit that
travels from z, to y and back again to zy.) Let m denote the period of z and define
0 = hp(2).

Fix s > 1 and note that f™*'2 = fz which is within distance ¢ of z. By
Lemma 3.8, there exists a periodic point p of period ms + 1 such that

U Fp. 12) < Cop™ma P Dz, [2) < Cod(e, 1)

for j =1,2,...,ms~+ 1. It follows from property (ii) above that fip € U so that p is
a bad periodic point. Hence hy,s.1(p) € G¢. By construction hp,s,1(2) = o*h(f2).
We claim that there are universal constants K and « (depending only on f: X —
X and h : X — G) such that dist(c°h(fz), D) < Kd(z, fz)®. Since € is arbitrarily
small (so the three points zy, z and fz are arbitrarily close to each other), o*h(fz) is
arbitrarily close to D and h(fz) is arbitrarily close to go. At the same time, we can
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choose s so that ¢° is arbitrarily close to the identity. Altogether, we have that g, is
arbitrarily close to the closed set D and hence gy € D as required.

It remains to verify the claim. The proof closely follows the proof of the Livsic
periodic point theorem [6, p. 609]. Let M be the Lipschitz constant for h. It is easily
verified by induction that

N-1

hy(@) = h(y) = ) hi() [R(f72) — h(Fy)]hi(y) " - (y),
for all z,y € X, N > 1. Hence

dist(0°h(f2), D) < [[Pmst1(2) = hms1 ()] < Z Ih(f72) = h(f7p)|

ms

<D Md(fiz, fip) < MY Cp™ Ot I=d(z, fz)

Jj=0 J=0

= MC1d(z, fz) Zumin(j’ms“Ll_j)
=0

<2MCy(1 — p)~td(z, f2).
The claim follows with K = 2MCy(1 — p) 1. n

Proof of Theorem 3.2 Write elements of ' as v = (g, v) where g € G and v € R".
Similarly, write ((z) = (h(z),k(x)) where h : X — G and k£ : X — R" are the
restrictions (from M to X) of C" maps. The heights (y(z) € ' and hy(z) € G
(defined in (2.2) and (3.1) respectively) are related by the fact that hy(z) is the
G-component of (x(z) (cf. [8]).

Choose a periodic point zy € X. By Proposition 2.3(b), G¢ is open and dense
in G, so xg is a good periodic point for an open and dense set of I'-extensions f.
But then by Theorem 3.7, good periodic points are dense in GG. For such periodic
points z, with period p(x), we have h,)(x) € G¢ and hence, by Proposition 2.3(a),
Cpx)(z) € C. As shown in Proposition 2.6, it follows immediately that (z,7v) is
recurrent in X x I' for all v € I". Hence, recurrent points are dense as required. |
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