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Abstract. We consider families of fast-slow skew product maps of the form

xn+1 = xn + εa(xn, yn, ε), yn+1 = Tεyn,

where Tε is a family of nonuniformly expanding maps, and prove averaging and rates of
averaging for the slow variables x as ε→ 0. Similar results are obtained also for continuous
time systems

ẋ = εa(x, y, ε), ẏ = gε(y).

Our results include cases where the family of fast dynamical systems consists of inter-
mittent maps, unimodal maps (along the Collet–Eckmann parameters) and Viana maps.

1. Introduction. The classical Krylov–Bogolyubov averaging method
[32] deals with skew product flows of the form

ẋ = εa(x, y, ε), ẏ = g(y).

Let ν be an ergodic invariant probability measure for the fast flow gener-
ated by g. Under a uniform Lipschitz condition on a, it can be shown that
solutions to the slow x dynamics, suitably rescaled, converge almost surely
to solutions of an averaged ODE Ẋ = ā(X) where ā(x) =

	
a(x, y, 0) dν(y).

A considerably harder problem is to handle the fully coupled situation

ẋ = εa(x, y, ε), ẏ = g(x, y, ε).

Here it is supposed that there is a distinguished family of ergodic invariant
probability measures νx,ε for the fast vector fields g(x, ·, ε) and the averaged
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vector field is given by ā(x) =
	
a(x, y, 0) dνx,0(y). The first results on aver-

aging for fully coupled systems were due to Anosov [6] who considered the
case where the fast vector fields are Anosov with νx,ε absolutely continuous.
Convergence here is in probability with respect to Lebesgue measure.

Kifer [23, 24] extended the results of [6] to the case where the fast vector
fields are Axiom A (uniformly hyperbolic) with SRB measures νε. More
generally, Kifer considers the case where x 7→ νx,0 is sufficiently regular so
that ā is Lipschitz, and gives necessary and sufficient conditions for averaging
to hold. However, the only situations where the conditions in [23, 24] are
verified are in the Axiom A case, even though it is hoped [24] that the
conditions are verifiable for nonuniformly hyperbolic examples. Analogous
results for the discrete time case are obtained in [22]. See also [14, Theorem 5]
for certain partially hyperbolic fast vector fields.

Here, we consider an intermediate class of examples that lies between
the classical uncoupled situation and the fully coupled systems of [6, 23],
namely families of skew products of the form

ẋ = εa(x, y, ε), ẏ = g(y, ε),(1.1)

with distinguished family of ergodic invariant measures νε and averaged
vector field ā(x) =

	
a(x, y, 0) dν0(y). Notice that in this way we avoid issues

of regularity of the averaged vector field ā, but we still have to deal with the
ε-dependence of the measures νε as well as the fast vector fields. In other
words, linear response (differentiability) of the invariant measures is replaced
by statistical stability (weak convergence), which is more tractable. Indeed,
one aspect of the general framework in this paper is that our averaging
theorems hold in a similar generality to the methods of Alves & Viana [2, 5]
for proving statistical stability.

Hence, we obtain results on averaging and rates of averaging for a large
class of families of skew products (1.1), going far beyond the uniformly hy-
perbolic setting, both in discrete and continuous time. Our examples include
situations where the fast dynamics is given by intermittent maps with arbi-
trarily poor mixing properties, unimodal maps where linear response fails,
and flows built as suspensions over such maps.

We obtain results also on rates of averaging. In the very simple situation
ẋ = εa(y), ẏ = g(y), where g is a uniformly expanding semiflow or uniformly
hyperbolic flow, it is easily seen that the optimal rate of averaging in L1 is
O(ε1/2). For systems of the form (1.1), we often obtain the essentially optimal
rate O(ε(1/2)−) (1).

We have chosen to focus in this paper on the case of noninvertible dy-
namical systems. In this situation, the measures of interest are absolutely

(1) q− denotes q − a for all a > 0.
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continuous and we are able to present the main ideas without going into the
technical issues presented by dealing with nonabsolutely continuous mea-
sures as required in the invertible setting. The invertible case will be covered
in a separate paper.

Even in the noninvertible setting, our results depend strongly on ex-
tensions and clarifications of the classical second order averaging theorem.
These prerequisites are presented in the Appendix and may be of indepen-
dent interest.

The remainder of the paper is organised as followed. In Section 2, we
set up the averaging problem for families of fast-slow skew product systems
in the discrete time case, leading to a general result, Theorem 2.2, for such
systems. In Section 3, we show that Theorem 2.2 leads easily to averaging
when the fast dynamics is a family of uniformly expanding maps. Section 4
is the heart of the paper and deals with the case when the fast dynamics is a
family of nonuniformly expanding maps. Our main examples are presented
in Section 5. In Section 6, we show how the continuous time case reduces to
the discrete time case. In Section 7, we present a simple example to show
that almost sure convergence fails for families of skew products.

2. General averaging theorem for families of skew products.
Let Tε : M → M , 0 ≤ ε < ε0, be a family of transformations defined on a
measurable space M . For each ε ∈ [0, ε0), let νε denote a Tε-invariant ergodic
probability measure on M .

We consider the family of fast-slow systems

(2.1)
x
(ε)
n+1 = x(ε)n + εa(x(ε)n , y(ε)n , ε), x

(ε)
0 = x0,

y
(ε)
n+1 = Tεy

(ε)
n , y

(ε)
0 = y0,

where the initial condition x
(ε)
0 = x0 is fixed throughout. The initial condi-

tion y0 ∈ M is chosen randomly with respect to various measures that are
specified in the statements of the results. Here a : Rd ×M × [0, ε0)→ Rd is
a family of functions satisfying certain regularity hypotheses.

Define ā(x) =
	
M a(x, y, 0) dν0(y) and consider the ODE

Ẋ = ā(X), X(0) = x0.(2.2)

We are interested in the convergence, and rate of convergence, of the slow

variables x
(ε)
n , suitably rescaled, to solutions X(t) of this ODE. More pre-

cisely, define x̂(ε) : [0, 1] → Rd by setting x̂(ε)(t) = x
(ε)
[t/ε]. We study conver-

gence of the difference

zε = sup
t∈[0,1]

|x̂(ε)(t)−X(t)|.
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Remark 2.1. The restriction to the time interval [0, 1] entails no loss of
generality: the results apply to arbitrary bounded intervals by rescaling ε.

Regularity assumptions. Given a function g : Rd → Rn, we define
‖g‖Lip = max{|g|∞,Lip g} where Lip g = supx 6=x′ |g(x)− g(x′)|/|x− x′| and
|x− x′| = maxi=1,...,n |xi − x′i|.

In this section, and also in the Appendix, we consider functions g :
Rd×M × [0, ε0)→ Rn where there is no metric structure assumed on M . In
that case, ‖g‖Lip = supy∈M supε∈[0,ε0) ‖g(·, y, ε)‖Lip. If E ⊂ Rd, then ‖g|E‖Lip
is computed by restricting to x, x′ ∈ E (and y ∈M , ε ∈ [0, ε0)).

Throughout, we write D = ∂
∂x . If g : Rd × M × [0, ε0) → Rn, then

Dg : Rd×M × [0, ε0)→ Rn×d and ‖Dg‖Lip is defined accordingly. Similarly
for ‖Dg|E‖Lip when E ⊂ Rd.

Below, L1, L2, L3 ≥ 1 are constants. We require that a is globally Lip-
schitz in x:

‖a‖Lip ≤ L1.(2.3)

Set E = {x ∈ Rd : |x− x0| ≤ L1}. We assume that a|E is differentiable as a
function of x with Lipschitz derivative:

‖Da|E‖Lip ≤ L2,(2.4)

and that

sup
x∈E

sup
y∈M
|a(x, y, ε)− a(x, y, 0)| ≤ L3ε.(2.5)

We let L = max{L1, L2, L3}.

2.1. Order functions and a general averaging theorem. Define
ā(x, ε) =

	
M a(x, y, ε) dνε(y) and let vε,x(y) = a(x, y, ε)− ā(x, ε). Set

δ1,ε = sup
x∈E

sup
1≤n≤1/ε

ε|vε,x,n|, where vε,x,n =

n−1∑
j=0

vε,x ◦ T jε ,

δ2,ε = sup
x∈E

sup
1≤n≤1/ε

ε|Vε,x,n|, where Vε,x,n =
n−1∑
j=0

(Dvε,x) ◦ T jε .

Then we define the order function δε = δ1,ε + δ2,ε : M → R.

Finally, define Sε = supx∈E |
	
M a(x, y, 0) (dνε − dν0)(y)|+ ε.

Theorem 2.2. If δε ≤ 1/2, then zε ≤ 6e2L(δε + Sε).

The proof of Theorem 2.2 is postponed to the Appendix.

Remark 2.3. For averaging without rates, it suffices instead of condi-
tion (2.5) that limε→0 |a(x, y, ε)− a(x, y, 0)| = 0 for all x ∈ E, y ∈M .
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Remark 2.4. As shown in Section 7, almost sure convergence in the
averaging theorem is not likely to hold for fast-slow systems of type (2.1).
Hence we consider convergence in Lq with respect to certain absolutely con-
tinuous probability measures on M . Since zε ≤ 2L and δε ≤ 4L, convergence
in Lp is equivalent to convergence in Lq for all p, q ∈ (0,∞). For brevity, we
restrict statements to convergence in L1 except when speaking of rates.

Remark 2.5. If condition (2.4) fails, then all of our results without
rates go through unchanged. Moreover, it is still possible to obtain results
with rates but usually with weaker rates of convergence (the best rates are
O(ε(1/4)−) instead of O(ε(1/2)−)). These results are obtained by using δ1,ε
(first order averaging) instead of δε = δ1,ε + δ2,ε (second order averaging)
and can be found in an earlier (much longer) version of this paper [26].

According to Theorem 2.2, results on averaging reduce to estimating the
scalar quantity Sε and the random variable δε = δε(y0). These quantities are
discussed below in Subsections 2.2 and 2.3 respectively.

2.2. Statistical stability. In this subsection, we suppose that M is a
topological space and that the σ-algebra of measurable sets is the σ-algebra
of Borel sets. Recall that the family of measures νε is statistically stable at
ε = 0 if ν0 is the weak limit of νε as ε→ 0 (written νε →w ν0). This means
that

	
M φdνε →

	
M φdν0 for all continuous bounded functions φ : M → R.

In the noninvertible setting, often a stronger property known as strong
statistical stability holds. Let m be a reference measure on M and suppose
that νε is absolutely continuous with respect to m for all ε ≥ 0. Then ν0 is
strongly statistically stable if the densities ρε = dνε/dm satisfy limε→0Rε = 0
where Rε =

	
M |ρε − ρ0| dm. We note that Sε ≤ LRε + ε.

Proposition 2.6. If νε →w ν0, then limε→0 Sε = 0.

Proof. Let Aε(x) =
	
M a(x, y, 0) dνε(y)−

	
M a(x, y, 0) dν0(y). Let δ > 0.

Since νε →w ν0, we have Aε(x) → 0 for each x, so there exists εx > 0
such that |Aε(x)| < δ for all ε ∈ (0, εx). Moreover, |Aε(z)| < 2δ for all
ε ∈ (0, εx) and z ∈ Bδ/(2L)(x). Since E is covered by finitely many such balls
Bδ/(2L)(x), there exists ε̄ > 0 such that supx∈E |Aε(x)| < 2δ for all ε ∈ (0, ε̄).
Hence

	
M a(x, y, 0) (dνε − dν0)(y) converges to zero uniformly in x.

Hence for proving averaging theorems, statistical stability takes care of
the term Sε in Theorem 2.2. In specific examples, we are able to appeal to
results on statistical stability with rates, yielding effective estimates.

Proposition 2.7. Let q ≥ 1. There is a constant C > 0 such that

|zε|Lq(νε) ≤ C(|δε|Lq(νε) + Sε)
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for all ε ∈ [0, ε0). If the measures νε are absolutely continuous with respect
to m, then there is a constant C > 0 such that

|zε|Lq(ν0) ≤ C(|δε|Lq(νε) +R1/q
ε + ε)

for all ε ∈ [0, ε0).

Proof. Let Aε = {y ∈ M : δε(y) ≤ 1/2}. Then Theorem 2.2 applies on
Aε and �

M

zqε dνε =
�

M\Aε

zqε dνε +
�

Aε

zqε dνε

≤ (2L)qνε(δε > 1/2) + (6e2L)q
�

M

(δε + Sε)
q dνε

≤ (4L)q
�

M

δqε dνε + (6e2L)q
�

M

(δε + Sε)
q dνε

≤ (12e2L)q
�

M

(δε + Sε)
q dνε.

Hence

|zε|Lq(νε) ≤ 12e2L|δε + Sε|Lq(νε) ≤ 12e2L|δε|Lq(νε) + 12e2LSε,

yielding the first estimate.
Next, �

M

zqε dν0 =
�

M

zqε dνε +
�

M

zqε (dν0 − dνε)

≤ (12e2L)q
�

M

(δε + Sε)
q dνε + (2L)qRε

≤ (12e2L)q
�

M

(δε + LRε + ε)q dνε + (2L)qRε

≤ (12Le2L)q
�

M

(δε +R1/q
ε + ε)q dνε + (2L)qRε

≤ (24Le2L)q
�

M

(δε +R1/q
ε + ε)q dνε.

Hence

|zε|Lq(ν0) ≤ 24Le2L|δε +R1/q
ε + ε|Lq(νε) ≤ 24Le2L(|δε|Lq(νε) +R1/q

ε + ε),

yielding the second estimate.

Corollary 2.8.

(a) Assume that statistical stability holds and limε→0

	
M δε dνε = 0. Then

limε→0

	
M zε dνε = 0.

(b) Assume in addition that strong statistical stability holds and µ is a prob-
ability measure on M with µ� ν0. Then limε→0

	
M zε dµ = 0.
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Proof. Part (a), and part (b) in the special case µ = ν0, are immediate
from Proposition 2.7. To prove the general case of part (b), suppose for a
contradiction that

	
M zεk dµ→ b > 0 along some subsequence εk → 0. Since	

M zεk dν0 → 0, by passing to a further subsequence we can also suppose
that zεk → 0 on a set of full measure with respect to ν0 and hence with
respect to µ. By the bounded convergence theorem,

	
M zεk dµ→ 0, which is

the desired contradiction.

The next result is useful in situations where ν0 is absolutely continuous
but its support is not the whole of M .

Corollary 2.9. Assume that strong statistical stability holds and

lim
ε→0

�

M

δε dν0 = 0.

Suppose further that each Tε is nonsingular with respect to m and that for
almost every y ∈ M there exist N ≥ 1 and ε1 ∈ (0, ε0) such that TNε y ∈
supp ν0 for all ε ∈ [0, ε1]. Then limε→0

	
M zε dµ = 0 for every probability

measure µ on M with µ� m.

Proof. First, we note that for all N ≥ 1, ε ≥ 0,

|δε ◦ TNε − δε|∞ ≤ 8LNε.(2.6)

By the arguments in the proof of Corollary 2.8, it suffices to prove that	
M δε dm→ 0. Suppose this is not the case. By Corollary 2.8(b),

	
supp ν0

δε dm

→ 0. Hence there exists a subsequence εk → 0 and a subset A ⊂ supp ν0
with m(supp ν0 \ A) = 0 such that (i) δεk → 0 pointwise on A and (ii)	
M δεk dm→ b > 0.

Since each Tε is nonsingular, there exists M ′ ⊂M with m(M ′) = 1 such
that M ′ ∩ T−nεk (supp ν0 \ A) = ∅ for all k, n ≥ 1. By hypothesis, there is
a subset M ′′ ⊂ M ′ with m(M ′′) = 1 such that for any y ∈ M ′′ there ex-
ists N ≥ 1 such that TNεk y ∈ A for all k sufficiently large. Hence it follows
from (i) and (2.6) that δεk → 0 pointwise on M ′′. By the bounded conver-
gence theorem,

	
M δεk dm → 0. Together with (ii), this yields the desired

contradiction.

Remark 2.10. The hypotheses of Corollary 2.9 are particularly straight-
forward to apply when supp ν0 has nonempty interior. This property is auto-
matic for large classes of nonuniformly expanding maps (see [3, Lemma 5.6];
if G = supp ν0 ∩H(σ), then Ḡ contains a disk).

To be more specific, we consider the examples of the logistic family re-
stricted to Collet–Eckmann parameters and of Viana maps, referring for-
wards to Examples 5.2 and 5.4 respectively. In both cases the attractors
Λε = supp νε have nonempty interior (for the logistic family, it is stan-
dard that Λε is a finite union of intervals; for the Viana maps, we apply
[3, Lemma 5.6]).
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In the case of the logistic family, defined on M = [−1, 1], almost every
initial condition y ∈M is attracted under Tε to Λε. The same is true for the
Viana maps on restricting to M = S1 × I.

Choose a nonempty open set U ⊂ Λ0. Almost every point in M is at-
tracted to Λ0 and almost every point in Λ0 has an iterate inside U . Hence for
almost every fixed y ∈M , we can choose N so that TN0 y ∈ U . By continuity,
we can choose ε1 so that TNε y ∈ U for all ε ∈ [0, ε1]. Hence the hypotheses
of Corollary 2.9 are satisfied, and we conclude that limε→0

	
M zε dµ = 0 for

every absolutely continuous measure µ on M .

2.3. Estimating the order function. By Proposition 2.7 and Corol-
lary 2.8, it remains to deal with the order function δε. This is a random
variable depending on the initial condition y0. Here we give a useful esti-
mate.

Since δε = δ1,ε + δ2,ε and the definition of δ2,ε is identical to that of δ1,ε
with a replaced by Da, it suffices to consider δ1,ε. From now on, Γ denotes
a constant that only depends on d, p, L and whose value may change from
line to line.

Lemma 2.11. Let µ be a probability measure on M . Then for all p ≥ 0
and ε ∈ [0, ε0), �

M

δp+d+1
1,ε dµ ≤ Γεp sup

x∈E
sup

1≤n≤1/ε

�

M

|vε,x,n|p dµ.

Proof. For most of the proof, we work pointwise on M suppressing the
initial condition y0 ∈ M . There exist x̃ ∈ E and ñ ∈ [0, 1/ε] such that
δ1,ε = ε|vε,x̃,ñ|. Observe that

|vε,x,n − vε,x̃,ñ| ≤ |vε,x,n − vε,x̃,n|+ |vε,x̃,n − vε,x̃,ñ| ≤ 2Lε−1|x− x̃|+ 2L|n− ñ|
for every x ∈ E and n ≤ 1/ε. Define

A = {x ∈ E : |x− x̃| ≤ δ1,ε/(8L)},
B = {n ∈ [0, ε−1] : ε|n− ñ| ≤ δ1,ε/(8L)}.

Then for every x ∈ A and n ∈ B we have ε|vε,x,n| ≥ δ1,ε/2. Moreover, since
δ1,ε ≤ 2L, we have Leb(A) ≥ Γδd1,ε and #B ≥ ε−1δ1,ε/(8L). Hence

εp
[1/ε]−1∑
n=0

�

E

|vε,x,n|p dx ≥ (#B) Leb(A)(δ1,ε/2)p ≥ Γε−1δp+d+1
1,ε .

Finally,

�

M

δp+d+1
1,ε dµ≤ Γεp+1

[1/ε]−1∑
n=0

�

E

�

M

|vε,x,n|p dµ dx≤ Γεp sup
x∈E

sup
1≤n≤1/ε

�

M

|vε,x,n|p dµ,

as required.
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Remark 2.12. Often, estimating
	
M |vε,x,n| dµ leads to an essentially

identical estimate for
	
M sup1≤n≤1/ε |vε,x,n| dµ. In this case, slightly better

convergence rates for δ1,ε can be obtained using the estimate�

M

δp+d1,ε dµ ≤ Γεp sup
x∈E

�

M

sup
1≤n≤1/ε

|vε,x,n|p dµ(2.7)

for all p ≥ 0 and ε ∈ [0, ε0).

3. Examples: Uniformly expanding maps. Let Tε : M → M be a
family of maps defined on a metric space (M,dM ) with invariant ergodic
Borel probability measures νε. Let Pε denote the corresponding transfer
operators, so

	
M Pεv w dνε =

	
M v w ◦ Tε dνε for all v ∈ L1(νε), w ∈ L∞(νε).

From now on, we require Lipschitz regularity in theM variables in addition
to the Rd variables as was required in assumptions (2.3) and (2.4). So for
g : Rd×M × [0, ε0)→ Rn we let ‖g‖Lip = |g|∞+supε∈[0,ε0) Lip g(·, ·, ε) where
Lip g(·, ·, ε) = supx 6=x′ supy 6=y′ |g(x, y, ε) − g(x′, y′, ε)|/(|x − x′| + dM (y, y′)).
We continue to assume conditions (2.3)–(2.5) with this modified definition
of ‖ ‖Lip.

Proposition 3.1. Suppose that there is a sequence of constants an → 0
such that

	
M |P

n
ε v −

	
M v dνε| dνε ≤ an‖v‖Lip for all Lipschitz v : M → R

and all n ≥ 1 and ε ≥ 0. Then limε→0

	
M δε dνε = 0.

Proof. We prove the result for δ1,ε and δ2,ε separately. By Remark 2.4,
we can work in Lq for any choice of q and we take q = d+ 3.

For every Lipschitz v, we have

�

M

(n−1∑
j=0

v ◦ T jε
)2
dνε =

n∑
j=0

�

M

v2 ◦ T jε dνε + 2
∑

0≤i<j≤n−1

�

M

v ◦ T iε v ◦ T jε dνε

= n
�

M

v2 dνε + 2
∑

1≤k≤n−1
(n− k)

�

M

v v ◦ T kε dνε

= n
�

M

v2 dνε + 2
∑

1≤k≤n−1
(n− k)

�

M

P kε v v dνε.

Hence for v Lipschitz and mean zero,

�

M

(n−1∑
j=0

v ◦ T jε
)2
dνε ≤ bn‖v‖2Lip,

where bn = n+ 2n
∑

1≤k≤n−1 ak = o(n2) by the assumption on an.

By (2.3), ‖vε,x‖Lip ≤ 2L for all ε, x, so supx∈E sup1≤n≤1/ε
	
M |vε,x,n|

2 dνε

≤ 4L2bn. By Lemma 2.11, it follows that limε→0

	
M δd+3

1,ε dνε = 0. Similarly,

by (2.4), ‖Vε,x‖Lip ≤ 2L, so supx∈E sup1≤n≤1/ε
	
M |Vε,x,n|2 dνε ≤ 4L2bn and

hence limε→0

	
M δd+3

2,ε dνε = 0.
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Remark 3.2. The proof uses only the fact that n−1
∑n

k=1 an → 0.

Proposition 3.1 is useful in situations where Tε is a family of (piecewise)
uniformly expanding maps. A general result of Keller & Liverani [21] guar-
antees uniform spectral properties of the transfer operators Pε under mild
conditions, and consequently limε→0

	
M δqε dνε = 0 for all q. We mention two

situations where this idea can be applied. Again, for brevity we work in L1

except when discussing convergence rates (see Remark 2.4).

Example 3.3 (Uniformly expanding maps). Suppose that M = Tk
∼= R/Zk is a torus with Haar measure m and distance dM inherited from
Euclidean distance on Rk and normalised so that diamM = 1. We say that
a C2 map T : M → M is uniformly expanding if there exists λ > 1 such
that |(DT )yv| ≥ λ|v| for all y ∈ M and v ∈ Rk. There is a unique abso-
lutely continuous invariant probability measure, and the density is C1 and
nonvanishing.

If Tε : M → M , ε ∈ [0, 1], is a continuous family of C2 maps, each of
which is uniformly expanding, with corresponding probability measures νε,
then it follows from [21] that we are in the situation of Proposition 3.1, and
so limε→0

	
M δε dνε = 0.

Moreover, it is well-known that ν0 is uniformly equivalent to m and is
strongly statistically stable. Hence by Corollary 2.8 we obtain the averaging
result limε→0

	
M zε dνε = 0 and limε→0

	
M zε dµ = 0 for every absolutely

continuous probability measure µ.
Suppose further that Tε : M → M , ε ∈ [0, 1], is a Ck family of C2

maps, for some k ∈ (0, 1]. By standard results (for instance [21] with Ba-
nach spaces C0 and C1), Rε =

	
M |ρε− ρ0| dm = O(εk). If k ∈ (0, 1/2), then

by Remark 4.4 below we obtain the convergence rate O(εk) for zε in Lq(νε)
and Lq(m) for all q > 0. If k ≥ 1/2, then the convergence rate for zε is
O(ε(1/2)−).

Example 3.4 (Piecewise uniformly expanding maps). Let M = [−1, 1]
with Lebesgue measure m. We consider continuous maps T : M →M with
T (−1) = T (1) = −1 such that T is C2 on [−1, 0] and [0, 1]. We require
that there exists λ > 1 such that T ′ ≥ λ on [−1, 0) and T ′ ≤ −λ on (0, 1].
There exists a unique absolutely continuous invariant probability measure
with density of bounded variation.

The results are analogous to those in Example 3.3. Let ε 7→ Tε be a
continuous family of such maps on [−1, 1] with associated measures νε. We
assume that T0 is topologically mixing on the interval [T 2

0 (0), T0(0)] and that
0 is not periodic (which guarantees that Tε is mixing for ε small).

Then ν0 is strongly statistically stable, so by Corollaries 2.8 and 2.9 we
obtain averaging in L1(νε) and also in L1(µ) for every absolutely continuous
probability measure µ.
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Now suppose that ε 7→ Tε is a C1 family of such maps on [−1, 1] with
densities ρε = dνε/dm. Keller [20] showed that ε 7→ ρε is C1− as a map
into L1 densities. Hence we obtain the convergence rate O(ε(1/2)−) for zε in
Lq(νε) for all q > 0 and in L1(ν0).

More precisely, [20] shows that
	
M |ρε − ρ0| dm = O(ε log ε−1). By [8],

this estimate is optimal, so this is a situation where linear response fails, in
contrast to Example 3.3.

4. Families of nonuniformly expanding maps. In this section, we
consider the situation where the fast dynamics is generated by nonuniformly
expanding maps Tε, such that the nonuniform expansion is uniform in the
parameter ε.

In Subsection 4.1, we recall the notion of nonuniformly expanding map.
In Subsection 4.2, we describe the uniformity criteria for Tε and state our
main result on averaging, Theorem 4.3, for such families. In Subsections 4.3
and 4.4 we establish some basic estimates for uniformly and nonuniformly
expanding maps. In Subsection 4.5 we prove Theorem 4.3.

4.1. Nonuniformly expanding maps. Let (M,dM ) be a locally com-
pact separable bounded metric space with finite Borel measure m and let
T : M → M be a nonsingular transformation for which m is ergodic. Let
Y ⊂M be a subset of positive measure, and let α be an at most countable
measurable partition of Y with m(a) > 0 for all a ∈ α. We suppose that
there is an L1 return time function τ : Y → Z+, constant on each a with
value τ(a) ≥ 1, and constants λ > 1, η ∈ (0, 1] and C0, C1 ≥ 1 such that for
each a ∈ α:

(1) F = T τ restricts to a (measure-theoretic) bijection from a onto Y .
(2) dM (Fx, Fy) ≥ λdM (x, y) for all x, y ∈ a.
(3) dM (T `x, T `y) ≤ C0dM (Fx, Fy) for all x, y ∈ a and 0 ≤ ` < τ(a).
(4) ζ = dm|Y /d(m|Y ◦ F ) satisfies |log ζ(x) − log ζ(y)| ≤ C1dM (Fx, Fy)η

for all x, y ∈ a.

Such a dynamical system T : M →M is called nonuniformly expanding . We
refer to F = T τ : Y → Y as the induced map. (It is not required that τ is
the first return time to Y .) It follows from standard results (recalled later)
that there is a unique absolutely continuous ergodic T -invariant probability
measure ν on M .

Remark 4.1. The uniformly expanding maps in Example 3.3 are clearly
nonuniformly expanding: take Y = M , η = 1, τ = 1. Then conditions
(1) and (2) are immediate, (3) is vacuously satisfied, and (4) holds with
C1 = supx,y∈M,x6=y |(DTε)x − (DTε)y|/dM (x, y).
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4.2. Uniformity assumptions. Now suppose that Tε : M → M ,
ε ∈ [0, ε0), is a family of nonuniformly expanding maps as defined in Subsec-
tion 4.1, with corresponding absolutely continuous ergodic invariant proba-
bility measures νε.

Definition 4.2. Let p > 1. We say that Tε : M → M is a uniform
family of nonuniformly expanding maps (of order p) if:

(i) The constants C0, C1 ≥ 1, λ > 1, η ∈ (0, 1] can be chosen independent
of ε ∈ [0, ε0).

(ii) The return time functions τε : Yε → Z+ lie in Lp for all ε ∈ [0, ε0), and
moreover supε∈[0,ε0)

	
Yε
|τε|p dm <∞.

We can now state our main result for this section. Recall the set up in
Section 2.

Theorem 4.3. If Tε : M → M is a uniform family of nonuniformly
expanding maps of order p, then there is a constant C > 0 such that for all
ε ∈ [0, ε0), �

M

δp+d−1ε dνε ≤
{
Cε(p−1)/2, p > 2,

Cε(p−1)
2/p, p ∈ (1, 2].

Remark 4.4. In the case p > 2, it follows from Theorem 4.3 that

|δε|Lq(νε) = O(ε(p−1)/(2(p+d−1)))

for all q ≤ p+d−1. Since δε is uniformly bounded, |δε|Lq(νε) = O(ε(p−1)/(2q))
for all q > p+ d− 1. Similar comments apply for p ∈ (1, 2].

In particular, if p can be taken arbitrarily large in Definition 4.2, then
|δε|Lq(νε) = O(ε(1/2)−) for all q > 0.

If in addition ν0 is strongly statistically stable and Rε =
	
M |ρε−ρ0| dm =

O(ε(1/2)−), then by Proposition 2.7 we obtain |zε|Lq(νε) = O(ε(1/2)−) for all

q > 0 and |zε|L1(ν0) = O(ε(1/2)−).

Remark 4.5. Alves & Viana [5] prove strong statistical stability for
a large class of noninvertible dynamical systems. These maps are uniform
families of nonuniformly expanding maps in a sense that is very similar
to our definition. In fact, their definition almost includes ours, so verifying
the assumptions of [5] is almost sufficient to obtain averaging and rates of
averaging via Theorem 4.3.

To be more precise, let us momentarily ignore assumption (3) in Sub-
section 4.1. Then Definition 4.2(i) with η = 1 is immediate from [5, (U1)],
and Definition 4.2(ii) is immediate from [5, (U2′)] which follows from their
conditions (U1) and (U2).

Hence it remains to discuss (3). This assumption is not explicitly men-
tioned in [5] since it is not required for the statement of their main results.
However, in specific applications, the hypotheses in [5] are often verified via
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the method of hyperbolic times [1]. When the return time function τε is a
hyperbolic time, it is automatic that C0 = 1 (see for example [2, Proposi-
tion 3.3(3)]).

Alves et al. [4] introduced a general method for constructing inducing
schemes, where τε is not necessarily a hyperbolic time but is close enough
that C0 can still be chosen uniformly. Alves [2] combined the methods of [4]
and [5] to prove statistical stability for large classes of examples. We show
now that in the situation discussed in [2], assumption (3) holds with uni-
form C0, and hence our main results hold. Certain quantities δ1 > 0 and
N0 ≥ 1 are introduced in [2, Lemma 3.2] and [2, eq. (16)] respectively, and
are explicitly uniform in ε. Moreover τε = n+m where n is a hyperbolic time
and m ≤ N0 (see [2, Section 4.3]), so C0 depends only on at most N0 iter-
ates of Tε. The construction in [2] (see in particular [2, proof of Lemma 4.2])
ensures that the derivative of Tε is bounded along these iterates, so assump-
tion (3) holds and C0 is uniform in ε.

We also mention the extension of [4] due to Gouëzel [18] where C0 = 1
(see [18, Theorem 3.1(4)].)

Finally, we note that when [4] is used to obtain polynomial decay of
correlations with rate O(1/nβ), β > 0, the resulting uniform family is of
order p = β + 1−. (Uniformity in ε in Definition 4.2(ii) follows from [2,
Lemma 5.1].)

4.3. Explicit estimates for uniformly expanding maps. Through-
out this subsection, we work with a fixed uniformly expanding map F : Y → Y
satisfying conditions (1), (2) and (4). Some standard constructions and esti-
mates are described. The main novelty is that we stress the dependence of
various constants on the underlying constants C1, λ and η. For convenience,
we normalise the metric dM so that diamM = 1.

For θ ∈ (0, 1), we define the symbolic metric dθ(x, y) = θs(x,y) where the
separation time s(x, y) is the least integer n ≥ 0 such that Fnx and Fny lie in
distinct partition elements. It is assumed that the partition α separates the
orbits of F , so s(x, y) is finite for all x 6= y, guaranteeing that dθ is a metric.

Given φ : Y → Rd, we define ‖φ‖θ = |φ|∞ + |φ|θ where

|φ|θ = sup
x 6=y
|φ(x)− φ(y)|/dθ(x, y).

Then φ is dθ-Lipschitz if ‖φ‖θ <∞.

The assumptions on F guarantee that there exists a unique absolutely
continuous F -invariant probability measure µ on Y . Let P : L1(Y )→ L1(Y )
denote the (normalised) transfer operator corresponding to F and µ, so	
Y φ ◦ Fψ dµ =

	
Y φPψ dµ for all φ ∈ L∞ and ψ ∈ L1. Define g : Y → R by

setting g|a = dµ|a/d(µ ◦ F |a) for a ∈ α. Then (Pφ)(y) =
∑

a∈α g(ya)φ(ya)
where ya is the unique preimage of y under F lying in a.
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Lemma 4.6. There exist constants θ, γ ∈ (0, 1) and C2 ≥ 1 depending
continuously on λ, η and C1 such that:

(a) dM (x, y)η ≤ dθ(x, y) for all x, y ∈ Y .
(b) For all x, y ∈ a and a ∈ α,

g(y) ≤ C2µ(a) and |g(x)− g(y)| ≤ C2µ(a)dθ(x, y).(4.1)

(c) Let φ : Y → R be dθ-Lipschitz with
	
φdµ = 0. Then

|Pnφ|∞ ≤ C2γ
n‖φ‖θ for all n ≥ 1.

Proof. Choose θ = λ−η. Let n = s(x, y). By condition (2),

1 ≥ diamY ≥ dM (Fnx, Fny) ≥ λndM (x, y) = (θ1/η)−ndM (x, y).

Hence dM (x, y)η ≤ θn = dθ(x, y), proving (a).

By (4) (see Sect. 4.1) and [27, Proposition 2.3], there is a constant K
depending continuously on λ, η and C1 such that |log g|θ ≤ K. Hence for
y ∈ a, a ∈ α,

µ(a) =
�

a

g dµ ◦ F ≥ inf
a
g|a µ(Fa) = inf g|a ≥ e−Kg(y),

so g|a ≤ eKµ(a). Next, we note the inequality t − 1 ≤ t log t, which is
valid for all t ≥ 1. Let x, y ∈ a and suppose without loss of generality that
g(y) ≤ g(x). Setting t = g(x)/g(y) ≥ 1, we get

g(x)

g(y)
− 1 ≤ g(x)

g(y)
log

g(x)

g(y)
≤ eKKdθ(x, y).

Hence g(x) − g(y) ≤ g(y)eKKdθ(x, y) ≤ e2KKµ(a)dθ(x, y). Hence part (b)

holds with C2 = e2KK.

Finally, part (c) follows for example from [27, Proposition 2.5].

4.4. Explicit estimates for nonuniformly expanding maps. In this
subsection, we work with a fixed nonuniformly expanding map T satisfying
assumptions (1)–(4) and such that τ ∈ Lp for some p > 1.

There is a standard procedure to pass from an F -invariant ergodic ab-
solutely continuous probability measure µ on Y to a T -invariant ergodic
absolutely continuous probability measure ν on M . We briefly describe this
procedure, since the construction is required in the proof of Lemma 4.10.
Define the Young tower [35]

∆ = {(y, `) ∈ Y × Z : 0 ≤ ` < τ(y)},(4.2)

with probability measure µ∆ = µ×{counting}/
	
Y τ dµ. Define π∆ : ∆→M

by π∆(y, `) = T `y. Then ν = (π∆)∗µ∆ is the desired probability measure
on M .
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In the remainder of this subsection, Lq norms of functions defined on Y
are computed using µ. For functions on other spaces, the measures are in-
dicated explicitly in the notation.

Given an observable v : M → Rd, we define the induced observable
V : Y → R by

V (y) =

τ(y)−1∑
`=0

v(T `y).

If v : M → Rd satisfies
	
M v dν = 0, then

	
Y V dµ = 0.

Proposition 4.7. If v : M → Rd is dM -Lipschitz, then PV : Y → Rd
is dθ-Lipschitz. Moreover, for all x, y ∈ a, a ∈ α,

|V (y)| ≤ τ(a)|v|∞, |V (x)− V (y)| ≤ C0θ
−1τ(a)(Lip v) dθ(x, y),

and

|PV |∞ ≤ C2|τ |1|v|∞, |PV |θ ≤ C0C2θ
−1|τ |1‖v‖Lip.

Proof. The estimate for V (y) is immediate. By condition (3) and Lem-
ma 4.6(a),

|V (x)− V (y)| ≤ (Lip v)

τ(a)−1∑
`=0

dM (T `x, T `y) ≤ C0(Lip v)

τ(a)−1∑
`=0

dM (Fx, Fy)

= C0τ(a)(Lip v)dM (Fx, Fy) ≤ C0τ(a)(Lip v)dθ(Fx, Fy)1/η

≤ C0τ(a)(Lip v)dθ(Fx, Fy) = C0θ
−1τ(a)(Lip v)dθ(x, y),

completing the estimates for V .
Next, (PV )(y) =

∑
a∈α g(ya)V (ya), so by (4.1),

|PV |∞ ≤ C2

∑
a∈α

µ(a)τ(a)|v|∞ = C2|τ |1|v|∞.

Also,

|(PV )(x)− (PV )(y)|

≤
∑
a∈α
|g(xa)− g(ya)| |V (xa)|+

∑
a∈α

g(ya)|V (xa)− V (ya)|

≤ C2

∑
a∈α

µ(a)dθ(x, y)τ(a)|v|∞ + C2

∑
a∈α

µ(a)C0θ
−1τ(a)(Lip v)dθ(x, y),

yielding the estimate for |PV |θ.
Proposition 4.8. Let p ≥ 1. There exist m ∈ Lp(Y,Rd) and χ ∈

L∞(Y,Rd) such that V = m+ χ ◦ F − χ and m ∈ kerP . Moreover,

|m|p ≤ 3C3|τ |p‖v‖Lip and |χ|∞ ≤ C3|τ |1‖v‖Lip,

where C3 = 2C0C
2
2θ
−1(1− γ)−1.
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Proof. By Proposition 4.7 and Lemma 4.6(c) with φ = PV , for n ≥ 1,

|PnV |∞ ≤ C2γ
n−1‖PV ‖θ ≤ 2C0C

2
2θ
−1γn−1|τ |1‖v‖Lip.

It follows that χ =
∑∞

k=1 P
kV lies in L∞ and |χ|∞ ≤ C3|τ |1‖v‖Lip.

Write V = m + χ ◦ F − χ; then m ∈ Lp and Pm = 0. Finally, |m|p ≤
|V |p + 2|χ|∞ ≤ |τ |p|v|∞ + 2|χ|∞ ≤ 3C3|τ |p‖v‖Lip.

Corollary 4.9. Define Vn =
∑n−1

j=0 V ◦ F j. Let p > 1. There exists a
constant C4 ≥ 1 depending only on p and C3 such that∣∣∣ max

1≤j≤n
|Vj |
∣∣∣
p
≤ C4|τ |p‖v‖Lipnmax{1/2,1/p}.

Proof. First note that Vn = mn +χ ◦Fn−χ where mn =
∑n−1

j=0 m ◦F j .
Since m ∈ kerP , an application of Burkholder’s inequality [12] shows that∣∣∣ max

1≤j≤n
|mj |

∣∣∣
p
≤ C(p)|m|pnmax{1/2,1/p}

(see for example [30, proof of Proposition 4.3]). Hence∣∣∣ max
1≤j≤n

|Vj |
∣∣∣
p
≤ C(p)|m|pnmax{1/2,1/p} + 2|χ|∞.

The result follows from Proposition 4.8 with C4 = 5C3C(p).

Lemma 4.10. Let p > 1. Let vn =
∑n−1

j=0 v ◦ T j. Then∣∣∣max
j≤n
|vj |
∣∣∣
Lp−1(ν)

≤ 5C4|τ |p/(p−1)p ‖v‖Lip nmax{1/2,1/p}.

Proof. Let q = p − 1. Define the tower ∆ as in (4.2) with tower map
f : ∆→ ∆ where

f(y, `) =

{
(y, `+ 1), ` ≤ τ(y)− 2,

(Fy, 0), ` = τ(y)− 1.

Recall that µ∆ = µ × {counting}/τ̄ on ∆ where τ̄ =
	
Y τ dµ. Also, ν =

(π∆)∗µ∆ where π∆ : ∆→M is the projection π∆(y, `) = T `y.

Let v̂ = v ◦ π∆ and define v̂n =
∑n−1

j=0 v̂ ◦ f j . Then
	
M |vn|

q dν =	
∆ |v̂n|

q dµ∆.

Next, let Nn : ∆→ {0, 1, . . . , n} be the number of laps by time n,

Nn(y, `) = #
{
j ∈ {1, . . . , n} : f j(y, `) ∈ Y × {0}

}
.

Then

v̂n(y, `) = VNn(y,`)(y) +H ◦ fn(y, `)−H(y, `),

where H(y, `) = v̂`(y, 0). Note that |H(y, `)| ≤ |v|∞τ(y) for all (y, `) ∈ ∆.
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Now fn(y, `) = (FNn(y,`)y, `+ n− τNn(y,`)(y)), so

max
j≤n
|H ◦ f j(y, `)| ≤ |v|∞max

j≤n
τ(FNj(y,`)y) ≤ |v|∞max

j≤n
τ(F jy)

≤ |v|∞τ(y) + |v|∞ max
1≤j≤n

τ(F jy)

= |v|∞τ̂(y, `) + |v|∞ max
1≤j≤n

τ̂(F jy, `),

where τ̂ : ∆→ Z+ is given by τ̂(y, `) = τ(y).

We estimate the first term in Lq(µ∆) and the second term in Lp(µ∆).
Using the definition of µ∆ and the fact that τ̄ ≥ 1, we obtain�

∆

τ̂ q dµ∆ = (1/τ̄)
�

Y

τ q+1 dµ ≤
�

Y

τp dµ,

so |τ̂ |Lq(µ∆) ≤ |τ |
p/(p−1)
p . Also,

�

∆

max
1≤j≤n

τ̂(F jy)p dµ∆ = (1/τ̄)
�

Y

τ max
1≤j≤n

τp ◦ F j dµ

≤ (1/τ̄)

n∑
j=1

�

Y

τ τp ◦ F j dµ = (1/τ̄)

n∑
j=1

�

Y

Pτ τp ◦ F j−1 dµ

≤ (1/τ̄)

n∑
j=1

|Pτ |∞
�

Y

τp ◦ F j−1 dµ = (1/τ̄)n|Pτ |∞
�

Y

τp dµ

≤ C2n
�

Y

τp dµ,

where we have used Proposition 4.7 with v = 1 (and hence V = τ) for the
final inequality. Hence∣∣∣ max

1≤j≤n
τ̂(F jy)

∣∣∣
Lq(µ∆)

≤
∣∣∣ max
1≤j≤n

τ̂(F jy)
∣∣∣
Lp(µ∆)

≤ C1/p
2 n1/p|τ |p.

Combining these estimates, we obtain

|H|Lq(µ∆) ≤
∣∣∣max
j≤n
|H ◦ f j |

∣∣∣
Lq(µ∆)

≤ 2C
1/p
2 |v|∞|τ |

p/(p−1)
p n1/p.

Next, using Hölder’s inequality, we get�

∆

max
j≤n
|VNj(y,`)(y)|q dµ∆ ≤

�

∆

max
j≤n
|Vj(y)|q dµ∆ = (1/τ̄)

�

Y

τ max
j≤n
|Vj |q dµ

≤ |τ |p
∣∣∣max
j≤n
|Vj |q

∣∣∣
p/q

= |τ |p
∣∣∣max
j≤n
|Vj |
∣∣∣q
p
.

By Corollary 4.9,∣∣∣max
j≤n
|VNj |

∣∣∣
Lq(µ∆)

≤ C4|τ |p/(p−1)p ‖v‖Lip nmax{1/2,1/p}.
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By the triangle inequality, using the fact that C
1/p
2 ≤ C4, we obtain∣∣∣max

j≤n
|vj |
∣∣∣
Lp−1(ν)

=
∣∣∣max
j≤n
|v̂j |
∣∣∣
Lq(µ∆)

≤ 5C4|τ |p/(p−1)p ‖v‖Lip nmax{1/2,1/p},

as required.

4.5. Proof of Theorem 4.3. Define vε,x and vε,x,n as in Section 2.
Note that Lip vε,x ≤ 2L for all ε, x and

	
M vε,x dνε = 0.

It follows from Lemma 4.10 that∣∣∣max
j≤n
|vε,x,j |

∣∣∣
Lp−1(νε)

≤ 10C4L|τε|p/(p−1)p nmax{1/2,1/p}

for all ε ≥ 0, x ∈ R and n ≥ 1. By (2.7),
�

M

δp+d−11,ε dνε ≤ Γεp−1 sup
x∈E

�

M

max
n≤1/ε

|vε,x,n|p−1 dνε

≤ ΓCp−14 |τε|ppεp−1ε−(p−1)max{1/2,1/p}

= ΓCp−14 |τε|ppεp−1εmin{−(p−1)/2,−(p−1)/p}

= ΓCp−14 |τε|ppεmin{(p−1)/2,(p−1)2/p}.

We obtain the same estimate for δ2,ε on replacing vε,x, vε,x,n by Vε,x, Vε,x,n.

5. Examples: Nonuniformly expanding maps

Example 5.1 (Intermittent maps). Let M = [0, 1] with Lebesgue mea-
sure m and consider the intermittent maps T : M →M given by

Tx =

{
x(1 + 2axa), x ∈ [0, 1/2],

2x− 1, x ∈ (1/2, 1].
(5.1)

These were studied in [28]. Here a > 0 is a parameter. For a ∈ (0, 1) there
is a unique absolutely continuous invariant probability measure with C∞

nonvanishing density.

We consider a family Tε : M →M , ε ∈ [0, ε0), of such intermittent maps
with parameter aε ∈ (0, 1) depending continuously on ε. Let νε denote the
corresponding family of absolutely continuous invariant probability mea-
sures.

For each ε, we take Y = [1/2, 1] and let τε : Y → Z+ be the first return
time, τε(y) = inf{n ≥ 1 : Tnε y ∈ Y }. Define the first return map Fε = T τεε :
Y → Y . Let αε = {Yε(n), n ≥ 1} where Yε(n) = {y ∈ Y : τε(y) = n}.

It is standard that each Tε is a nonuniformly expanding map in the sense
of Section 4.1 with τε ∈ Lp for all p < 1/aε. Fix p ∈ (1, 1/a0) and choose
0 < a− < a0 < a+ < 1 such that p < 1/a+. Without loss of generality
we can shrink ε0 so that aε ∈ [a−, a+] for all ε ∈ [0, ε0). We show that Tε,
ε ∈ [0, ε0), satisfies the conditions of Definition 4.2 for this choice of p.
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Since T ′ε ≥ 1 on M and T ′ε = 2 on Y , it is immediate that conditions
(1)–(3) in Section 4.1 are satisfied with λ = 2 and C0 = 1.

Recall that ζε = dm|Y /d(m|Y ◦ Fε). Note that ζε(y) = 1/F ′ε(y). For
each Yε(n) ∈ αε, define the bijection Fε,n = Fε|Yε(n) : Yε(n) → M . Let

Gε,n = (F−1ε,n )′ = ζε ◦ F−1ε,n . By [25, Assumption A2 and Theorem 3.1], there
is a constant K, depending only on a− and a+, such that |(logGε,n)′| ≤ K
for all ε ∈ [0, ε0). Hence |(log ζε ◦ F−1ε,n )′| = |(logGε,n)′| ≤ K. By the mean
value theorem, for x, y ∈ Yε(n),

|log ζε(x)− log ζε(y)| = |(log ζε ◦ F−1ε,n )(Fεx)− (log ζε ◦ F−1ε,n )(Fεy)|
≤ K|Fεx− Fεy|.

This proves condition (4) in Section 4.1, and so condition (i) in Definition 4.2
is satisfied.

Define x1 = 1/2 and inductively xn+1 < xn (depending on ε) with
Tεxn+1 = xn. Then Tε(Yε(n)) = [xn, xn−1] for n ≥ 2 and it is standard
that xn = O(1/nα) as a function of n. By [25, Lemma 5.2], there is a con-
stant K, depending only on a− and a+, such that xn ≤ Kn−1/α+ for all
n ≥ 1, ε ∈ [0, ε0). Hence

m(τε > n) = m([1/2, (xn + 1)/2]) = xn/2 ≤ Kn−1/α+ .

Since p < 1/α+ it follows that supε∈[0,ε0)
	
Y |τε|

p dm < ∞ so condition (ii)
in Definition 4.2 is satisfied.

By [10, 25], νε is strongly statistically stable and the densities ρε satisfy
Rε =

	
|ρε−ρ0| dm = O(aε−a0). Hence, by Corollary 2.8, we obtain averaging

in L1 with respect to νε, and also with respect to any absolutely continuous
probability measure.

Finally, if ε 7→ aε is Lipschitz say, so that Rε = O(ε), then we obtain the
rates described in Remark 4.4 with p = (1/a0)−.

Example 5.2 (Logistic family). We consider the family of quadratic
maps T : [−1, 1]→ [−1, 1] given by T (x) = 1− ax2, a ∈ [0, 2], with m taken
to be Lebesgue measure.

Let b, c > 0. The map T satisfies the Collet–Eckmann condition [13] with
constants b, c if

|(Tn)′(1)| ≥ cebn for all n ≥ 0.(5.2)

In this case, we write a ∈ Qb,c. The set of Collet–Eckmann parameters is
P1 =

⋃
b,c>0Qb,c and is a Cantor set of positive Lebesgue measure [19, 11].

When a ∈ P1, the map T has an invariant set Λ consisting of a finite
union of intervals with an ergodic absolutely continuous invariant probability
measure νa. The density for νa is bounded below on Λ and lies in L2−. The
invariant set attracts Lebesgue almost every trajectory in [−1, 1].
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There is also an open dense set of parameters P0 ⊂ [0, 2] for which T
has a periodic sink attracting Lebesgue almost every trajectory in [−1, 1].
By Lyubich [29], P0 ∪ P1 has full measure. For a ∈ P0, we let νa denote
the invariant probability measure supported on the periodic attractor, so
we have a map a 7→ νa defined on P0 ∪ P1.

It is clear that statistical stability holds on P0, and that strong statistical
stability fails everywhere in P0 ∪ P1. Moreover, Thunberg [33, Corollary 1]
showed that on any full measure subset of E ⊂ [0, 2] the map a 7→ νa is
not statistically stable at any point of P1 ∩ E. On the other hand, Freitas
& Todd [17] proved that strong statistical stability holds on Qb,c for all
constants b, c > 0. That is, the map a → ρa = dνa/dm from Qb,c to L1 is
continuous. (See also [15, 16] for the same result restricted to the Benedicks–
Carleson parameters [11].)

We consider families ε 7→ Tε where each Tε is a quadratic map with
parameter a = aε depending continuously on ε. Fix b, c > 0 such that
a0 ∈ Qb,c. We claim that

lim
ε→0

aε∈Qb,c

�
zε dνaε = 0.

Moreover, using Corollary 2.9 we obtain convergence in L1(µ) for every
absolutely continuous probability measure µ. Given the above results on
strong statistical stability, it suffices to verify that Tε is a uniform family of
nonuniformly expanding maps.

For the Benedicks–Carleson parameters, the method in [15, 16] is the
approach of [2] and we can apply Remark 4.5. In the general case, a dif-
ferent method exploiting negative Schwarzian derivative and Koebe spaces
[17, proof of Theorem B in Section 6] shows that the conditions in [5] are
satisfied. By Remark 4.5, this completes the proof of averaging with the
possible exception of condition (3). However, a standard consequence of
negative Schwarzian derivative and the Koebe distortion property (as dis-
cussed in [17, Lemma 4.1] and used in [17, Remark 3.2]) is that bounded
distortion holds at intermediate steps and not just at the inducing time as
in condition (4). Hence there is a uniform constant C̃1 such that

|T jε x− T jε y|
diamT jε a

≤ C̃1
|Fεx− Fεy|

diamYε

for all partition elements a, all x, y ∈ a and all j ≤ τε(a). In particular,

|T jε x−T jε y| ≤ (2C̃1/diamYε)|Fεx−Fεy|, yielding condition (3) uniformly in ε.
Next, we discuss rates of convergence. By [17, Lemma 4.1], condition (ii)

in Definition 4.2 is satisfied for any p > 1. Hence |δε|Lq(νε) = O(ε(1/2)−). If

ε 7→ aε is C1, then it follows from Baladi et al. [9] that Rε =
	
|ρε−ρ0| dm =

O(ε(1/2)−). By Remark 4.4, we obtain averaging with rate O(ε(1/2)−) in
Lq(νε) for all q > 0 and in L1(ν0).
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Example 5.3 (Multimodal maps). Freitas & Todd [17] also consider
families of multimodal maps where each critical point c satisfies a Collet–
Eckmann condition along the orbit of Tc with constants uniform in ε. Hence
the averaging result for the quadratic family in Example 5.2 extends imme-
diately to multimodal maps.

Example 5.4 (Viana maps). Viana [34] introduced a C3 open class of
multi-dimensional nonuniformly expanding maps Tε : M → M . For defi-
niteness, we restrict attention to the case M = S1 × R. Let S : M → M
be the map S(θ, y) = (16θ mod 1, a0 + a sin 2πθ − y2). Here a0 is chosen so
that 0 is a preperiodic point for the quadratic map y 7→ a0 − y2 and a is
fixed sufficiently small. Let Tε, 0 ≤ ε < ε0, be a continuous family of C3

maps sufficiently close to S. It follows from [1, 5] that there is an interval
I ⊂ (−2, 2) such that, for each ε ∈ [0, ε0), there is a unique absolutely contin-
uous Tε-invariant ergodic probability measure νε supported in the interior of
S1× I. Moreover the invariant set Λε = supp νε attracts almost every initial
condition in S1 × I.

By Alves & Viana [5], ν0 is strongly statistically stable. Moreover, the
inducing method of [4] and the arguments in [2] apply to this example, so Tε
is a uniform family of nonuniformly expanding maps by Remark 4.5. Also,
Corollary 2.9 is applicable by Remark 2.10. Hence we obtain averaging in
L1(νε) and in L1(µ) for all absolutely continuous µ.

Finally, we discuss rates. Although not stated explicitly in [5], it follows
from their estimates that Tε is a uniform family of order p for all p. Hence
|δε|Lq(νε) = O(ε(1/2)−) for all q > 0 by Remark 4.4. To verify that p is
arbitrary, we mention the following steps in [5] (their q is our p). Note by
Remark 4.5 that it remains to verify their condition (U2) for all p. On page 25
(calculation for (U2)), they give an estimate that works for all p depending
on two constants C0 and γ0 which are uniform in ε by [5, Remark 4.6].

6. Averaging for continuous time fast-slow systems. Let φεt :
M → M , 0 ≤ ε < ε0, be a family of semiflows defined on the metric
space (M,dM ). For each ε ≥ 0, let νε denote a φεt-invariant ergodic Borel
probability measure. Let a : Rd ×M × [0, ε0) → Rd be a family of vector
fields on Rd satisfying conditions (2.3)–(2.5).

We consider the family of fast-slow systems

ẋ(ε) = εa(x(ε), y(ε), ε), x(ε)(0) = x0,

y(ε)(t) = φεty0,

where the initial condition x(ε)(0) = x0 is fixed throughout. The initial
condition y0 ∈M is again chosen randomly with respect to various measures
that are specified in the statements of the results.
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Define x̂(ε) : [0, 1]→ Rd by setting x̂(ε)(t) = x(ε)(t/ε). Let X : [0, 1]→ Rd
be the solution to the ODE (2.2) and define

zε = sup
t∈[0,1]

|x̂(ε)(t)−X(t)|.

Recall that E = {x ∈ Rd : |x − x0| ≤ L1}. As in Section 2.1, define
ā(x, ε) =

	
M a(x, y, ε) dνε(y) and let vε,x(y) = a(x, y, ε) − ā(x, ε). We define

the order function δε = δ1,ε + δ2,ε : M → R by

δ1,ε = sup
x∈E

sup
0≤t≤1/ε

ε|vε,x,t| where vε,x,t =

t�

0

vε,x ◦ φεs ds,

δ2,ε = sup
x∈E

sup
0≤t≤1/ε

ε|Vε,x,t| where Vε,x,t =

t�

0

(Dvε,x) ◦ φεs ds.

The next result is the continuous time analogue of Theorem 2.2. The
proof is entirely analogous, and hence is omitted.

Theorem 6.1. Let Sε = supx∈E |
	
M a(x, y, 0) (dνε−dν0)(y)|+ε. Assume

conditions (2.3)–(2.5) hold. If δε ≤ 1/2, then zε ≤ 6e2L(δε + Sε).

As in the discrete time setting, we say that ν0 is statistically stable if
νε →w ν0. Proposition 2.6 goes through unchanged and statistical stability
implies that Sε → 0.

If the measures νε are absolutely continuous with respect to a reference
measure m on M , we define ρε = dνε/dm and set Rε =

	
M |ρε − ρ0| dm.

Then ν0 is strongly statistically stable if Rε → 0. Proposition 2.7 and Corol-
laries 2.8 and 2.9 go through unchanged.

Fix a Borel subset M ′ ⊂M and a reference Borel measure m′ on M ′. Let
hε : M ′ → R+ be a family of Lipschitz functions such that φεhε(y)(y) ∈ M ′

for almost all y ∈ M ′. The map Tε : M ′ → M ′, Tε(y) = φεhε(y)(y), is then

defined almost everywhere.
As usual, we suppose that there is a family ν ′ε of ergodic Tε-invariant

probability measures on M ′. Define the suspension Mhε = {(y, u) ∈M ′×R :
0 ≤ u ≤ hε(y)}/∼ where (y, hε(y)) ∼ (Tεy, 0). The suspension semiflow
f εt : Mhε →Mhε is given by f εt (y, u) = (y, u+ t) modulo identifications. Let
h̄ε =

	
M ′ hε dν

′
ε. Then ν ′′ε = (ν ′ε × {Lebesgue})/h̄ε is an ergodic absolutely

continuous f εt -invariant probability measure on Mhε . The projection πε :
Mhε → M given by πε(y, u) = φεuy is a semiconjugacy between f εt and φεt.
Hence νε = πε ∗ ν

′′
ε is an ergodic φεt-invariant probability measure on M .

We suppose from now on that there are constants K2 ≥ K1 ≥ 1 such
that for all x, y ∈M ′ and ε ∈ [0, ε0):

• K−11 ≤ hε ≤ K1, Liphε ≤ K1 and |hε − h0|∞ ≤ K1ε.
• dM (φεtx, φ

ε
ty) ≤ K2dM (x, y) and dM (φεty, φ

0
t y) ≤ K2ε for all t ≤ K1.
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(These assumptions are easily weakened; in particular changing the ε esti-
mates to ε1/2 will not affect anything.)

Proposition 6.2. Let v : M → Rd be Lipschitz. Define ṽ : M ′ → Rd by

ṽ(y) =
	h0(y)
0 v(φ0uy) du. Then
�

M

v (dνε − dν0) ≤ 3K4
2‖v‖Lipε+K3

1 |v|∞
∣∣∣ �
M ′

h0 (dν ′ε − dν ′0)
∣∣∣

+K1

∣∣∣ �
M ′

ṽ (dν ′ε − dν ′0)
∣∣∣.

Proof. We have�

M

v (dνε − dν0) =
�

Mhε

v ◦ πε dν ′′ε −
�

Mh0

v ◦ π0 dν ′′0

= (1/h̄ε)
�

M ′

hε�

0

v ◦ πε du dν ′ε − (1/h̄0)
�

M ′

h0�

0

v ◦ π0 du dν ′0

= I1 + I2 + I3 + I4

where

I1 = (1/h̄ε − 1/h̄0)
�

M ′

hε�

0

v ◦ πε du dν ′ε,

I2 = (1/h̄0)
�

M ′

hε�

0

(v ◦ πε − v ◦ π0) du dν ′ε,

I3 = (1/h̄0)
( �

M ′

hε�

0

v ◦ π0 du dν ′ε −
�

M ′

h0�

0

v ◦ π0 du dν ′ε
)
,

I4 = (1/h̄0)
( �

M ′

h0�

0

v ◦ π0 du dν ′ε −
�

M ′

h0�

0

v ◦ π0 du dν ′0
)
.

Now

|I1| ≤ K2
1 |h̄ε − h̄0|K1|v|∞ ≤ K3

1 |v|∞
(
K1ε+

∣∣∣ �
M ′

h0 (dν ′ε − dν ′0)
∣∣∣),

|I2| ≤ K2
1 sup
y∈M ′

sup
0≤u≤K1

(Lip v)dM (φεuy, φ
0
uy) ≤ K2

1K2(Lip v)ε,

|I3| ≤ K1|v|∞|hε − h0|∞ ≤ K2
1 |v|∞ε, |I4| ≤ K1

∣∣∣ �
M ′

ṽ (dν ′ε − dν ′0)
∣∣∣.

The result follows from the combination of these estimates.

Corollary 6.3. Statistical stability of ν ′0 implies statistical stability
of ν0.

Proof. This follows from Proposition 6.2.
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Corollary 6.4. Suppose that the measures ν ′ε are absolutely continuous
with respect to m′, with densities ρ′ε = dν ′ε/dm

′. Then

Sε ≤ 3K4
2L
(
ε+

�

M ′

|ρ′ε − ρ′0| dm′
)
.

Proof. This follows from Proposition 6.2 with v(y) = a(x, y, 0) for each
fixed x.

Next we show how the order function for the flows φεt : M →M is related
to the order function for the maps Tε : M ′ → M ′. We restrict attention to
δ1,ε since the corresponding statement for δ2,ε is identical.

Define the family of induced observables wx,ε : M ′ → R by

wε,x(y) =

hε(y)�

0

vε,x(φεuy) du.

Note that
	
M ′ wε,x dν

′
ε = 0 and wε,x is dM -Lipschitz with ‖wε‖Lip ≤ 2K1K2L.

Let

∆1,ε = sup
x∈E

sup
1≤n≤1+K1/ε

ε|wε,x,n| where wε,x,n =
n−1∑
j=0

wε,x ◦ T jε .

We can now state our main result for this section.

Lemma 6.5. Let q ≥ 1. Then |δ1,ε|Lq(νε) ≤ |∆1,ε|Lq(ν′ε) + 4K1Lε.

Proof. Let v̂ε,x = vε,x ◦ πε and define v̂ε,x,t =
	t
0 v̂ε,x ◦ f

ε
u du. Let Nε,t :

Mhε → {0, 1, . . . , 1 + [K1t]} be the number of laps by time t,

Nε,t(y, u) = #{s ∈ (0, t] : f εs(y, u) ∈M ′ × {0}}.
Then

v̂ε,x,t(y, u) = wε,x,Nε,t(y,u)(y) +Hε,x ◦ f εt (y, u)−Hε,x(y, u)

whereHε,x(y, u) =
	u
0 v̂ε,x(y, u′) du′ = v̂ε,x,u(y, 0). Note that |Hε,x|∞ ≤ 2K1L.

Hence

sup
s≤t
|vε,x,s| ◦ πε(y, u) = sup

s≤t
|v̂ε,x,s(y, u)| ≤ sup

s≤t
|wε,x,Ns(y,u)(y)|+ 4K1L

≤ max
j≤1+K1t

|wε,x,j(y)|+ 4K1L.

It follows that

ε sup
s≤1/ε

|vε,x,s| ◦ πε(y, u) ≤ ∆1,ε(y) + 4K1Lε,

and so δ1,ε ◦ πε(y, u) ≤ ∆1,ε(y) + 4K1Lε. The result follows.

As a consequence of Corollary 6.4 and Lemma 6.5, our results for maps
go through immediately for semiflows. For example, suppose that the maps
Tε(y) = φεhε(y)(y) are a family of quadratic maps as in Example 5.2. Then for

any q > 0, we obtain averaging in Lq(νε) with rate O(ε(1/2)−). If moreover ν0
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is strongly statistically stable, then we obtain averaging in L1(ν0) with rate
O(ε(1/2)−), and averaging in L1(µ) for any absolutely continuous probability
measure µ on M .

7. Counterexample for almost sure convergence. It is known [7]
that almost sure convergence fails for fully coupled fast-slow systems. Here
we give an example to show that almost sure convergence fails also in the
simpler context of families of skew products as considered in this paper.

We consider the family of maps Tε : [0, 1]→ [0, 1] given by Tεy = 2y + ε
mod 1 with invariant measure νε taken to be Lebesgue for all ε ≥ 0. Let
a(x, y, ε) = cos 2πy. Since a has mean zero, the averaged ODE is given by

Ẋ = 0. We take x0 = 0 so that X(t) ≡ 0. Nevertheless, we prove:

Proposition 7.1. For every y0 ∈ [0, 1], lim supε→0 x̂
(ε)(1) = 1.

Proof. The idea of the proof is to show that every y0 ∈ [0, 1] is eventually

fixed by Tε for infinitely many arbitrarily small values of ε. Namely, y
(ε)
n =

Tnε y0 = −ε mod 1 for all large enough n. Moreover, y
(ε)
n gets fixed sufficiently

early to interfere with the averaging.

Let y0 ∈ [0, 1] and δ > 0. Let N = [δ−1/2] and choose an integer 1≤ k≤ 2N

such that

y0 ∈ [−δ + (k − 1)2−N , −δ + k2−N ].

Choose ε such that

y0 = −ε+ (k − 1)2−N .

Then

δ − 2−N ≤ ε ≤ δ.

If δ is small enough, then δ − 2−N = δ − 2−[δ
−1/2] > 0, and so 0 < ε ≤ δ.

Now

y(ε)n = 2ny0 + (2n − 1)ε mod 1 = −ε+ (k − 1)2n−N mod 1

for all n ≥ 0. In particular, for n ≥ N we have y
(ε)
n = −ε mod 1, and

cos 2πy
(ε)
n ≥ 1−πε. Note that N≤ ε−1/2. Hence x̂(ε)(1) = ε

∑[ε−1]−1
n=0 cos 2πy

(ε)
n

= 1+O(ε1/2)+O(ε). Since ε ∈ (0, δ] is arbitrarily small, the result follows.

Remark 7.2. A similar argument works for the family of maps Tεy =
2y + εβ mod 1 for any choice of β > 0.

Appendix: Proof of second order averaging. In this appendix, we
prove Theorem 2.2. This is a quantitative version of a result due to [31]
with a somewhat simplified proof. We work with discrete time rather than
continuous time.
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First, we consider the case where T : M → M is independent of ε.
Suppose that a : Rd×M → Rd and ā : Rd → Rd are functions. Assume that
‖a‖Lip ≤ L and ‖Da‖Lip ≤ L where D = d

dx and L ≥ 1.
For ε > 0, consider the discrete fast-slow system

xn+1 = xn + εa(xn, yn), yn+1 = Tyn

with x0 ∈ Rd and y0 ∈M given.
Define x̂ε : [0, 1] → Rd, x̂ε(t) = x[t/ε], and let X : [0, 1] → Rd be the

solution of the ODE Ẋ = ā(X) with initial condition X(0) = x0. As in
Section 2, we define δε = δ1,ε + δ2,ε where

δ1,ε(y0) = sup
x

sup
1≤n≤1/ε

ε
∣∣∣n−1∑
j=0

(a(x, yj)− ā(x))
∣∣∣,

δ2,ε(y0) = sup
x

sup
1≤n≤1/ε

ε
∣∣∣n−1∑
j=0

(Da(x, yj)−Dā(x))
∣∣∣.

Theorem A.1. Let ε > 0 and x0 ∈ Rd. For all y0 ∈ M with δε(y0) ≤
1/2 and t ∈ [0, 1],

|x̂ε(t)−X(t)| ≤ 5e2L(δε(y0) + ε).

First we recall a discrete version of Gronwall’s lemma.

Proposition A.2. Suppose that bn ≥ 0 and that there exist constants
C,D ≥ 0 such that

bn ≤ C +D
n−1∑
m=0

bm for all n ≥ 0.

Then bn ≤ C(D + 1)n.

Proof. This follows by induction.

Define a function u : Rd × {0, 1, . . . , [1/ε]} by setting u(x, 0) ≡ 0 and

u(x, n) =
ε

δε

n−1∑
j=0

(a(x, yj)− ā(x)), n ≥ 1.

Proposition A.3. For any n ≤ 1/ε, we have |u(·, n)|∞ ≤ 1 and
Lipu(·, n) ≤ 1.

Proof. For all x,

|Du(x, n)| = ε

δε

∣∣∣n−1∑
j=0

(Da(x, yj)−Dā(x))
∣∣∣ ≤ δ2,ε

δε
≤ 1.

Hence the second estimate follows from the mean value theorem, and the
first estimate is easier.
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Define a new sequence wn by setting w0 = x0 and

wn = xn − δεu(wn−1, n), n ≥ 1.

Lemma A.4. For all 0 ≤ n ≤ 1/ε and all y ∈M with δε(y) ≤ 1/2,∣∣∣wn − w0 − ε
n−1∑
k=0

ā(wk)
∣∣∣ ≤ 4Lδε.

Proof. By definition, for all 0 ≤ k ≤ 1/ε,

δε[u(wk, k + 1)− u(wk, k)] = ε[a(wk, yk)− ā(wk)].

Thus

δεu(wn−1, n) = δε

n−1∑
k=0

{u(wk, k + 1)− u(wk−1, k)}

= δε

(n−1∑
k=0

{u(wk, k + 1)− u(wk, k)}+

n−1∑
k=0

{u(wk, k)− u(wk−1, k)}
)

= ε
n−1∑
k=0

{a(wk, yk)− ā(wk)}+ In,

where

In = δε

n−1∑
k=1

{u(wk, k)− u(wk−1, k)}.

This together with the definition of xn yields

wn = x0 + ε
n−1∑
k=0

a(xk, yk)− δεu(wn−1, y, n)

= w0 + ε

n−1∑
k=0

a(xk, yk)− ε
n−1∑
k=0

{a(wk, yk)− ā(wk)} − In

= w0 + ε

n−1∑
k=0

ā(wk)− In + IIn,

where

IIn = ε

n−1∑
k=0

{a(xk, yk)− a(wk, yk)}.

We claim that for all 0 ≤ n ≤ 1/ε,

|wn+1 − wn − εā(wn)| ≤ 4Lεδε.

The result follows by summing over n.
It remains to prove the claim. It is easy to check w1 − w0 − εā(w0) = 0.

Inductively, suppose that |wn − wn−1 − εā(wn−1)| ≤ 4Lεδε. Notice that

|IIn+1 − IIn| ≤ ε(Lip a)|xn − wn| ≤ (Lip a)εδε|u(wn−1, n)| ≤ Lεδε.
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Also,

|In+1 − In| ≤ δε(Lipu)|wn − wn−1| ≤ δε(ε|ā(wn−1)|+ 4Lεδε) ≤ 3Lεδε,

where the second inequality follows by the induction hypothesis and the
third inequality uses δε ≤ 1/2. Therefore

|wn+1 − wn − εā(wn)| ≤ |In+1 − In|+ |IIn+1 − IIn| ≤ 4Lεδε,

proving the claim.

Define the sequence

zn+1 = zn + εā(zn), z0 = x0.

Corollary A.5. |xn − zn| ≤ 5δεe
2L for all 1 ≤ n ≤ 1/ε and all y ∈M

with δε(y) ≤ 1/2.

Proof. Write

wn − zn = wn − x0 − ε
n−1∑
k=0

ā(zk)

= wn − w0 − ε
n−1∑
k=0

ā(wk) + ε

n−1∑
k=0

{ā(wk)− ā(zk)}.

By Lemma A.4 ,

|wn − zn| ≤ 4Lδε + ε

n−1∑
k=0

|ā(wk)− ā(zk)| ≤ 4Lδε + Lε

n−1∑
k=0

|wk − zk|.

By Proposition A.2, |wn − zn| ≤ 4Lδεe
L ≤ 4δεe

2L. Moreover, |xn − wn| ≤
δε|u|∞ ≤ δε and the result follows.

Lemma A.6. |X(nε)− zn| ≤ L2eLε.

Proof. Write

X(nε) = x0 +
n−1∑
m=0

(m+1)ε�

mε

[ā(X(s))− ā(X(mε))] ds+ ε
n−1∑
m=0

ā(X(mε)).

Since

|ā(X(t1))− ā(X(t2))| ≤ L|X(t1)−X(t2)| ≤ L2|t1 − t2| for all t1, t2,

we obtain ∣∣∣X(nε)− x0 − ε
n−1∑
m=0

ā(X(mε))
∣∣∣ ≤ L2nε2 ≤ L2ε.
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Hence

|X(nε)− zn| ≤ ε
n−1∑
m=0

|ā(X(mε))− ā(zm)|+ L2ε

≤ Lε
n−1∑
m=0

|X(mε)− zm|+ L2ε.

The result follows from Proposition A.2.

Proof of Theorem A.1. By Corollary A.5 and Lemma A.6,

|x[t/ε] −X(t)| ≤ |X(t)−X([t/ε]ε)|+ |X([t/ε]ε)− z[t/ε]|+ |z[t/ε] − x[t/ε]|

≤ εL+ L2eLε+ 5e2Lδε ≤ 5e2L(δε + ε).

Proof of Theorem 2.2. Replacing T , a(x, y) and ā(x) in Theorem A.1 by
Tε, a(x, y, ε) and ā(x, ε), we obtain

|x̂ε(t)−Xε(t)| ≤ 5e2L(δε + ε)

where

Ẋε = ā(X, ε), Xε(0) = x0.

Let Aε = supx∈E |ā(x, ε)− ā(x, 0)|. Then

|Xε(t)−X(t)| ≤
t�

0

|ā(Xε(s), ε)− ā(X(s), 0)| ds

≤ tAε +

t�

0

|ā(Xε(s), 0)− ā(X(s), 0)| ds

≤ Aε + L

t�

0

|Xε(s)−X(s)| ds.

By Gronwall’s lemma, |Xε(t)−X(t)| ≤ eLAε for all t ≤ 1.

Next, Aε ≤ Lε + supx∈E |
	
M a(x, y, 0) (dνε − dν0)(y)|. Combining these

estimates leads to

|x̂ε(t)−X(t)| ≤ 5e2Lδε + 6e2Lε

+ eL sup
x∈E

∣∣∣ �
M

a(x, y, 0) (dνε − dν0)(y)
∣∣∣,

yielding the result.
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