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Abstract. The classical Lorenz flow, and any flow which is close to it
in the C2-topology, satisfies a Central Limit Theorem (CLT). We prove
that the variance in the CLT varies continuously.

1. Introduction

In 1963, Lorenz [20] introduced the following system of equations
ẋ = −10x+ 10y

ẏ = 28x− y − xz
ż = −8

3z + xy

(1)

as a simplified model for atmospheric convection. Numerical simulations
performed by Lorenz showed that the above system exhibits sensitive de-
pendence on initial conditions and has a non-periodic “strange” attractor.
Since then, (1) became a basic example of a chaotic deterministic system
that is notoriously difficult to analyse.

A rigorous mathematical framework of similar flows was initiated with
the introduction of the so called geometric Lorenz attractors in [1, 15]. The
papers [24, 25] provided a computer-assisted proof that the classical Lorenz
attractor in (1) is indeed a geometric Lorenz attractor. In particular, it
is a singularly hyperbolic attractor [23], namely a nontrivial robustly tran-
sitive attracting invariant set containing a singularity (equilibrium point).
Moreover, there is a distinguished Sinai-Ruelle-Bowen (SRB) ergodic prob-
ability measure, see for example [8]. Statistical limit laws, in particular the
central limit theorem (CLT) for Hölder observables, were first obtained in
[16] for the classical Lorenz attractor, and were shown for general singular
hyperbolic attractors in [5]. For further background and a complete list of
references up to 2010 we refer the reader to the monograph of Araújo and
Paćıfico [7].
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Let Xε : R3 × R → R3, ε ≥ 0, be a continuous family of C2 flows on
R3 admitting a geometric Lorenz attractor with singularities xε and corre-
sponding SRB measures µε. Precise definitions are given in section 2.1; in
particular, the framework includes the classical Lorenz attractor. By [2, 9],
the flows Xε are statistically stable: for any continuous ψ : R3 → R

lim
ε→0

∫
ψ dµε =

∫
ψ dµ0.

The CLT in [5, 16] states that for fixed ε ≥ 0 and ψ : R3 → R Hölder, there
exists σ2 = σ2

Xε
(ψ) ≥ 0 such that

1√
t

(∫ t

0
ψ ◦Xε(s) ds− t

∫
ψ dµε

)
law−→N (0, σ2) as t→∞. (2)

By [16, Section 4.3], σ2 is typically nonzero.
We prove continuity of the variance, namely that ε 7→ σ2

Xε
(ψ) is con-

tinuous. At the same time, we obtain estimates on the dependence of
the variance on ψ. We now state the main result of the paper. Define
‖ψ‖ =

∫
|ψ| dµ0 + |ψ(x0)|.

Theorem 1.1. Let ψ, ψ′ : R3 → R be Hölder observables. Then

(a) limε→0 σ
2
Xε

(ψ) = σ2
X0

(ψ); and
(b) there exists a constant C > 0 (depending only on the Hölder norms

of ψ and ψ′) such that

|σ2
X0

(ψ)− σ2
X0

(ψ′)| ≤ C‖ψ − ψ′‖(1 + | log ‖ψ − ψ′‖|).

Remark 1.2. In part (b), we obtain closeness of the variances provided the
observables are close in L1 with respect to both the SRB measure and the
Dirac point mass at 0 (provided the individual Hölder norms are controlled).
It is an easy consequence of the methods in this paper that the logarithmic
factor can be removed if the norm ‖ ‖ is replaced by the Hölder norm.

Remark 1.3. All results in this paper go through without change for contin-
uous families of Cr flows, r > 1. We take r = 2 for notational convenience.

Our technique is based on first proving variance continuity for the corre-
sponding family of Poincaré maps and then passing the result to the family
of flows. The main difficulty in passing from maps to flows lies in the fact
that the return time function to the Poincaré section is unbounded. A key
step in overcoming this hurdle is to show that for any Hölder observable
on R3 vanishing at the singularity, the induced observable for the Poincaré
map is piecewise Hölder. Related results for various classes of discrete time
dynamical systems can be found in [11, 13, 19] using somewhat different
methods, but there are no previous results for Lorenz attractors.

The paper is organised as follows. In section 2 we recall the basic setup
and notation associated with (families of) geometric Lorenz attractors. In
section 3 we show how to normalise the families of flows to obtain simplified
coordinates for the proofs. Section 4 contains properties of one dimensional
Lorenz maps. Section 5 studies the family of Poincaré maps. It starts
by showing that the family of maps admit a uniform rate of correlations
decay for piecewise Hölder functions, using suitable anisotropic norms. We
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then use the Green-Kubo formula to show continuity of the variance for the
family of Poincaré maps. In section 6 we prove a version of Theorem 1.1 for
normalised families and use this to prove Theorem 1.1.

2. Geometric Lorenz attractors

In this section, we recall the basic setup and notation associated with
(families of) geometric Lorenz attractors. In subsections 2.1 and 2.2, we
recall the class of (families of) geometric Lorenz attractors considered in the
paper.

We begin with some notational preliminaries. Let U ⊂ Rm be open. Fix
α ∈ (0, 1) and recall that f : U → Rn is Cα if there exists C > 0 such
that |fj(x)− fj(y)| ≤ C|x− y|α for all x, y ∈ U and all j = 1, . . . , n. (Here

|x| =
√
x2

1 + · · ·+ x2
m denotes the Euclidean norm on Rm.) Let Hα(f) be

the least such constant C and define the Hölder norm ‖f‖α = |f |∞+Hα(f).
Then f is C1+α if Df : U → Rn×m is Cα and we set ‖f‖1+α = |f |∞+‖Df‖α.
A family fε of C1+α maps, ε ≥ 0, is said to be continuous if limε→ε0 ‖fε −
fε0‖1+α = 0. Similarly, we speak of continuous families of C2 flows, C1+α

diffeomorphisms, and so on. In the case of Lorenz flows, we are particularly
interested in families of C2 flows on R3 restricted to an open bounded region
U of phase space; for convenience we suppress mentioning the subset U .

2.1. Definition of geometric Lorenz attractors. There are various no-
tions of geometric Lorenz attractor in the literature depending on the prop-
erties being analysed. Roughly speaking, we take a geometric Lorenz at-
tractor to be a singular hyperbolic attractor for a vector field on R3 with a
single singularity x0 and a connected global cross-section with a C1+α stable
foliation. As promised, we now give a precise description.

Let G : R3 → R3 be a C2 vector field satisfying G(x0) = 0 and let
X be the associated flow. We suppose that the differential DG(x0) at the
singularity has three real eigenvalues λ2 < λ3 < 0 < λ1 satisfying λ1+λ3 > 0
(Lorenz-like singularity).

Let Σ be a two-dimensional rectangular cross-section transverse to the
flow chosen in a neighbourhood of the singularity x0, and let Γ be the in-
tersection of Σ with the local stable manifold of x0. We suppose that there
exists a well defined Poincaré map F : Σ\Γ→ Σ. Moreover, we assume that
the underlying flow is singular hyperbolic [23]. It follows [4, Theorem 4.2]
that a neighbourhood of the attractor is foliated by one-dimensional C2

stable leaves. We assume q-bunching for some q > 1 in [4, condition (4.2)].
By [4, Theorem 4.12 and Remark 4.13(b)], it follows that the stable foliation
for the flow is Cq.

The foliation by stable leaves for the flow naturally induces (see for ex-
ample [5, Section 3.1]) a Cq (q > 1) foliation inside Σ of a neighbourhood
of the attractor intersected with Σ by one-dimensional C2 stable leaves for
the Poincaré map F . We denote this stable foliation for F by F .

The stable leaves for the flow are exponentially contracting [4, Theo-
rem 4.2(a)(3)] and this property is inherited by the stable leaves for F . This
means that there exists ρ ∈ (0, 1), K > 0 such that

|Fnξ1 − Fnξ2| ≤ Kρn|ξ1 − ξ2|, (3)
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for ξ1, ξ2 in the same stable leaf in F and n ≥ 1.
Let I ⊂ Σ be a smoothly (C∞) embedded one-dimensional subspace trans-

verse to the stable foliation and let T : I → I be the one-dimensional map
obtained from F by quotienting along stable leaves. Let ξ0 be the intersec-
tion of I with Γ.

Proposition 2.1. T is a Lorenz-like expanding map. That is, T is mono-
tone (without loss we take T to be increasing) and piecewise C1+α on I \{ξ0}
for some α ∈ (0, 1) with a singularity at ξ0 and one-sided limits T (ξ+

0 ) < 0
and T (ξ−0 ) > 0. Also, T is uniformly expanding: there are constants c > 0

and θ > 1 such that (Tn)′(x) ≥ cθn for all n ≥ 1, whenever x /∈
⋃n−1
j=0 T

−j(ξ0).

Proof. The map F is piecewise C1+α and the foliation by stable leaves is
C1+α, so T is piecewise C1+α on I \{ξ0}. Uniform expansion follows from [5,
Theorem 4.3]. The remaining properties are immediate. �

The final part of the definition of geometric Lorenz attractor is that the
one-dimensional map T is transitive on the interval [T (ξ+

0 ), T (ξ−0 )]. It is then
standard [2, 5, 8, 17] that T has a unique absolutely continuous invariant
probability measure (acip) µ̄ leading to a unique SRB measure µ for the
geometric Lorenz attractor containing x0. The basin of µ has full Lebesgue
measure in a neighbourhood of the attractor.

Remark 2.2. The classical Lorenz attractor for the system of equations (1)
(and for nearby equations) is an example of a geometric Lorenz attractor
as defined above. Except for q-bunching, the assumptions above are verified
in [25]. The q-bunching condition is verified in [6, Lemma 2.2]. (By [4,
Section 5], the optimal value of q lies between 1.278 and 1.705; hence we
have C1+α regularity for the stable foliation as in [9] but not C2 regularity
as in [2].)

2.2. Families of geometric Lorenz attractors. Let Xε, ε ≥ 0, be a
continuous family of C2 flows on R3 admitting a geometric Lorenz attractor
as in subsection 2.1 with singularity xε. The constants K and ρ in (3) derive
from the singular hyperbolic structure which varies continuously under C1

perturbations. Hence K and ρ can be chosen independent of ε.
Making an initial C2 change of coordinates (varying continuously in ε),

we can suppose without loss that xε ≡ 0 and that Σ, Γ and I are given
by Σ =

{
(x, y, 1) : −1 ≤ x ≤ 1, −1

2 ≤ y ≤
1
2

}
, Γ = {(0, y, 1) : −1

2 ≤ y ≤ 1
2}

and I = {(x, 0, 1) : −1
2 ≤ x ≤ 1

2} ∼= [−1
2 ,

1
2 ] for all ε. Throughout the

paper, when we speak of a continuous family of C2 flows admitting geometric
Lorenz attractors, we assume that this initial change of coordinates has been
performed.

Define the Poincaré return time to Σ,

τε : Σ→ (0,∞), τε(ξ) = inf{t > 0 : Xε(ξ, t) ∈ Σ}.

Proposition 2.3. The return time τε : Σ \ Γ → Σ is given by τε(x, y) =
− 1
λ1,ε

log |x|+ τ2,ε(x, y) where τ2,ε is a continuous family of C2 functions.

Proof. Applying the Hartman-Grobman theorem for fixed ε, we can linearise
Xε in a neighbourhood of 0 so that the linearised flow is given by (x, y, z) 7→
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(eλ1,εtx, eλ2,εty, eλ3,εtz). The time of flight in this neighbourhood is readily
calculated in these coordinates to be − 1

λ1,ε
log |x| for x ∈ I and the same

formula holds in the original coordinates. The remaining flight time τ2,ε is
a first hit-time for the C2 flow away from the singularity at 0 and hence
is C2. Since Xε is a continuous family of C2 flows, it follows that τ2,ε is a
continuous family of C2 functions. �

Theorem 2.4. Let Xε be a continuous family of C2 flows on R3 admitting
a geometric Lorenz attractor. Then there exists α > 0 such that the one-
dimensional maps Tε : I → I form a continuous family of piecewise C1+α

maps.

Proof. Recall that Tε is obtained from the continuous family of piecewise
C1+α maps Fε by quotienting along the stable foliation. Our assumption
of q-bunching (q > 1) yields continuous families of Cq stable foliations [12].
Hence, Tε is a continuous family of piecewise C1+α maps. �

3. Normalised geometric Lorenz attractors

Let Xε, ε ≥ 0, be a continuous family of C2 flows on R3 admitting a
geometric Lorenz attractor. In this section, we show how to normalise the
families of flows to obtain simplified coordinates for carrying out the proofs.

Assume that the preliminary C2 change of coordinates in section 2.2 has
been performed. Let Fε : Σ→ Σ and Tε : I → I be the associated families of
Poincaré maps and one-dimensional piecewise expanding maps. Also, define

Σ̃ =
{

(x, y, 1) : −1
2 ≤ x, y ≤

1
2

}
.

Proposition 3.1. There exists a continuous family of C1+α diffeomor-
phisms ωε : Σ→ Σ such that

(a) ωε restricts to the identity on I; and

(b) vertical lines in Σ̃ are transformed under ωε into stable leaves for
Fε : Σ→ Σ.

Proof. For ε fixed, this follows by definition of the smoothness of the stable
foliation for Fε. (An explicit formula is given in [4, Lemma 4.9] where Y
and χ should be replaced by I and ωε, and the embedding is the identity.)
Again, we obtain continuous families of C1+α diffeomorphisms by [12]. �

The change of coordinates ωε for the Poincaré map Fε extends to a change
of coordinates φε for the flow Xε. The extension is standard and essentially
unique, though heavy on notation.

First, define the transformed Poincaré map and return time

F̃ε = ω−1
ε ◦ Fε ◦ ωε : Σ̃→ Σ̃, τ̃ε = τε ◦ ωε : Σ̃→ (0,∞).

The set Uε = {(Xε(ξ, t) : ξ ∈ Σ, 0 ≤ t ≤ τε(ξ)} defines a neighbourhood of
the Lorenz attractor for Xε. Note that Xε(ξ, τε(ξ)) = Fεξ for ξ ∈ Σ. Define

the transformed flow X̃ε : Uε × [0,∞) → Uε given by X̃ε(x, t) = Xε(x, t)

subject to the identifications X̃ε(ξ, τ̃ε(ξ)) = F̃εξ for ξ ∈ Σ̃.
Finally, define φε : Uε → Uε by φε(x) = Xε(ωε(ξ), t) for x = Xε(ξ, t) ∈

Uε, where ξ ∈ Σ and 0 ≤ t ≤ τ̃ε(x). It follows from the definitions that

φε|Σε ≡ ωε and X̃ε(x, t) = φ−1
ε ◦Xε(φε(x), t). Hence φε is the desired change

of coordinates.
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Corollary 3.2. The changes of coordinates φε : U → U are continuous
families of C1+α diffeomorphisms.

Proof. By assumption, Xε is a continuous family of C2 flows. Hence the
result follows from Proposition 3.1. �

Lemma 3.3. The transformed flow X̃ε(x, t) = φ−1
ε ◦Xε(φε(x), t) satisfies:

(i) The Poincaré map F̃ε : Σ̃ \Γ→ Σ̃ is a continuous family of piecewise
C1+α diffeomorphisms and has the form

F̃ε(x, y) = (Tεx, gε(x, y)),

where Tε : I → I is the family of Lorenz-like expanding maps in
Theorem 2.4(a).

(ii) |F̃nε ξ1 − F̃nε ξ2| ≤ Kρn|ξ1 − ξ2| for all ξ1 = (x, y1), ξ2 = (x, y2) and
n ≥ 1,

(iii) The return time τ̃ε : Σ̃\Γ→ (0,∞) is given by τ̃ε(x, y) = − 1
λ1,ε

log |x|+
τ̃2,ε(x, y) where τ̃2,ε is a continuous family of C1+α functions.

(iv) The SRB measures µ̃ε for X̃ε are given by µ̃ε = φ−1
ε ∗µε and are sta-

tistically stable.

Proof. (i) By Proposition 3.1(b), F̃ε = ω−1
ε ◦Fε ◦ωε has the form F̃ε(x, y) =

(Tεx, gε(x, y)). By Proposition 3.1(a), the maps Tε : I → I are unchanged
by this change of coordinates. Also, ωε is a continuous family of C1+α diffeo-
morphisms and Fε is a continuous family of piecewise C1+α diffeomorphisms,
so F̃ε a continuous family of piecewise C1+α diffeomorphisms.

(ii) This is the uniform contraction condition (3) in the new coordinates.

(iii) By Proposition 2.3 and Proposition 3.1, τ̃ε = τε ◦ ωε = − 1
λ1,ε

log |x| +
τ2,ε ◦ ωε where τ̃2,ε = τ2,ε ◦ ωε is a continuous family of C1+α functions.

(iv) By Proposition 3.1(a), the acip µ̄ε for Tε is unchanged by the change
of coordinates and hence remains absolutely continuous. Using this and
the construction of the SRB measure (see for example [2, 8] for the standard
construction of µε from µ̄ε), we obtain that µ̃ε = φ−1

ε ∗µε is the SRB measure

for X̃ε. Moreover, strong statistical stability [2, 9, 14] of the acips µ̄ε on I
is preserved and hence the SRB measures µ̃ε remain statistically stable. �

In the following sections, we prove Theorem 1.1 for normalised families of
geometric Lorenz attractors. At the end of section 6, we show how results
for normalised families imply Theorem 1.1.

4. The family of one-dimensional maps

In this section, we recall some functional-analytic properties associated
with the family of one-dimensional Lorenz maps Tε. For p ≥ 1, we say
f : I → R is of (universally) bounded p-variation if

Vp(f) = sup
− 1

2
=x0<···<xn= 1

2

(
n∑
i=1

|f(xi)− f(xi−1)|p
)1/p

<∞.

We take p ≥ 1
α .
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Let Sρ(x) = {y ∈ I : |x− y| < ρ}. For f : I → R, define

osc(f, ρ, x) = esssup{|f(y1)− f(y2)| : y1, y2 ∈ Sρ(x)},

and

osc1(f, ρ) = ‖ osc(f, ρ, x)‖1,
where the essential supremum is taken with respect to Lebesgue measure on
I × I and ‖ · ‖1 is the L1- norm with respect to Lebesgue measure on I. Fix
ρ0 > 0 and let BV1,1/p ⊂ L1 be the Banach space equipped with the norm

‖f‖1,1/p = V1,1/p(f) + ‖f‖1, where V1,1/p(f) = sup
0<ρ≤ρ0

osc1(f, ρ)

ρ1/p
.

(The space BV1,1/p does not depend on ρ0.) The fact that BV1,1/p is a
Banach space is proved in [17]. Moreover, it is proved in [17] that BV1,1/p

is embedded in L∞ and compactly embedded in L1. In addition [17] shows
that

V1,1/p(f) ≤ 21/pVp(f). (4)

We recall results from the literature that we use later in sections 5 and 6
of the paper. Recall from [17] that Tε admits a unique acip µ̄ε for each
ε ≥ 0. Let hε denote the density for µ̄ε. Let Pε : L1(I)→ L1(I) denote the
transfer operator (Perron-Frobenius) associated with Tε (so

∫
Pεf g dLeb =∫

f g ◦ Tε dLeb for f ∈ L1(I), g ∈ L∞(I)).

Proposition 4.1. There exists C > 0 and Λ ∈ (0, 1) such that

(a) ||hε||∞ < C, and
(b) ‖Pnε f − hε

∫
f dLeb ‖1,1/p ≤ CΛn||f ||1,1/p

for all n ≥ 1, ε ≥ 0, f ∈ BV1,1/p.

Proof. By [9, Lemma 3.3], there exist A1, A2 > 0, 0 < κ < 1, such that for
all n ≥ 1, f ∈ BV1,1/p,

||Pnε f ||1,1/p ≤ A1κ
n||f ||1,1/p +A2||f ||1.

Taking f = hε and letting n → ∞, we obtain ‖hε‖1,1/p ≤ A2 and part (a)
follows. Moreover, it was proved in [9] that

lim
ε→0

sup
||f ||1,1/p≤1

||(Pε − P0)f ||1 = 0.

Thus, the Keller-Liverani stability result [18] implies that Pε has a uniform
(in ε) spectral gap on BV1,1/p. This proves part (b). �

5. Variance continuity for the Poincaré maps

In this section, we prove the analogue of Theorem 1.1 at the level of the
Poincaré maps Fε. Throughout, we work with normalised families as in
section 3.

It is well known [8] that Fε admits a unique SRB measure µFε for each
ε ≥ 0. Moreover, for any continuous ψ : Σ→ R we have

lim
ε→0

∫
ψ dµFε =

∫
ψ dµF0 ;
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i.e. the family Fε is statistically stable [2, 9, 14]. We require the following
strengthening of this property. In general, we say that Ψ : Σ → R is piece-
wise continuous if it is uniformly continuous on the connected components
of Σ \ Γ. Similarly Ψ is piecewise Hölder if it is uniformly Hölder on the
connected components of Σ \ Γ.

Proposition 5.1. Suppose that Ψ : Σ → R is piecewise continuous and fix
n ≥ 0. Then limε→0

∫
Ψ · (Ψ ◦ Fn0 ) dµFε =

∫
Ψ · (Ψ ◦ Fn0 ) dµF0.

Proof. If Ψ · (Ψ ◦ Fn0 ) were continuous, this would be immediate from the
statement of Proposition 3.3 in [2]. The proof in [2] already accounts for
trajectories that visit Γ in finitely many steps, and it is easily checked that
the same arguments apply here. �

For fixed ε ≥ 0, the CLT holds (see for instance [21]); i.e. for Ψ : Σ→ R
piecewise Hölder there exists σ2 = σ2

Fε
(Ψ) such that

1√
n

(
n−1∑
i=0

Ψ ◦ F iε − n
∫

Ψ dµFε

)
law−→N (0, σ2) as n→∞.

The variance satisfies the Green-Kubo formula

σ2 =

∫
Ψ̂2
ε dµFε + 2

∞∑
n=1

∫
Ψ̂ε · (Ψ̂ε ◦ Fnε ) dµFε , (5)

where Ψ̂ε = Ψε −
∫

Ψε dµFε .

5.1. Uniform decay of correlations. Let α ∈ (0, 1] and p ≥ 1
α . Let

Ψ : Σ→ R be piecewise Hölder with exponent α. Set

||Ψ||α,s = Hα,s(Ψ) + ||Ψ||∞, Hα,s(Ψ) = sup
x,y1,y2∈I
y1 6=y2

|Ψ(x, y2)−Ψ(x, y1)|
|y2 − y1|α

.

For −1
2 = x0 < · · · < xn = 1

2 and yi ∈ I, 1 ≤ i ≤ n, we define

V̂p(Ψ; (x0, . . . , xn); (y1, . . . , yn)) =
( ∑

1≤i≤n
|Ψ(xi−1, yi)−Ψ(xi, yi)|p

)1/p
,

and

V̂p(Ψ) = sup V̂p(Ψ; (x0, . . . , xn); (y1, . . . , yn)),

where the supremum is taken over all finite partitions of I and all choices of
yi ∈ I. Finally, we define

(ΠΨ)(x) =

∫
I

Ψ(x, y) dy.

We state and prove the following Theorem about uniform (in ε) decay of
correlations. Define

DΨ = ||ΠΨ||1,1/p + V̂p(Ψ) + ||Ψ||α,s.

Note that DΨ is finite.
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Theorem 5.2. Assume that there exists K > 0 such that

||Π(Ψ ◦ F jε )||1,1/p + V̂p(Ψ ◦ F jε ) ≤ DΨK
j (6)

for all j ≥ 1, ε ≥ 0. Then there exist C > 0 and θ ∈ (0, 1) such that∣∣∣∣∫ Ψ · (Ψ ◦ Fnε ) dµFε −
(∫

Ψ dµFε

)2
∣∣∣∣ ≤ CDΨ||Ψ||α,sθn

for all n ≥ 1, ε ≥ 0.

Proof. The proof follows from [3, Theorem 3]. The fact that C and θ do
not depend on ε follows from the uniformity of the constants in Proposition
4.1(b) and the uniformity of the contraction on vertical fibres. �

We now verify assumption (6) in Theorem 5.2.

Lemma 5.3. V1,1/p(ΠΨ) ≤ 21/pV̂p(Ψ).

Proof. Fix y ∈ I and let x0 < · · · < xn be a partition of I. We have∑
1≤i≤n

|ΠΨ(xi−1)−ΠΨ(xi)|p =
∑

1≤i≤n

∣∣∣ ∫ (Ψ(xi−1, y)−Ψ(xi, y)) dy
∣∣∣p

≤
∑

1≤i≤n

∫
|Ψ(xi−1, y)−Ψ(xi, y)|p dy ≤ V̂p(Ψ)p.

Combining this with (4) we have V1,1/p(ΠΨ) ≤ 21/pVp(ΠΨ) ≤ 21/pV̂p(Ψ) as
required. �

Recall that Fε can be written in coordinates as Fε(x, y) = (Tεx, gε(x, y)).

Lemma 5.4. Let M = 4(1 + supε ‖gε‖αC1). Then

V̂p(Ψ ◦ F jε ) ≤ (2j − 1)M ||Ψ||α,s + 2j V̂p(Ψ) for all j ≥ 1, ε ≥ 0.

Proof. We suppress the dependence on ε. Fix −1
2 = x0 ≤ x1 ≤ · · · ≤ xn = 1

2
and yi ∈ I, 1 ≤ i ≤ n. Then

V̂p(Ψ ◦ F ; (x0, . . . , xn); (y1, . . . , yn))p =
∑

1≤i≤n
|Ψ ◦ F (xi−1, yi)−Ψ ◦ F (xi, yi)|p

≤ 2p−1
∑

1≤i≤n
Hα,s(Ψ)p|g(xi−1, yi)− g(xi, yi)|αp

+ 2p−1
∑

1≤i≤n
|Ψ(Txi−1, g(xi−1, yi))−Ψ(Txi, g(xi−1, yi))|p

≤ 2p−1Hα,s(Ψ)p‖g‖αp
C1

+ 2p−1
∑

1≤i≤n
|Ψ(Txi−1, g(xi−1, yi))−Ψ(Txi, g(xi−1, yi))|p.

Let x0, . . . , xk ∈ [−1
2 , 0) and xk+1 /∈ [−1

2 , 0). Since T |[− 1
2
,0) is continuous

and increasing, we get∑
1≤i≤k

|Ψ(Txi−1, g(xi−1, yi))−Ψ(Txi, g(xi−1, yi))|p ≤ V̂p(Ψ)p.

A similar estimate holds for xk+1, . . . , xn ∈ (0, 1
2 ]. Moreover,

|Ψ(Txk, g(xk, yk+1))−Ψ(Txk+1, g(xk, yk+1))|p ≤ 2p||Ψ||p∞.
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Consequently,

V̂p(Ψ ◦ F )p ≤ 2p−1
(
Hα,s(Ψ)p‖g‖αp

C1 + 2V̂p(Ψ)p + 2p||Ψ||p∞
)

≤Mp||Ψ||pα,s + 2pV̂p(Ψ)p ≤ (M ||Ψ||α,s + 2V̂p(Ψ))p.

Therefore,

V̂p(Ψ ◦ F ) ≤M ||Ψ||α,s + 2V̂p(Ψ).

Using the last inequality repeatedly and the fact that ||Ψ ◦F ||α,s ≤ ||Ψ||α,s,
we obtain the result. �

For Ψ : Σ→ R piecewise Cα, we define

‖Ψ‖α = ‖Ψ‖∞ +Hα(Ψ), Hα(Ψ) = sup
ξ1 6=ξ2

|Ψ(ξ2)−Ψ(ξ1)|
|ξ2 − ξ1|α

,

where we restrict to the cases ξ1, ξ2 ∈ Σ+ and ξ1, ξ2 ∈ Σ− in the supremum.

Corollary 5.5. There exists C > 0 and θ ∈ (0, 1) such that∣∣∣∣∫ Ψ · (Ψ ◦ Fnε ) dµFε −
(∫

Ψ dµFε

)2
∣∣∣∣ ≤ C||Ψ||2α θn

for all n ≥ 1, ε ≥ 0 and all piecewise Cα observables Ψ : Σ→ R.

Proof. By Lemma 5.3,

||Π(Ψ ◦ F jε )||1,1/p + V̂p(Ψ ◦ F jε ) ≤ ‖Ψ‖∞ + (21/p + 1)V̂p(Ψ ◦ F jε ).

By Lemma 5.4, there is a constant K0 > 1 such that

||Π(Ψ ◦ F jε )||1,1/p + V̂p(Ψ ◦ F jε ) ≤ K02j(‖Ψ‖α,s + V̂p(Ψ)).

Hence assumption (6) holds with K = 2K0. The result follows from Theo-
rem 5.2 since DΨ ≤ 3‖Ψ‖α and ‖Ψ‖α,s ≤ ‖Ψ‖α. �

5.2. Variance continuity for the family of two dimensional maps.
We continue to fix α ∈ (0, 1].

Theorem 5.6. Let Ψε, ε ≥ 0, be piecewise Cα with supε ||Ψε||α < ∞.
Assume that

lim
ε→0

∫
|Ψε −Ψ0| dµFε = 0. (7)

Then limε→0 σ
2
Fε

(Ψε) = σ2
F0

(Ψ0).

(The hypotheses of this result will be verified in section 6. In particular,
condition (7) is addressed in Lemma 6.2.)

We first prove a lemma that will be used in the proof of Theorem 5.6.

Lemma 5.7. Let Ψ : Σ→ R be piecewise continuous and fix n ≥ 0. Then

lim
ε→0

∫
|Ψ ◦ Fn0 −Ψ ◦ Fn−1

0 ◦ Fε| dµFε = 0.

Proof. Let δ > 0, j ≥ 0, and define Eδ,j =
⋃j
i=0 F

−i
0 (Bδ) where Bδ is the

δ-neighbourhood of Γ. Then µF0(Eδ,n) ≤ (n + 1)µF0(Bδ) ≤ Mδ where
M = 2(n+ 1)‖h0‖∞.
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The closure of Eδ,n lies in the interior of E2δ,n, so there exists a continuous
function χ : Σ → [0, 1] supported in E2δ,n and equal to 1 on Eδ,n. By sta-
tistical stability, for ε sufficiently small, µFε(Eδ,n) ≤

∫
χdµFε ≤ 2

∫
χdµF0 ≤

2µF0(E2δ,n) ≤ 4Mδ.
Let Ecδ,j = Σ \ Eδ,j . Now F0(ξ) ∈ Ecδ,n−1 for ξ ∈ Ecδ,n. Also, Fε → F0

uniformly on Ecδ,n as ε → 0, so F0(ξ), Fε(ξ) ∈ Ecδ/2,n−1 for all ξ ∈ Ecδ,n
and all sufficiently small ε. Moreover, Ψ ◦ Fn−1

0 is uniformly continuous on
Ecδ/2,n−1. It follows from this and the uniform convergence of Fε on Ecδ,n
that Sε = supEcδ,n

|Ψ ◦ Fn−1
0 ◦ Fε −Ψ ◦ Fn0 | → 0 as ε→ 0.

Hence∫
|Ψ ◦ Fn0 −Ψ ◦ Fn−1

0 ◦ Fε| dµFε ≤
∫
Eδ,n

|Ψ ◦ Fn0 −Ψ ◦ Fn−1
0 ◦ Fε| dµFε

+

∫
Ecδ,n

|Ψ ◦ Fn0 −Ψ ◦ Fn−1
0 ◦ Fε| dµFε

≤ 2||Ψ||∞ µFε(Eδ,n) + Sε ≤ 8||Ψ||∞Mδ + Sε → 8||Ψ||∞Mδ.

The result follows since δ > 0 is arbitrary. �

Proof of Theorem 5.6. We use the Green-Kubo formula (5). Recall that

Ψ̂ε = Ψε −
∫

Ψε dµFε . By Corollary 5.5, the series in (5) is absolutely

convergent uniformly in ε. Therefore, it suffices to show that
∫

Ψ̂ε · (Ψ̂ε ◦
Fnε ) dµFε →

∫
Ψ̂0 · (Ψ̂0 ◦ Fn0 ) dµF0 as ε→ 0 for each fixed n ≥ 0. Now∫
Ψ̂ε · (Ψ̂ε ◦ Fnε ) dµFε −

∫
Ψ̂0 · (Ψ̂0 ◦ Fn0 ) dµF0

=

∫
Ψ̂ε · (Ψ̂ε ◦ Fnε ) dµFε −

∫
Ψ̂0 · (Ψ̂ε ◦ Fnε ) dµFε

+

∫
Ψ̂0 · (Ψ̂ε ◦ Fnε ) dµFε −

∫
Ψ̂0 · (Ψ̂0 ◦ Fnε ) dµFε

+

∫
Ψ̂0 · (Ψ̂0 ◦ Fnε ) dµFε −

∫
Ψ̂0 · (Ψ̂0 ◦ Fn0 ) dµFε

+

∫
Ψ̂0 · (Ψ̂0 ◦ Fn0 ) dµFε −

∫
Ψ̂0 · (Ψ̂0 ◦ Fn0 ) dµF0

= (I) + (II) + (III) + (IV ).

We have |(II)| ≤ ‖Ψ̂0‖∞
∫
|Ψ̂ε−Ψ̂0|◦Fnε dµFε = ‖Ψ̂0‖∞

∫
|Ψ̂ε−Ψ̂0| dµFε → 0

by (7), and similarly (I)→ 0. Also, (IV )→ 0 by Proposition 5.1.

Finally, |(III)| ≤ ‖Ψ̂0‖∞
∫
|Ψ̂0 ◦ Fn0 − Ψ̂0 ◦ Fnε | dµFε . Note that∫

|Ψ̂0 ◦ Fn0 − Ψ̂0 ◦ Fnε | dµFε ≤
n∑
i=1

∫
|Ψ̂0 ◦ F i0 ◦ Fn−iε − Ψ̂0 ◦ F i−1

0 ◦ Fn−i+1
ε | dµFε

=
n∑
i=1

∫
|Ψ̂0 ◦ F i0 − Ψ̂0 ◦ F i−1

0 ◦ Fε| dµFε .

Thus, by Lemma 5.7, (III)→ 0 as ε→ 0. �

We end this section with the following result which gives explicit estimates
in terms of Ψ as required for the proof of Theorem 1.1(b).
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Proposition 5.8. Let ‖Ψ‖1,ε =
∫
|Ψ| dµFε. For all H > 0 and α > 0, there

exists C > 0 such that

|σ2
Fε(Ψ)− σ2

Fε(Ψ
′)| ≤ C‖Ψ−Ψ′‖1,ε(1 + | log ‖Ψ−Ψ′‖1,ε|)

for all Ψ, Ψ′ piecewise Hölder with ‖Ψ‖α, ‖Ψ′‖α ≤ H and all ε ≥ 0.

Proof. Let Ψ̂ = Ψ−
∫

Ψ dµFε and Ψ̂′ = Ψ′−
∫

Ψ′ dµFε . Let N ≥ 1. It follows
from the Green-Kubo formula (5) that

|σ2
Fε(Ψ)− σ2

Fε(Ψ
′)| ≤ 2

N−1∑
n=0

‖Ψ̂(Ψ̂ ◦ Fnε )− Ψ̂′(Ψ̂′ ◦ Fnε )‖1,ε

+ 2
∞∑
n=N

‖Ψ̂(Ψ̂ ◦ Fnε )‖1,ε + 2

∞∑
n=N

‖Ψ̂′(Ψ̂′ ◦ Fnε )‖1,ε.

Now

‖Ψ̂(Ψ̂ ◦ Fnε )− Ψ̂′(Ψ̂′ ◦ Fnε )‖1,ε ≤ ‖Ψ̂− Ψ̂′‖1,ε‖Ψ̂ ◦ Fnε ‖∞
+ ‖Ψ̂′‖∞‖Ψ̂ ◦ Fnε − Ψ̂′ ◦ Fnε ‖1,ε

= (‖Ψ̂‖∞ + ‖Ψ̂′‖∞)‖Ψ̂− Ψ̂′‖1,ε ≤ 4(‖Ψ‖∞ + ‖Ψ′‖∞)‖Ψ−Ψ′‖1,ε.

Also, by Corollary 5.5, ‖Ψ̂(Ψ̂ ◦ Fnε )‖1,ε ≤ Cθn‖Ψ̂‖2α ≤ 4Cθn‖Ψ‖2α and simi-
larly for Ψ′. Hence

|σ2
Fε(Ψ)−σ2

Fε(Ψ
′)| ≤ 8N(‖Ψ‖∞+‖Ψ′‖∞)‖Ψ−Ψ′‖1,ε+C ′θN (‖Ψ‖2α+‖Ψ′‖2α).

where C ′ = 8C(1 − θ)−1. Taking N = [q| log ‖Ψ − Ψ′‖1,ε|] for q sufficiently
large yields the desired result. �

6. Variance continuity for the flows

By [5, 16], the CLT holds for Hölder observables for the Lorenz flows
Xε. In this section, we show how to obtain continuity of the variances,
proving Theorem 1.1. During most of this section we continue to work with
normalised families as in section 3, culminating in Corollary 6.5 which is
an analogue of Theorem 1.1 for normalised families. We conclude by using
Corollary 6.5 to prove Theorem 1.1. Throughout we fix β ∈ (0, 1).

First, we recall some results from the literature. Let ψ : R3 → R be Cβ.
Define

ψ̃(x) = ψ(x)− ψ(0).

Also, define the induced observables Ψε : Σ \ Γ→ R, ε ≥ 0, by

Ψε(ξ) =

∫ τε(ξ)

0
ψ̃(Xε(ξ, t)) dt. (8)

The left-hand side of (2) is identical for ψ and ψ̃, so

σ2
Xε(ψ) = σ2

Xε(ψ̃). (9)

Proposition 6.1. The variances for ψ̃ and Ψε are related by

σ2
Xε(ψ̃) =

σ2
Fε

(Ψε)∫
τε dµFε

.
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Proof. By [16], ψ̃ satisfies the CLT. The method of proof in [16] is to show

that Ψε and τε satisfy the CLT, whereupon the CLT for ψ̃ follows from [22,
Theorem 1.1]. The desired relation between the variances is given explicitly
in [22, Theorem 1.1]. �

By [2, Lemma 4.1],

lim
ε→0

∫
τε dµFε =

∫
τ0 dµF0 . (10)

Hence the main quantity to control is σ2
Fε

(Ψε). First, we verify condition (7)
in Theorem 5.6.

Lemma 6.2. limε→0

∫
|Ψε −Ψ0| dµFε = 0.

Proof. Fix N ≥ 1 and set τε,N (ξ) = min{τε(ξ), N}. Define

Ψε,N (ξ) =

∫ τε,N (ξ)

0
ψ̃(Xε(ξ, t)) dt.

Then

|Ψ0 −Ψε| ≤ |Ψ0 −Ψ0,N |+ |Ψ0,N −Ψε,N |+ |Ψε,N −Ψε|.
Now,

|Ψε(ξ)−Ψε,N (ξ)| =
∣∣∣ ∫ τε(ξ)

τε,N (ξ)
ψ̃(Xε(ξ, t)) dt

∣∣∣ ≤ 2‖ψ‖∞(τε(ξ)− τε,N (ξ)).

Recall that ξ = (x, y, 1). Now τε(ξ)−τε,N (ξ) ≤ −C log |x|−N , and τε−τε,N
is supported on Bε = {ξ : τε(ξ) > N} ⊂ {ξ : |x| < e−N/C}. Hence,∫

|Ψε −Ψε,N | dµFε ≤ 2‖hε‖∞‖ψ‖∞
∫
Bε

(−C log |x| −N) dx

= 4‖hε‖∞‖ψ‖∞
∫ e−N/C

0
(−C log x−N) dx = 4C‖hε‖∞||ψ||∞e

−N/C .

By Proposition 4.1(a), there exists C ′ > 0 such that
∫
|Ψε − Ψε,N | dµFε ≤

C ′e−N/C‖ψ‖∞. Similarly,
∫
|Ψ0 −Ψ0,N | dµFε ≤ C ′e−N/C‖ψ‖∞.

Next, |Ψε,N (ξ)−Ψ0,N (ξ)| ≤ (I) + (II) where

(I) =

∫ τε,N (ξ)

τ0,N (ξ)
|ψ̃(Xε(ξ, t))| dt ≤ 2‖ψ‖∞|τε,N (ξ)− τ0,N (ξ)|,

(II) =

∫ τ0,N (ξ)

0
|ψ̃(Xε(ξ, t))− ψ̃(X0(ξ, t))| dt

≤
∫ N

0
|ψ(Xε(ξ, t))− ψ(X0(ξ, t))| dt ≤ Hβ(ψ)

∫ N

0
|Xε(ξ, t)−X0(ξ, t)|β dt.

For δ > 0 fixed sufficiently small, there exists ε0 > 0 such that τε,N (ξ) ≡ N
for |x| < δ and ε < ε0. Also, it follows from smoothness of the flow and
boundedness of first hit times for |x| ≥ δ that τε,N → τ0,N uniformly on
{|x| ≥ δ}. Hence limε→0 ‖τε,N − τ0,N‖∞ = 0 and so limε→0 ‖(I)‖∞ = 0.

By continuity of the flow in initial conditions and parameters, Xε(ξ, t)→
X0(ξ, t) uniformly in ξ ∈ Σ and t ∈ [0, N ]. Hence limε→0 ‖(II)‖∞ = 0.

We have shown that limε→0

∫
|Ψε − Ψ0| dµFε ≤ 2C ′e−N/C . The result

follows since N is arbitrary. �



14 Wael Bahsoun, Ian Melbourne and Marks Ruziboev

Next, we show that supε ‖Ψε‖α <∞ for some α > 0.

Lemma 6.3. Define Ψ̃ε : Σ→ R by setting

Ψ̃ε(x, y) =

∫ − 1
λ1,ε

log |x|

0
ψ̃(xeλ1,εt, yeλ2,εt, eλ3,εt) dt.

Choose 0 < α′ < −λ3,εβ/(λ1,ε−λ3,ε). Then Ψ̃ε is piecewise Cα
′
. Moreover,

there is a constant C > 0 such that ‖Ψ̃ε‖α′ ≤ C‖ψ‖β for all ε ≥ 0.

Proof. We suppress the dependence on ε. Write ψ̃(x, y, z) = ψ1(x)+ψ2(x, y, z)

where ψ1(x) = ψ̃(x, 0, 0). Then ψ1 and ψ2 are Hölder with Hβ(ψ1) ≤ Hβ(ψ)
and Hβ(ψ2) ≤ 2Hβ(ψ). Also, ψ1(0) = 0 and ψ2(x, 0, 0) ≡ 0. Define

Ψ̃1(x) =

∫ − 1
λ1

log x

0
ψ1(xeλ1t) dt, Ψ̃2(x, y) =

∫ − 1
λ1

log x

0
ψ2(xeλ1t, yeλ2t, eλ3t) dt.

Recall that λ2 < λ3 < 0 < λ1.
First we carry out the estimates for Ψ̃1 with α′ = β. By the change of

variables u = xeλ1t,

Ψ̃1(x) =
1

λ1

∫ 1

x

ψ1(u)

u
du.

Now |ψ1(u)| = |ψ1(u)−ψ1(0)| ≤ Hβ(ψ)uβ, so |Ψ̃1|∞ ≤
Hβ(ψ)
λ1

∫ 1
0 u
−(1−β) du =

Hβ(ψ)
λ1β

. Also for x1 > x2 > 0,

|Ψ̃1(x1)− Ψ̃1(x2)| ≤
Hβ(ψ)

λ1

∫ x1

x2

u−(1−β) du

=
Hβ(ψ)

λ1β
(xβ1 − x

β
2 ) ≤

Hβ(ψ)

λ1β
(x1 − x2)β.

Here, we have used that xβ1 − xβ2 ≤ (x1 − x2)β for all β ∈ [0, 1]. Hence

‖Ψ̃1‖β ≤ 1
λ1β
‖ψ‖β.

Next, we carry out the estimates for Ψ̃2. Note that

|ψ2(xeλ1t, yeλ2t, eλ3t)| =|ψ2(xeλ1t, yeλ2t, eλ3t)− ψ2(xeλ1t, 0, 0)|

=|ψ2(xeλ1t, yeλ2t, eλ3t)− ψ2(xeλ1t, yeλ2t, 0)|

+ |ψ2(xeλ1t, yeλ2t, 0)− ψ2(xeλ1t, 0, 0)|

≤Hβ(ψ2)(eβλ3t + |y|βeβλ2t) ≤ 4Hβ(ψ)eβλ3t. (11)

In particular,

|Ψ̃2|∞ ≤ 4Hβ(ψ)

∫ − 1
λ1

log x

0
eβλ3t dt =

4Hβ(ψ)

β|λ3|
(1− x−βλ3/λ1) ≤

4Hβ(ψ)

β|λ3|
.

Similarly,

|Ψ̃2(x, y1)−Ψ̃2(x, y2)| ≤
∫ − 1

λ1
log x

0
Hβ(ψ2)|y1−y2|βeβλ2t dt ≤

2Hβ(ψ)

β|λ2|
|y1−y2|β.
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For x1 > x2 > 0, we have |Ψ̃2(x1, y)− Ψ̃2(x2, y)| ≤ A+B where

A =

∫ − 1
λ1

log x2

− 1
λ1

log x1

ψ2(x2e
λ1t, yeλ2t, eλ3t) dt,

B =

∫ − 1
λ1

log x1

0
|ψ2(x1e

λ1t, yeλ2t, eλ3t)− ψ2(x2e
λ1t, yeλ2t, eλ3t)| dt.

By (11),

A ≤ 4Hβ(ψ)

∫ − 1
λ1

log x2

− 1
λ1

log x1

eβλ3t dt =
4Hβ(ψ)

β|λ3|
(xγ1 − x

γ
2) ≤

4Hβ(ψ)

β|λ3|
(x1 − x2)γ

where γ = −λ3β/λ1. Let

α′ = δβ, λ′ = δλ1 + (1− δ)λ3,

where 0 < δ < −λ3/(λ1 − λ3) < 1. In particular, α′ < γ and λ′ < 0.
Since the eigenvalues λ1, λ3 depend continuously on ε, we can choose δ
independent of ε. The inequality min{a, b} ≤ aδb1−δ holds for all a, b ≥ 0.
By (11),

|ψ2(x1e
λ1t, yeλ2t, eλ3t)− ψ2(x2e

λ1t, yeλ2t, eλ3t)|

≤ min{Hβ(ψ2)(x1 − x2)βeβλ1t, 8Hβ(ψ)eβλ3t} ≤ 8Hβ(ψ)(x1 − x2)δβeδλ
′t.

Hence B ≤ 8
δ|λ′|Hβ(ψ)(x1 − x2)α

′
completing the proof. �

Corollary 6.4. There exists α ∈ (0, β) such that Ψε is piecewise Cα. More-
over, there is a constant C > 0 such that supε ‖Ψε‖α ≤ C‖ψ‖β.

Proof. After a Cα change of coordinates in a neighbourhood of the singular-
ity, we may suppose without loss of generality that the flow Xε is linear near
the singularity. Here, α > 0 can be chosen independent of ε with bounded
Hölder constants for the linearisation [10]. We choose α < α′ where α′ is as
in Lemma 6.3

For the remainder of the proof we suppress the dependence on ε. The first
hit time in this neighbourhood is given by τ1(ξ) = − 1

λ1
log |x|. Recall that

ξ = (x, y, 1) and set ξ′ = X(ξ, τ1(ξ)) = (1, yx−λ2/λ1 , x−λ3/λ1). Note that the
dependence of ξ′ on ξ is Hölder (also uniformly in ε). Then τ = τ1 + τ2

where τ2 is Cα in ξ′ and hence ξ (uniformly in ε). Also, Ψ = Ψ̃ + Ψ̂ where

Ψ̃(ξ) =

∫ τ1(ξ)

0
ψ̃(xeλ1t, yeλ2t, eλ3t) dt, Ψ̂(ξ) =

∫ τ2(ξ)

0
ψ̃(X(ξ′, t)) dt. (12)

Since ‖τ2‖∞ is bounded, it is immediate that Ψ̂ is Cα uniformly in ε. By

Lemma 6.3, the same is true for Ψ̃. �

We can now state and prove the analogue of Theorem 1.1 for normalised
families. Define ‖ψ‖(ε) =

∫
|ψ| dµε + |ψ(0)|.

Corollary 6.5. Let Xε be a normalised family of flows admitting geometric
Lorenz attractors. Then

(a) limε→0 σ
2
Xε

(ψ) = σ2
X0

(ψ) for all Cβ observables ψ : R3 → R
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(b) For any H > 0, there exists C > 0 such that

|σ2
Xε(ψ)− σ2

Xε(ψ
′)| ≤ C‖ψ − ψ′‖(ε)(1 + | log ‖ψ − ψ′‖(ε)|)

for all Cβ observables ψ, ψ′ : R3 → R with ‖ψ‖β, ‖ψ′‖β ≤ H, and all
ε ≥ 0.

Proof. By Corollary 6.4, there exists C1 > 0, α ∈ (0, 1) such that Ψε, Ψ′ε
are piecewise Cα and

sup
ε
‖Ψε‖α ≤ C1‖ψ‖β, sup

ε
‖Ψ′ε‖α ≤ C1‖ψ′‖β. (13)

By (9) and Proposition 6.1,

|σ2
Xε(ψ)− σ2

Xε′
(ψ′)| = |σ2

Xε(ψ̃)− σ2
Xε′

(ψ̃′)| =

∣∣∣∣∣ σ2
Fε

(Ψε)∫
τε dµFε

−
σ2
Fε′

(Ψ′ε′)∫
τε′ dµFε′

∣∣∣∣∣
≤ σ2

Fε′
(Ψ′ε′)

∣∣∣∣ 1∫
τε dµFε

− 1∫
τε′ dµFε′

∣∣∣∣+
1∫

τε dµFε

∣∣∣σ2
Fε(Ψε)− σ2

Fε′
(Ψ′ε′)

∣∣∣ .
First suppose that ψ = ψ′ and ε′ = 0. By Lemma 6.2 and (13), we can

apply Theorem 5.6 to deduce that limε→0 σ
2
Fε

(Ψε) = σ2
F0

(Ψ0). Part (a) now
follows from (10).

Next suppose that ε = ε′. By Proposition 5.8 and (13), there is a constant
C > 0 (independent of ε) such that |σ2

Fε
(Ψε)−σ2

Fε
(Ψ′ε)| ≤ C‖Ψε−Ψ′ε‖1,ε(1+

| log ‖Ψε −Ψ′ε‖1,ε|) where

‖Ψε −Ψ′ε‖1,ε =

∫
|Ψε −Ψ′ε| dµFε ≤

∫ ∫ τε(ξ)

0
|ψ̃(Xε(ξ, t)− ψ̃′(Xε(ξ, t)| dt dµFε

=

∫
τε dµFε

∫
|ψ̃ − ψ̃′| dµε ≤

∫
τε dµFε

(∫
|ψ − ψ′| dµε + |ψ(0)− ψ′(0)|

)
.

This proves part (b). �

Proof of Theorem 1.1. Let φε : U → U be the family of normalising conju-
gacies in section 3. Recall that X̃ε(x, t) = φ−1

ε ◦Xε(φε(x), t). Define

ψε = ψ ◦ φε, ψ′ε = ψ′ ◦ φε, µ̃ε = φ−1
ε ∗µε.

Then ψε is Hölder and∫
ψε dµ̃ε =

∫
ψ dµε,

∫ t

0
ψε ◦ X̃ε(s) ds =

(∫ t

0
ψ ◦Xε(s) ds

)
◦ φε.

Hence
∫ t

0 ψ◦Xε(s) ds−t
∫
ψ dµε and

∫ t
0 ψε◦X̃ε(s) ds−t

∫
ψε dµ̃ε have the same

distribution (relative to the probability measures µε and µ̃ε respectively) so
it follows from (2) that σ2

Xε
(ψ) = σ2

X̃ε
(ψε). Similar comments apply to ψ′.

It follows from the definitions that X̃ε is a normalised family. By Corol-
lary 3.2, there exists H > 0 and β ∈ (0, 1) such that supε ‖ψε‖β ≤ H and
supε ‖ψ′ε‖β ≤ H.

By Corollary 6.5(b), there is a constant C > 0 such that

|σ2
Xε(ψ)−σ2

X0
(ψ)| = |σ2

X̃ε
(ψε)− σ2

X̃0
(ψ0)|

≤ |σ2
X̃ε

(ψε)− σ2
X̃ε

(ψ0)|+ |σ2
X̃ε

(ψ0)− σ2
X̃0

(ψ0)|

≤ C‖ψε − ψ0‖∞(1 + | log ‖ψε − ψ0‖∞|) + |σ2
X̃ε

(ψ0)− σ2
X̃0

(ψ0)|.
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By Corollary 6.5(a), the second term on the right-hand side converges to
zero as ε→ 0. Also, limε→0 ‖ψε−ψ0‖∞ = limε→0 ‖ψ ◦φ−1

ε −ψ ◦φ−1
0 ‖∞ = 0

by Corollary 3.2. Hence limε→0 σ
2
Xε

(ψ) = σ2
X0

(ψ) proving part (a).
Finally, by Corollary 6.5(b),

|σ2
X0

(ψ)− σ2
X0

(ψ′) = |σ2
X̃0

(ψ0)− σ2
X̃0

(ψ′0)|

≤ C‖ψ0 − ψ′0‖(0)(1 + | log ‖ψ0 − ψ′0‖(0)|)
= C‖ψ − ψ′‖(1 + | log ‖ψ − ψ′‖|)

yielding part (b). �
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