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Abstract

We obtain normal forms for infinitesimally symplectic matrices (or
linear Hamiltonian vector fields) that commute with the symplectic
action of a compact Lie group of symmetries. In doing so we extend
Williamson’s theorem on normal forms when there is no symmetry
present.
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division ring. There are three real division rings consisting of the real,
complex and quaternionic numbers. Of these, only the real case is
covered in Williamson’s original work.
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1 Introduction

In this paper, we obtain a list of normal forms for linear Hamiltonian vector
fields that commute with the action of a compact Lie group of symmetries.
This is an equivariant generalization of work of Williamson [17] who gave a
list of normal forms in the absence of symmetry. Linear Hamiltonian vector
fields can be viewed as infinitesimally symplectic matrices, and the William-
son normal form theorem fills the role for infinitesimally symplectic matrices
that the Jordan normal form theorem fills for general square matrices.

Galin’s work [4] on versal deformations of infinitesimally symplectic ma-
trices depends heavily on Williamson’s Theorem. Similarly, an equivariant
version of Williamson’s Theorem is a necessary first step (indeed the main
step) in an equivariant generalization of Galin’s results. Such a generaliza-
tion is currently in progress [11] and renders many of the ad hoc methods
in [3] unnecessary.

We note that there is a vast literature on Williamson’s and Galin’s The-
orems in the absence of symmetry, see [1], [2], [8], [9] and [13]. Also see [14]
and [15] when there is a time-reversal symmetry.

Let us describe in more detail the problem addressed in [17]. Suppose
that R*® is equipped with the standard inner product <, > and define the
I(jl _({ " ) Then J induces
the canonical symplectic form w on R*" by w(z,y) =< x,Jy > for z,y €
R?". The Lie group of symplectic transformations Sp,, consists of those
linear mappings P : R*™ — R?" that preserve the symplectic structure:
w(Px, Py) = w(z,y). Equivalently PJPT = J.

The Lie algebra of Sp,, is denoted by sp,, and consists of infinites:-
mally symplectic transformations. These satisfy the condition w(Azx,y) +
w(z, Ay) = 0, equivalently AJ + JAT = 0. The group Sp,, acts on sp,,
by similarity transformations. (In more sophisticated language, this is the
adjoint action of the Lie group Sp,,, on its Lie algebra sp,,.) The list of nor-
mal forms in Williamson [17] has the property that each matrix in A € sp,,
can be transformed by a symplectic change of coordinates to precisely one of
these normal forms.

An elementary result in linear algebra states that any nonsingular skew-
symmetric matrix R can be transformed into J by an orthogonal change of
coordinates. It turns out to be convenient to enlarge the problem as follows.
Let sky, denote the set of nonsingular skew-symmetric 2n x 2n matrices. If
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R € sky,, define sp,, (R) to be the set of 2n x 2n matrices M satisfying
MR + RMT = 0. If P is nonsingular then PRPT € sk,, and PMP ! ¢
spy, (PRPT) so that we obtain an equivalence relation on symplectic pairs
(M, R) that restricts to the original equivalence relation on sp,,,.

Williamson begins by computing normal forms for symplectic pairs. Then
if (M, R) is in normal form, R can be transformed into J by an orthogonal
change of coordinates. Simultaneously transforming M we obtain a matrix
A € sp,,. This provides a method for converting normal forms (M, R) for
symplectic pairs into normal forms A for infinitesimally symplectic matrices.
For many theoretical purposes, for example in the work of Galin [4] and the
equivariant analog, it is actually more convenient to work with (M, R) rather
than A. This is because the coordinates are nicer, R having been chosen to
complement the structure of M.

The setup described above can be generalized to the equivariant context.
Let I' € O(2n) be a compact Lie group acting orthogonally on R**. We
assume that the action is symplectic, that is I' C Sp,,,. It follows that J is
I'-equivariant (that is J commutes with the action of I') and that w is invari-
ant under the action of I'. Define Sp. and spy. to consist of the equivariant
matrices in Sp,,, and sp,,,. Then Sp; acts on spy via similarity transforma-
tions.

Again it is convenient to enlarge the problem. Begin with an orthogonal
action of I' on a finite-dimensional vector space V and let skr denote the
set, of [-equivariant nonsingular skew-symmetric matrices. If R € skr define
spr(R) to be the space of equivariant matrices M satisfying M R+ RM” = 0.
Then a I'-symplectic pair is a pair of matrices (M, R) such that R € skr and
M € spr(R).

The task of finding normal forms for I'-symplectic pairs can be reduced
by applying standard results from representation theory. The action of I is
factored out and it suffices to obtain (nonequivariant) results over each of the
real division rings D = R, C and H (the reals, complexes and quaternions).
Of course, the case D = R is solved in [17]. Now Williamson’s results were
formulated over an arbitrary commutative ring, so it may seem that they
should incorporate the case D = C. In fact they do not and this is related to
the fact that a complex matrix can be regarded as a real matrix with twice as
many rows and columns. This distinction is not important in Jordan normal
form theory but is fundamental here since the changes of coordinates involve
the transposition of matrices. The real transpose of a complex matrix is
the conjugate transpose (or adjoint). However in [17] the transpose without
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conjugation is taken regardless of the underlying ring.

The heart of the paper deals with normal forms for I'-symplectic pairs.
The main theorem, Theorem 2.4, is stated in Section 2 and proved in Sec-
tions 3, 4 and 5. Section 3 contains the main ideas of the proof, all of which
were present in Williamson’s original paper (the first of these, which we have
already described, is to enlarge the problem). Although the proof relies only
on elementary methods in linear algebra, the argument is quite lengthy and
is not easy to follow. We have attempted to present a simpler exposition
of the proof which divides naturally into three steps. The first two steps
taken alone are trivial, but judicious choices lead to a convenient framework
in which to carry out the third step. We present an abstract version of Wil-
liamson’s Theorem within an axiomatic framework (Section 4) and then fit
the choices made in the first two steps into this framework (Section 5). It
turns out that there is only one case in which this cannot be done. The
exceptional case occurs when there are zero eigenvalues and D = R.

We began with the intention of finding normal forms for matrices in spp
that are infinitesimally symplectic with respect to the canonical symplectic
structure induced by J on R?". We return to this in Section 8 but there are
some issues that must be addressed prior to this.

In enlarging the problem from one concerning infinitesimally ['-symplectic
matrices to one concerning ['-symplectic pairs, we have shifted the emphasis
considerably. We began with the canonical symplectic form on R*" (induced
by J) and considered symmetry groups I' C Sp,,,. Now we have a group I'
acting on V and we take into consideration all I'-invariant symplectic forms
(induced by the matrices in skr). If T' acts trivially on V, then skr is
nonempty if and only if V' is even-dimensional in which case all matrices in
skr can be transformed into the matrix .J. The situation is more complicated
in general: usually skr will not contain J even if the set is nonempty. More-
over the matrices in sk need not be related to each other under equivariant
changes of coordinates.

In Section 6 we describe for any representation of I' a set of canonical I'-
symplectic forms having the property that any I'- invariant symplectic form
can be transformed into precisely one of these canonical forms. This result,
originally stated in [12], can be recovered as an immediate consequence of
Theorem 2.4. The nonuniqueness of the canonical I'-symplectic forms re-
ferred to above stems from the complex representations (where D = C). It
seems that this fact was first appreciated by Montaldi, Roberts and Stew-
art [12]. In particular, the equivariant version of Darboux’s Theorem as cited
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in [7] is incorrect.

It might be argued that we should consider only those groups G C Sp,,,,
namely those that preserve the symplectic form induced by J. In applica-
tions, it is usually the case that we start with such a representation. However,
the ‘nonstandard’ representations often crop up in the analysis of such prob-
lems, see for example [12]. Some of these representations have the property
of cyclospectrality which has important implications for the linear stability
of relative equilibria. The cyclospectral representations were defined and
classified in [12]. In Section 7 we recover these results, again as an easy
consequence of Theorem 2.4. In addition, we define and classify the weakly
cyclospectral representations which have implications for the existence of Li-
apunov centers. The information obtained from the cyclospectrality (weak
or otherwise) is independent of the precise structure of the Hamiltonian and
depends only on its invariance under I'.

Finally, in Section 8, we return to the original problem of obtaining nor-
mal forms for infinitesimally ['-symplectic matrices. (An infinitesimally I'-
symplectic matrix is an equivariant matrix A that satisfies AK + KAT =0
where K induces on V' a canonical I'-symplectic form as defined in Section 6.)

The remainder of this section is divided into two subsections. Subsec-
tion 1.1 is mainly notational, and in Subsection 1.2 we recall the Jordan
normal form theorem over a real division ring. (This is of course standard
except over the quaternions.)

1.1 Notation

In this section we review the notation that will be used in this paper. The
notation in (a) and (b) below is not standard but is used heavily in the
statement and proof of our theorems. In contrast, the notation in (c) is
standard but is used only in the proof of the theorems.



(a) Definition of I, Ny, T}, and X

We define four £ x k real matrices. Let I; denote the identity matrix, and
Ny, the standard nilpotent matrix of order k,

01 0

Nk: 0
1
0 0

0 . ! 0 . -1
Tk = o 7Xk =
1 0 (—l)k 0
Proposition 1.1
(i) The matrices Iy, Ny, NZ, ... ,N,f_l form a linearly independent set.

(i) TE =T, ' =Ty
(iii) XF = X' = (-1)F1X,.
(iV) Nka = TkN,’f, Nka = —XkN]?.

(v) If k > £ and A is an £ x £ matriz, then

n(5)=(08) = (3)=(%")

(b) Matrices over a real division ring

Throughout this paper we shall work with matrices over a real division ring.
Let D denote one of the real division rings R, C or H. Let d = dimg D = 1,2
or 4. Suppose that « is a p X p matrix over D. Then there are standard
homomorphisms that identify a with a dp x dp real matrix A. Any matrix A
that can be obtained in this way is said to be real, real-complex or real-
quaternionic respectively.



Often we shall use this identification in reverse, so that a real matrix which
just happens to have the structure of a real-complex or real-quaternionic
matrix can be written as a matrix over C or H. The number of entries is
thus reduced by a factor of four or sixteen.

Of course, if D = R, then we just let A = «. Suppose that D = C. Then

a = {ars b1<r,s<p Where oy = a,5+1b,s € C. Let A, = ( Ars ~brs ) Then

brs Qs
define o = A where A is the 2p X 2p matrix obtained from « replacing o
by A,s.

Finally suppose that D = H. Then o = {a,s}1<rs<p Where a5 = ars +
Qrs _brs Crs _drs
b’rs Qrs drs Crs

—Crs _drs Qrs brs
drs —Crs _brs Qrs
apg = A where A is the 4p x 4p matrix obtained from « replacing a,; by Ay;.

For example,

1bys+jcrs+ kd,s € H. Let A, = . Then define

a —=b c —d

. ) a+1ib c+id b a d c
(a+zb+jc+kd)H:(_c+id a—ib)C: e d a4 b
d —c —=b a

Notice that the matrix 1p corresponds to three different matrices depending
on D. That is

1R = 1, 1(c = IQ, 1H = (IQ)C = I4.
On the other hand, The matrix ip is undefined if D = R and

0 -1 00
(0 -1 (i 0y [1 0 00
Z<C_<1 0)’ ZH_(O—@')C_ 0 0 01

0 0 -10

The conjugate of an element of D is defined in the usual way: if a € R,
a=a,ifa=a+ibeC,a=a—1tb,andifa=a+ib+jc+kd e H, a =

a—ib—jc— kd. Then if & = {oys}1<rs<p; s € D we define the transpose

matrix o

ol = {ars}IST,SSp'

Notice that if ap = A then of, = AT.
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(c) Tensor products of matrices

Suppose that A is a k£ x k£ matrix and « is a p x p matrix. The tensor
product of the matrices is defined to be the kp x kp matrix A ® o formed by
replacing each of the entries of A by the product of that entry with . Thus
if A= {a'ij}lgi,jgk then A®@ a = {aija}lsi’jsk.

Proposition 1.2 Suppose that A, B are k x k matrices and o, 3 are p X p
matrices. Then

(a) (A® a)(B® P) = (AB) ® (ap).
(h) (A a)l = AT @ aT.

(¢) If A and « are nonsingular, then A® « is nonsingular and (A®a)™! =
A7 @a™h

(d) (ARa)® (BRa)=(A® B)® a.
(e) (ARa)RF=AQ (a® f).

(f) a® A is similar to A® « by an orthogonal change of coordinates.

The orthogonal transformation in part (f) consists of rearrangement of
rows and columns in the order

Lp+1,2p+1,...,(k—=1)p+1
2,p+2,2p+2,...,(k—1)p+2

D, 2p,3p, ..., kp

1.2 Jordan normal forms over real division rings

We recall the Jordan normal form theorems over R, C and H. The real and
(real)-complex cases are standard. A reference for the real-quaternionic case
is Wiegmann [16].

Theorem 1.3 (a) Any real matriz is similar to a direct sum of matrices of
the form

ply + Ni, p € R,



and
(uly + Np)os, p=a+iB, a € R, 3 > 0.
(b) Any real-complex matriz is similar to a direct sum of matrices of the form
(uly + Np)os b= a+183, a, B € R.

(c) Any real-quaternionic matriz is similar to a direct sum of matrices of the
form

(ule + Ne)p, p=a+i8, a € R, 3 > 0.
In each case, the direct sum s unique up to permutation of summands.

Remark 1.4 In the real and real-quaternionic cases, it is possible to assume
that in each summand p has nonnegative imaginary part. This is not true in
the real-complex case and has important implications for the results in [11]. It
turns out that this is the reason why the complex irreducible case is different
from the others in [3].

2 The Equivariant Williamson Theorem

Let T" be a compact Lie group acting on V. We define Homp (V') to be the
vector space of I'-equivariant real matrices

Homp(V) ={L:V — V linear; Ly = vL for all y € T'}.

Let skr be the set of nonsingular skew-symmetric [-equivariant matrices.
Then if R € skr, define spp(R) to consist of those I'-equivariant matri-
ces M satisfying MR + RMT = 0. We call such pairs of matrices (M, R)
[-symplectic pairs.

We define an equivalence relation on I'-symplectic pairs based on the
following observation. Suppose that (M, R) is a I'-symplectic pair, and P €
Homy (V) is nonsingular. Then it is easily verified that (PMP~', PRPT) is
a I'-symplectic pair. Hence we define two pairs to be equivalent, (M, R) ~
(M', R'), if there exists a nonsingular matrix P € Homp (V') such that

PMP*'=M', PRPT=R.



The equivariant Williamson theorem gives a list of normal forms for I'-
symplectic pairs under this equivalence relation.

We divide this section into two parts. In Subsection 2.1 we show that real
matrices that commute with a compact Lie group action can be decomposed
into the direct sum of matrices whose entries lie in a real division ring, thus
reducing the problem. We make use of basic results from real representation
theory, see for example [6]. Then in Subsection 2.2 we state Williamson’s
theorem over each real division ring. (There are only three nonisomorphic
real division rings: the reals, complexes and quaternions.)

2.1 Equivariant matrices

A subspace U is said to be I'-irreducible if it is invariant under I and has no

proper invariant subspaces. It is known that if U is an irreducible subspace,

then Homp(U) is a real division ring and hence is isomorphic to R, C or H.
The space V may be written as a direct sum of irreducible subspaces

V=U&- - -®U.

Group together those U; on which I acts isomorphically to obtain the isotypic
decomposition

V=W ---&W,

where each isotypic component W; is the sum of isomorphic irreducible sub-
spaces. The isotypic decomposition is unique, and moreover each isotypic
component is left invariant by matrices in Homp (V). It follows that

Homp (V) = Homp(W;) @ - - - & Homp (W). (2.1)

Next suppose that W is an isotypic component. We may write W =
Ud---dU = @~ U where U is irreducible and Homr(U) = D = R,C
or H. Let A € Homp(W). Then A = {Ajx}1<jr<m where Aji, : U — U. It
is easy to check that A;;, € Homp(U). Since Homp(U) = D we have shown
that

Homp (W) = Hom(D™), (2.2)

where Hom(D™) denote the space of m x m matrices with entries in D. Often
it will be convenient to denote the isotypic component W by D™. We say
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that an isotypic component D™ is real, complex or quaternionic depending
on D. Also we define the dimension of the isotypic component D™ to be the
integer m. Note that the dimension of the corresponding (real) subspace W
is a multiple of m but is in general not equal to m.

Proposition 2.1 The space of I'-equivariant matrices has the direct sum
decomposition

Homp (V) = Hom(D7") @ - - - & Hom(D;"),
where for each j=1,... ,¢, D; =R,C or H.

Proof This follows immediately from equations (2.1) and (2.2). [

Corollary 2.2 Suppose that (M, R) is a I'-symplectic pair. Then (M, R) is
a direct sum with summands (M;, R;) where M;, R; € Hom(D}"”), with R;
nonsingular, and

Rj=—R], M;R;+ R;M] =0.
Moreover (M, R) ~ (M', R') if and only if for each j there exists a nonsin-

mj

gular matriz P; € Hom(D] ) satisfying
P,M;P' = Mj, P;R;P] =R,

Note that in this corollary, transposition is interpreted as applied to the
corresponding real matrix (as in Subsection 1.1(b)). Alternatively, take the
conjugate transpose of the matrix with entries in D.

In light of the corollary we make some more definitions. Let skpm consist
of nonsingular skew-symmetric m X m matrices with entries in D. If R €
skpm, we define sppm (R) to consist of those m x m matrices M with entries
in D satisfying MR + RMT = 0. A symplectic pair over D is a pair (M, R)
where R € skpm and M € sppm (R). Two such pairs (M, R) and (M', R') are
equivalent, (M, R) ~ (M', R'), if there is a nonsingular matrix P € Hom(D™)
such that PMP~! = M', PRPT = R'. Then the corollary can be rephrased
as the following.

Corollary 2.3 Suppose that (M, R) is a I'-symplectic pair. Then (M, R) is
a direct sum with summands (M;, R;) where (M;, R;) is a symplectic pair
over Dj. Moreover (M, R) ~ (M', R') if and only if (M;, R;) ~ (M}, R}) for
each j.
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Hence, the problem of finding normal forms for real I'-symplectic pairs
reduces to one of finding normal forms for symplectic pairs over a real division
ring.

2.2 Statement of the theorem

In this subsection we shall regard D and m as fixed and write sk instead of
skpm. If R € sk, we define sp(R) to consist of those m x m matrices M
with entries in D satisfying MR+ RM™T = 0. We call such a pair of matrices
(M, R) a symplectic pair.

Theorem 2.4 (Equivariant Williamson Theorem) Suppose that (M, R)
is a symplectic pair. Then (M, R) is equivalent to a direct sum of summands
where the summands are taken from Table 1 if D = R, from Table 2 if
D = C, and from Table 3 if D = H. The direct sum s unique up to order of
summands.

We refer to the summands as normal form summands and direct sums
of normal form summands as normal forms. In the following discussion we
shall make more explicit the uniqueness part of the theorem.

First observe that if (M, R) and (M’, R') are equivalent, then M and M’
are similar by a change of coordinates with entries in D. Now the eigenvalues
of each normal form summand occur in a quadruplet {£u, +i} and it follows
that the eigenvalues (and Jordan blocks) of M € sp(R) occur in quadruplets.
In fact this is easy to verify directly, see Lemma 5.1. A less trivial consequence
(and one for which we do not know a direct proof) is that if D = R, odd-
dimensional Jordan blocks with zero eigenvalues occur with even multiplicity.
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M R Size 1 p
,u]k + Nk 0 0 —Tk .
(% )l ( B ke favis) o
Oz[k + Nk 0 0 _Tk
2 ( 0 —OfIk — Nlc ) < Tk 0 ) keN @ 1
3| (B + Ni)c p(Xk)C keven| i |=£1
5 Ny, pXk k even 0 +1

Table 1: Normal form summands over R of size k£, modulus p and index p;
a, >0

M R Size 1 p

,u]k + Nk 0 0 —Tk .
1 ( 0 il — Ny )(C (Tk 0 c keN |a+:i6| 1
2| (B + Ni)c p(Xk)C keven| i |=£1
3 (i8I + Ni)c p(iXk)C k odd i | £l

Table 2: Normal form summands over C of size k£, modulus p and index p;
a>0,4eR
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M R Size 1 P
,u]k + Nlc 0 0 —Tk .
1 ( 0 _il, — Ny )]HI (Tk 0 - keN |a+if 1
: . . +1; 0
3| (Bl + Ny)g p(iXe)g kodd | if X g ~ 0

Table 3: Normal form summands over H of size k£, modulus p and index p;

a>0,6>0
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Given these restrictions on the eigenvalues of M, it follows from Jordan
normal form theory, Theorem 1.3, that M is equivalent to a direct sum of
the matrices listed in the ‘M’ column of the tables. Moreover the direct sum
is unique up to the order of the summands.

The summands of the normal form of M are uniquely determined by
the size k € N and the modulus ;n € C as listed in the tables. Note that
we do not call y the eigenvalue even though it is one of the quadruplet of
eigenvalues. This is because we wish to stress that when D = C summands
with modulus g are not similar to those with modulus . In particular the
corresponding normal form summands are not equivalent.

In addition we associate to each normal form summand the number
p = +1. Suppose that (M, R) is in normal form and that y € C, k € N.
Define the indexr ind, (M, R) to be the sum of the indices of all summands
of size k and modulus p (if there is no summand of size £ with modulus y, set
ind, (M, R) = 0). More generally, we can define the indices of a pair (M, R)
to be equal to the indices of the corresponding normal form. Implicit in
Theorem 2.4 is the statement that the indices form a set of invariants for the
equivalence relation. (Again, we should stress that the indices ind, (M, R)
and indg (M, R) are treated independently when D = C.)

To sum up we have the following result.

Corollary 2.5 Two symplectic pairs (M, R) and (M', R') are equivalent if
and only if

(a) M is similar to M' by a change of coordinates with entries in D, and

(b) ind, x (M, R) =ind, ,(M', R') for all p € C, k € N.

Remark 2.6 The invariance of the indices may seem like a nuisance factor
and possibly this is true when D = R or H. However as shown in Section 6,
the indices are responsible for the existence of nonisomorphic symplectic
structures when D = C. We observe here that the issue of indices does not
arise when the modulus g has nonzero real part and also when p = 0 for k£

odd and D # C.
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3 The main ideas behind Williamson’s theo-
rem

In this section, we describe some of the main ideas behind Williamson’s
original proof. This leads to a reformulation of the problem. Also we describe
some ‘coordinate-free’ results that are fundamental in the solution of the
reformulated problem.

Suppose that (M, R) is a symplectic pair over the real division ring D.
The method for reducing (M, R) to normal form divides into three main
steps.

Step 1 Reduce M to a simpler matrix L so that (M, R) ~ (L, S) for some
S € sk.

It is easy to prove that eigenvalues of L occur in quadruplets £y, £p. Let V),
denote the sum of the corresponding quadruplet of generalized eigenspaces.

Step 2 Write down a nonsingular matrix () such that

i) LQ+ QL =0.
(ii) Q(V,) C V, for any eigenvalue p of L.

We call @) the matrix associated to L. Write S = G@Q so that (M, R) ~
(L, GQ).

Step 3 Reduce G to a simpler matrix H: (L,GQ) ~ (L, HQ).

Step 1 relies on Jordan normal form theory, but apart from this Steps 1
and 2 taken alone are trivial. The important thing is to choose the matrices L
and () with Step 3 in mind. We discuss this more fully at the end of the
section. For the time being we concentrate on those aspects of Step 3 that
do not rely on a judicious choice of L and Q).

Define the centralizer Z(L) to be the set of matrices with entries in D
that commute with L. A computation, see Proposition 3.1 below, shows that
the matrix G lies in Z(L). In addition, (L,GQ) ~ (L, HQ) if and only if
there is a nonsingular matrix P such that

PLP'=L,  PGQPT =HQ.
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In particular, the matrices P, G, H and L all lie in Z(L). Now matrices
that commute with L leave invariant the generalized eigenspaces of L and
hence preserve the subspaces V),. In addition, () is defined so as to have this
property. It follows that all of the matrices concerned, L,Q,G, H, P, have
a block-diagonal structure corresponding to the decomposition of R" into
subspaces V,,. Hence, in Step 3 we may assume without loss of generality
that the matrix L has a single quadruplet of eigenvalues.

Suppose then that L has a single quadruplet of eigenvalues. Usually we
take @@ to be skew-symmetric, so assume that this is the case. By Proposi-
tion 3.1 below, G € Z(L, Q) where

Z(L,Q) ={G € Z(L); GQ = QG"}.

Define an equivalence relation on Z(L,Q): G ~ G' if there is a nonsingular
matrix P € Z(L) such that PGQPT = G'Q. Then Step 3 amounts to finding
a normal form H for the matrix G € Z(L, Q). The strategy in the reduction
of G is to first transform G into a block-diagonal matrix. Lemma 3.2 below
is the main tool in performing this block-diagonalization.

In the sequel (L,Q) will denote a pair of m X m matrices where @ is
nonsingular and LQ + QLY = 0. At this point we drop the assumption
that @ is skew-symmetric so that (L, Q) need not be a symplectic pair.. The
resulting gain in generality is required in the case of zero eigenvalues and
D=R.

Proposition 3.1 Suppose that (L,S) is a symplectic pair, and that @ is a
nonsingular matriz satisfying LQ + QLT = 0. Then S = GQ where G is a
nonsingular matriz satisfying

GL=L1G, GQ=-Q'G".

In particular, if Q is skew-symmetric, then G € Z(L, Q).

Proof Set G = SQ~!. Then G is nonsingular. We compute that
LG=LSQ'=-SLTQ™'=SQ'L =GL,
and that
GQ=S5=-5"=-Q"G"T,

as required. [
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Lemma 3.2 Suppose that the matrices L = L1 ® Lo ® L3, QQ = Q1D Q2D Qs3,

Gy 0 0
and G = 0 Goy Gas | satisfy the following conditions.
0 Gz G

(a) Q is nonsingular and QY = £Q,.
(b)) GL=LG, GQ=-QTGT.
(¢) Gao is nonsingular.

Then there is a nonsingular matriz P € Z(L) such that PGQPT = HQ
where H has the form

Gii 0 0
H= 0 Ga 0
0 0 Hss

In particular, if QQ € sk then G,H € Z(L,Q) and G ~ H.
Proof The conditions in (b) imply in particular that
Gj2L2 = LjGjQ, GQij = :FQ2G?2

Let P be the matrix

I 0 0
P=10 I 0

Then P is nonsingular and it is easily checked that P commutes with L and
that H = PGQPTQ ! has the required form. |

4 An abstraction of Williamson’s Theorem

In this section we state and prove a result, Theorem 4.6, that may be thought
of as an abstract version of Williamson’s Theorem. It corresponds to Step 3
described in Section 3.

Let D be one of the real division rings R, C or H and let M denote the
space of p X p matrices with entries in D. We denote by 1., the identity
matrix in M. The properties of M that we use are:

18



1. If a € M, then o € M.
2. If @ € M is nonsingular, then a=* € M.

3. Suppose that M # R, and g € M, g # 0. Then there exists a matrix
a € M such that ag is neither symmetric nor skew-symmetric.

We defined the real k x k matrices I and Ni in Subsection 1.1(a). Recall
also the definitions of Z(L) and Z(L, Q) in Section 3.

Definition 4.1 A pair of matrices (L, Q) is a W-summand (of size k) if
L=L,1m+ N, ® ¢ and Q = Y, ® 7, where m,p,7 € M and Y}, is a real
nonsingular £ x k£ matrix such that the following hypotheses are satisfied for
some choice of 01,0, = £1:

(H1) ¢,7,Y) are nonsingular, and either 7 is nonsingular or Z(7) = M.
(H2) 7 is semisimple, 77 =7"t=o01, V=Y '=-0Y;.

(H3) n7 = —717", ¢17 = —091d", NiYp =02V N}].

(H4) Z(7) C Z(9).

(H5) Z(m, T) is contained in a real division ring. In addition, if p € Z(w, 1)

then p” € Z(m, 7).

Definition 4.2 Suppose that (L;, @;) is a W-summand of size k; for i =
1,...,r, and that k4 > ky > --- > k,. Let L =L, ®---® L, and Q =
Q1D ® Q. Then (L,Q) is a W-sum if

(a) L; = I, ® m + Ny, ® ¢ where 7 and ¢ are independent of 7,
(b) If k‘z = k‘j then LZ = Lj and Qz = Qj7

(c) If k; > kj and A is a k; x k; matrix, then Y, < 1(31 ) = ( Yk(f]'A )

Remark 4.3 (a) The matrices 7 and ¢ that appear in the tensor product
form of L; do not depend on i. However the matrices 7; may depend on k;.
(b) Z(r) is a subring of M and if s € Z(n) is nonsingular, then s™! €
Z(m). In general Z(m,7) is not closed under multiplication (unless Z(7) is
commutative) and so is not a subring of M.
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(c) By hypothesis (H5), Z(m,7) is contained in a real division ring and may
be viewed as a subset of the reals, complexes or quaternions (R, C or H).
With this identification, we may define the norm of an element p € Z(n, 1)

to be [jp|| = /pp" = /pb. Let Zi(m,7) = {p € Z(m,7);|pll = 1}. We
may view this set as being contained in the space of unit reals, complexes or
quaternions.

(d) In practice, we choose Y, = T}, for each i or Yj, = Xj, for each i. Then
part (c) of Definition 4.2 is satisfied by Proposition 1.1(v).

Proposition 4.4 Any W-sum (L, Q) is a symplectic pair (over D).

Proof We must verify that () is nonsingular and skew-symmetric, and that
LQ + QLT = 0. It is sufficient to consider the case where (L, Q) is a W-
summand. Recall that the matrices Y} and 7 are assumed to be nonsingular.
Also, by hypothesis (H2) one of these matrices is symmetric and the other
skew-symmetric. Hence () = Y; ® 7 is nonsingular and skew-symmetric.
Using hypothesis (H3) we compute that

LQ = (h®1+ Ny ®)(Yr®7)
= Y, ® (77) + (N Yz) ® (¢7)
= Y@ (rr") — (ViN)) ® (19")
= - 91)Ix @7+ N, ®¢)"
_QLT

as required. [}

Corollary 4.5 Suppose that (L, Q) is a W-sum and that L € sp(S) for some
S € sk. Then S = GQ where G € Z(L, Q) is nonsingular.

Proof This is immediate from Proposition 4.4 and Proposition 3.1. |

We shall say that a W-sum is of type I if there is a division ring R (not
necessarily the same as D) and an isomorphism (denoted by =) from the
space of 2 x 2 matrices over R into M such that

(i) = <(1) _é),forizl,...,r.
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(ii) Z(m) contains all matrices of the form p = ( 8 2 ) where a,b € R.

(iii) Z(m,7;) = {(8 2) ;aER}.

A W-sum is of type I1if Z(m) C Z(7;) for i =1,... 7.

If (L,Q) is a W-sum, define Z(L,Q)° to consist of those matrices H €
Z(L,Q) that have the form H = H, @ - - - & H, where H; = p;I}, ® 15, and
pi = +1if (L;, Q;) is of type II, p; = 1 otherwise. If H € Z(L,Q)° define

ind,(H) = Zpi.
ki=k

Theorem 4.6 (Abstract Williamson Theorem) Suppose that (L, Q) is
a W-sum with summands (L;, Q;) of size k;, i =1,...,r. Let G € Z(L,Q)
be a nonsingular matriz. Then

(a) G~ H where H=H, & ---® H, and H; = I}, ® h;, h; € Z(m, 7).
(b) If (L, Q) is of type I or of type II, then G ~ H where H € Z(L,Q)°.

(¢c) Suppose that G,H € Z(L,Q)°, G ~ H. Then indi(G) = indy(H) for
all k.

The remainder of this subsection is devoted to proving the theorem. We
break the proof into four stages. First we obtain some results on the structure
of matrices in Z(L) and Z(L, Q). Then there is a block-diagonalization step
where we reduce G to a matrix H = H; @ --- ® H,. Next we treat each
summand H; separately completing parts (a) and (b) of the theorem. Finally
we prove the uniqueness statement in part (c).

4.1 Structure of Z(L) and Z(L, Q)

Suppose that (L, Q) is a W-sum with W-summands (L;, @;) of size k;. We

can partition a matrix P € Z(L) into blocks P,;, 1 <14,j < r where P;; is a

k; x k; matrix with entries in M. If P € Z(L, Q) the conditions PL = LP,
PQ@Q = QP" become

P;L; = LiPy, PiQ; = QiPj;.
Let kij = min(ki, k])
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Proposition 4.7 A matriz P = {P,;} lies in Z(L) if and only if the follow-
mng is true.

(a) Pj=(0 Fy) if ki <k; or P —(%j) if ki > kj, where Fy; is a

kij X kij matriz with entries in M.

kijfl
(b) Fij =Y Ni. ® fij. where fi;, € Z().
s=0
Proof See the appendix. [ |

We shall refer to the blocks P;; as diagonal blocks and P, ¢ # j, as off-
diagonal blocks. Note that Fj; = P;; for each i. The element f;;( appearing
in the expansion of Fj; is called the leading coefficient. Define

Z "' ® fijsn

s=0

and let Py = ( Fj O)ifkigkjandlsij:<l:9 ) if k; > k;.
ij
Proposition 4.8 Suppose that P = {P;;} € Z(L). If i < j, then
Py(Ye; ® 1) = (Yi, © Taa) Py

Proof Since 7 < j, k; > k; and we compute that

kj—1

N
Pij(Ye, @ 1p) = Z( ij >ij®fz'j,s
s=0
kj—1
N:Y,.
= Z( kjo ! )®fij,s
s=0
kj—l T
Yi. (N
= Sa( G e,
s=0
B kj—l SY 0
= 2002 k; (Nljj)T ® fijs
= (Vi ® Lp) Py
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Proposition 4.9 Suppose that P = {P;;} € Z(L,Q) and that k; = k;. Then
fij,OTi = Tz’iji,o-
Proof The condition PQ = QP" implies in particular that P;Q; = Q;P};
Since k; = k; we have (); = @); and compute that
QiP; = P;Q;

= Py(Ye, ® 1) Iy, ® 73)

= Yk ® 1) B (Ix; ® 73)

= Qi(ly, @7 ")Py(Ir; ® ).

Hence
(Ir, ® ) Pl = Pyy(Ir, ® ),
or
ki—1
Z(Nk & Ti ]:,’;S 20-2 Nk ®fij,sTi-
s=0

Using the linear independence of the matrices Ny, and comparing coefficients
when s = 0 we have the required condition on f;;. [ |

4.2 Block-diagonalization of matrices in Z(L, Q)

Suppose that (L, Q) is a W-sum with summands (L;, ;) of size k;, where
ki > --- > k.. Let G € Z(L,Q) and suppose that G;; is a diagonal block
with leading coefficient g;;.

Corollary 4.10 g; € Z(w,7;) and Gy is nonsingular if and only if gi; # 0.

Proof By Proposition 4.7, we have g; € Z(m) and Proposition 4.9 implies
that g;7; = Tig% so that g; € Z(m,7;). Now it follows from Proposition 4.7
that G;; is an upper-triangular matrix with diagonal entries g;. Hence G;
is nonsingular if and only if g; is nonsingular. But (H5) states that Z(m, 7;)
lies inside a division ring, so the only singular element is zero. |

Define numbers £ and ¢ so that

k=ki=- =k Koy <k
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Lemma 4.11 Suppose that G € Z(L, Q) is nonsingular. If Gy; is singular,
1 <i<c¢ then G ~ H where H € Z(L,Q) has the property that Hy; is
nonsingular.

Proof Suppose that 1 <4,j <c. Then G;; € Z(L;) and Gy; € Z(L1,Q1).
Let g;; denote the leading coefficients of these G;;. By Corollary 4.10 we
have that g;; = --- = g.. = 0. In addition, by Proposition 4.9, g7 = 7197,
for1 <i4,5<ec

Since G is nonsingular, there must be a nonzero element in the first
column. Now it follows from Proposition 4.7 that a block G;; has a nonzero
element in the first column only if 7 < ¢ and the leading coefficient is nonzero.
Hence g;; # 0 for some 7 = 2,...c. By interchanging the 2nd and ith rows
and columns we may suppose that go; # 0.

We shall consider transformation matrices of the form P = I + P where
P is the zero matrix except for one block corresponding to the block Giy
of G. This block of P has the form I ® p where p € Z(r). Then P is a
nonsingular matrix commuting with L.

Let H = PGQPTQ™!. Observe that QPT = EQ where E = I+ FE and E
has a single nonzero block I} ® e corresponding to the block Gy of G. Here
e =7mp'rl. Thus H = PGE and we compute that

hi1 = pgo1 + 91271PTT1T-

Our aim is to choose P so that hy; # 0. Then Hy; is nonsingular by Corol-
lary 4.10 as required.

There are two cases to consider, corresponding to the possibilities that 7
is nonsingular, or Z(7) = M (cf. (H1)). Suppose first that 7 is nonsingular
and consider the choices p = 1,4 and p = m. The corresponding matrices e
are 1, and —w. We compute that hi; = go1 + 1o Or h11 = —7go1 + g1o7.
Since 7 is nonsingular and commutes with g;; we have that h;; = 0 in both
cases if and only if ¢g19 + ¢21 = g12 — go1 = 0. But then go; = 0 which is a
contradiction.

It remains to consider the case when Z(7) = M. Suppose that M # R.
By the third requirement on M, there exists a matrix p € Z(m) such that
Pgo1 is neither symmetric nor skew-symmetric. Choose p = 71p and compute
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that

hiv = pga + giemip' T
= mpga + 119 (1B) T
= 71 (Pg2 + gop" (11)?)
=T (23921 + 01 (25!]21)T) )

where 01 = +1, see (H2). In particular, hy; = 0 only if pgs; is symmetric
or skew-symmetric which we have assumed not to be the case. Finally, if
M =R, take p = 1. Then hy; = 271901 = 0 if and only if go; = 0. [ |

Corollary 4.12 If G € Z(L,Q) is nonsingular, then G ~ H where H has
the form Hy & --- ® H,.

Proof Suppose that G1; is singular. If one of the matrices G;;, 1 <17 < c,
is nonsingular then we may rearrange rows and columns so that G1; is non-
singular. (Such a transformation does not change L or ) since L; = --- = L,
and @ = --- = @..) On the other hand, if each of the matrices Gj;, 1 <i < ¢
is singular, we may apply Lemma 4.11 and perform a transformation so that
the resulting matrix has a nonsingular block Gy;.

Thus we may assume that G; is nonsingular. By Lemma 3.2 we may
replace G by a matrix with G1; unchanged, but G1; = Gj1 =0for2 <j <r.
Working inductively we may block-diagonalize GG into a matrix of the required
form. |

4.3 Reduction of a single W-summand

It follows from Corollary 4.12 that to prove parts (a) and (b) of Theorem 4.6
it is sufficient to work one summand at a time. Hence we may suppose that
(L, Q) consists of one W-summand of size k. Let G € Z(L, @) be nonsingular.
By Proposition 4.7, G has the expansion

B

-1
G: le®g.9;

S

Il
=)

where g, € Z(m). Moreover, gy € Z(m,T) is nonsingular.

Proposition 4.13 G ~ I ® h, where h € Zi(n, 7).
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Proof First we prove by induction that G ~ I ® go. Suppose that G =
I ® go + Ni ® g; mod N;*'. We shall find a nonsingular matrix P € Z(L)
so that PGQPTQ ' = H where H = I;; ® gy mod N,i“. Indeed set P =
I ® 1y — 3N} ® (9595 7). Then P is nonsingular and commutes with L
(by Remark 4.3(b)). Define E = I, ® 1, — +Njg;'¢g; and compute that
QPT = EQ. Hence H = PGE = I; ® go mod N;™ as required.

It remains to show that the element gy can be replaced by an element

with norm one. Let p = ||1 |I1M and define P = I @ p. Then P is a
g0

nonsingular matrix in Z(L) and the leading coefficient g is transformed to

90

h=pgorpT T " =p’g0 = 7.
190l
|
We have proved part (a) of Theorem 4.6. Part (b) follows from the next
proposition.

Proposition 4.14 Suppose that (L, Q) is a W-summand and that G is a
nonsingular matriz in Z(L, Q).

(a) If (L, Q) is of type I, then G ~ I;; @ 1 4.
(b) If (L, Q) is of type II, then G ~ +I;; ® 1 4.

Proof By Proposition 4.13 we may assume that G = I ® g where g €

Zy(m, 7). Suppose first that (L, Q) is of type I. Then g = g 2 ) where

||| = 1. AISOTE((l) _(1]>andpE<(1] 2) €Z(n). Lt P=1,®p

and compute that
PGQP" =Y, ® (pg7p") = Vi @ 7 = (I ® 1m) @,

as required to prove part (a).

Next suppose that (L, Q) is of type II. Then Z(7) C Z(7) and it follows
that Z(m,7) consists of symmetric matrices. By (H5) Z(m,7) 2 R. In
particular, g = +1 and G is already as claimed in part (b). [ |
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4.4 Uniqueness

It remains to prove part (c) of Theorem 4.6. Suppose that (L, Q) is a W-sum
with summands (L;, @;) of size k; so that k; > --- > k.. Suppose further
that G, H € Z(L, Q)" are block-diagonal matrices with 7’th summands G; =
pili, ® 1y and H; = 0,1y, ® 1z respectively, p;,0; = £1. Let k = k; for
some ¢ and define A to consist of those indices , 1 < a < 7 such that &, = k.
Write 7 = 7; = 7, for a € A.

Recall that the indices indg(G) and indg(H) are given by

ind,(G) = Zpa, ind,(H) = Zaa

acA a€cA

We must show that if G ~ H then ind(G) = indg(H). We may assume
that (L;, @Q;) is of type II for otherwise the indices are both equal to the
cardinality |A| of A.

Suppose that G ~ H. Then there is a nonsingular matrix P € Z(L) such
that PGQP" = HQ. Write P = {P;;}.

Proposition 4.15 Let o, 3 € A. There are numbers €,; = +1 such that

r

Zeajpaj(lkj ® pjTj)PﬁTj = 5aﬂIk ® 0T, (41)

J=1

where dp s the Kronecker delta. If j € A, €4 = 1.

Proof Equating o, 3’th entries in PGQPT = HQ yields the equation
Z PojGiQ; Py = bapHoQo = 0ap0aYi @ Ta. (4.2)
j=1

Using Proposition 4.8 we compute that provided k; < k, = &,

PojGQ; = PojY, ® pj1y = (Y ® Lua) Paj(Ii; ® piy).
If k; > k, then j < o and we cannot apply Proposition 4.8 directly. However,
taking transposes in part (c) of Definition 4.2 we find that if A is a k£ X k
matrix then ( 0 A )Y}Cj = i( AY, 0 ) It follows that

PajGij = :i:(Yk ® 1M)Paj(lkj ® pjTj)'

Substitute into equation (4.2) and cancel the common factor Y, ® 15 to
obtain equation (4.1). [
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Proposition 4.16 Regard P, (Ir; ® pjTj)Pg;- as a k X k matriz with entries
m M. If j & A then the top-left entry is zero. If j € A then the top-left
entry is given by faj,opijé’;-’O.

Proof We shall assume that the top-left entry is nonzero and show that
this implies that k; = k so that j € A and that the entry has the required
form. First observe that the first row of Paj must have nonzero entries.
It follows from the definition of l5aj immediately after Proposition 4.7 that
kj > ko = k and that the first row of Paj is (fajo O --- 0). Hence the first
row of Paj(ij X pjTj) is (faj,opjTj 0--- O)

It follows in turn that the top-left entry of ng must be nonzero. Applying
Proposition 4.7 we find that k; < k, = k, and so k; = k. Moreover, the top-
left entry of Pj; is f7;, as required. [

Define p to be the |A| x |A| diagonal matrix with entries p,, o € A.
Similarly, define o with entries o,,.

Proposition 4.17 Suppose that G ~ H. Then there is a matriz f such that
foff=o.

Proof Equating top-left entries in equation (4.1) and using Proposition 4.16
we obtain the equation

Z faj,o,Oijg;-,o = 0030aT.

jEA

Since (L;, @Q;) is of type I, 7 = 7; € Z(7) and we can cancel factors of 7 to
obtain the equation

Z faj,Opjfgj,o = 5aﬂo-a-

jEA

Define f to be the matrix with entries fo50. Then fpf? = o as required. W

Corollary 4.18 Suppose that (L, Q) is a W-sum with a summand (L;, Q;)
of size k. If G,H € Z(L,Q)° are equivalent then indy(G) = indy(H).

Proof The matrices p and o are diagonal with entries p,, 0, = +1. Since o
is nonsingular, the matrix f in Proposition 4.17 is nonsingular. The signature
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of symmetric matrices is invariant under congruent transformations and it
follows that the number of +1 entries is the same in p and o. In particular

ind;(G) = trp = tro = indy(H).

5 Proof of Williamson’s Theorem

In this section we use the ideas described in Section 3 and the abstract
version, Theorem 4.6, of Williamson’s Theorem to reduce symplectic pairs
(M, R) to normal form, thus proving Theorem 2.4.

There are three subsections. In Subsection 5.1 we use eigenvalue restric-
tions and Jordan normal form theory to reduce M to a simpler matrix L.
Also we define a matrix () associated to L. The case of zero eigenvalues over
the division ring R is different from the others. Apart from this case the pairs
(L, Q) are W-sums and are closely related to the putative normal forms. In
Subsection 5.2 we exploit this structure and apply Theorem 4.6. This proves
Theorem 2.4 over C and H and leaves only the zero eigenvalue case over R
in Subsection 5.3.

5.1 Eigenvalue restrictions and a normal form for M

Suppose that (M, R) is a symplectic pair with entries in the real division
ring D. There are restrictions on the eigenvalues and Jordan blocks of M
due to the condition MR+ RM” = 0. Since M is a real matrix, eigenvalues
and the corresponding Jordan blocks occur in complex conjugate pairs. The
extra structure leads to quadruplets of eigenvalues and Jordan blocks.

Lemma 5.1 If M has p Jordan blocks of size k corresponding to the eigen-
values p, fi then M has p Jordan blocks of size k corresponding to the eigen-
values —p, — 4.

Proof It issufficient to show that M and —M are related by a real similarity
transformation (with entries not necessarily in D). The condition MR +
RM?Y = 0 can be rearranged to show that M7 and —M are similar matrices.
But it follows from the (real) Jordan normal form theorem that M7 is similar
to M so we have that M is similar to —M as required. |
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Remark 5.2 There are restrictions also on the Jordan blocks of zero eigen-
values when D = R: blocks of odd size must occur with even multiplicity. It
is hard to find a direct proof of this fact, but it is a consequence of the proof
of Williamson’s Theorem, see [17] and also Lemma 5.7(a) in this paper.

We now use Lemma 5.1 to complete Step 1 described in Section 3.

Theorem 5.3 Suppose that (M, R) is a symplectic pair over D. Then (M, R) ~
(L,S) where L is a direct sum of summands I, ® m + Ny ® ¢ and

(a) If D =R, then m and ¢ are as in entries (i)-(iii) of Table /
orm =0, ¢=1.

(b) If D= C, then m and ¢ are as in entries (iv) and (v) of the table.
(¢c) If D =H, then m and ¢ are as in entries (vi)—(iz) of the table.

Moreover the direct sum is unique up to the order of summands.

Proof This follows immediately from Lemma 5.1 and Theorem 1.3. |

We proceed to Step 2.

Proposition 5.4 Suppose that L =1,  m + Ny ® ¢ and Q = Y, ® 7 where
the matrices 7, ¢, 7 and Yy, are taken from a row in Table 4. Then (L,Q) is
a W-summand.

Proof This is a routine verification of hypotheses (H1)-(H5) in Defini-
tion 4.1. Parts (ii)-(iv) of Proposition 1.1 are useful in this verification. W

Definition 5.5 If L and () are as in the proposition, then we call ) the
matrix associated to L. If L = Ny, the associated matriz is QQ = Xj.

This definition associates to each summand L' of L in Theorem 5.3 a
matrix Q)'. Define @) to be the direct sum of the matrices ). We call @) the
matrix associated to L. Recall that V), denotes the sum of the generalized
eigenspaces corresponding to an eigenvalue p of L.

Proposition 5.6 The matriz Q) is nonsingular, Q(V,) C V,, for each eigen-
value p of L, and LQ + QLT =0,
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Proof The first two statements of the proposition are immediate from
the definition of ). It is sufficient to prove the final statement for a single
summand (L,Q). If L = Nj then @ = Xj and we can apply Proposi-
tion 1.1(iv). Otherwise (L, Q) is a W-summand and the result follows from
Proposition 4.4. |

5.2 Normal forms in the abstract framework

Suppose that (M, R) is a symplectic pair. Carrying out steps 1 and 2 in
Subsection 5.1 we have that (M, R) ~ (L,GQ) where L has the form de-
scribed in Theorem 5.3 and @ is the matrix associated to L (Definition 5.5.
It remains to carry out Step 3, that is to reduce G to a simple form.

As described in Section 3 it is sufficient to carry out Step 3 under the
assumption that L has a single quadruplet of eigenvalues. Hence L = L, &
---@® L, where L; = I}, ® m + Ni, ® ¢ and 7, ¢ are entries in Table 4 or
m=0,¢=1, D = R. This last case is different from the others and is
considered in Subsection 5.3. Here we assume that m and ¢ are entries in
Table 4. Associated to each summand L; is a matrix @); = Yy, ® 7; where 7;
and Y}, are the corresponding entries in the table.

We have already verified (Proposition 5.4) that (L;, @;) is a W-summand
for each ¢+ = 1,...,r. Now arrange the summands so that k; > --- > k..
Then it is easily checked that (L, Q) is a W-sum (Definition 4.2).

Consider first the (easiest) case D = C. We must make the correspon-
dence between rows (iv) and (v) of Table 4 and rows 1-3 of Table 2. Now
row (iv) yields a W-sum (L, Q) of type I. By Theorem 4.6(b), (M,R) ~
(L,GQ) ~ (L,Q). The summands of (L, Q) have the form (I, @ 7 + Ny ®
¢, Y, ®7). By Proposition 1.2(f), this is equivalent to (7 @ Iy + ¢ ® Ny, T®Y).
But this is precisely the normal form summand in row 1 of Table 2.

The W-sum (L, Q) in row (v) of Table 4 is of type II. Again by Theo-
rem 4.6(b), (M, R) ~ (L,GQ) ~ (L, HQ) where summands of (L, HQ) have
the form (I ® 7 + Ny ® ¢, £Y; ® 7). This is the normal form summand in
either row 2 or 3 of Table 2 depending on whether k is even or odd.

The case D = R is similar, except when there are zero eigenvalues. Other
than this we can make the correspondence between rows (i)—(iii) of Table 4
and rows 1-4 of Table 1.

It remains to consider the case D = H. The W-sums in rows (vi) and
(vii) of Table 4 are of type I and lead to the normal form summands in row 1
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of Table 3 with 3 > 0 and = 0 respectively. Row (viii) yields a W-sum of
type II and corresponds to rows 2 and 3 of Table 3 with # > 0. Row (ix) is
slightly different. If k£ is even, the W-sum is of type II and corresponds to
row 2 with = 0. However if k is odd, the W-sum (L, @) is not of type I or
type II. Nevertheless, we claim that (L, Q) behaves like a W-sum of type I,
that is (M, R) ~ (L,GQ) ~ (L,Q). This is the normal form summand in
row 3 with 8 = 0.

By Theorem 4.6(a), G can be block-diagonalized into the form G = G1 &
- @G, where G; = I, ® g; and ¢; € Z;(m, 7;). Hence to verify the claim we
may assume that there is a single summand of size k£ odd so that (L, Q) =
(Ne® 1, X ®ipg) and G = I[; ® g where g = (a+jc+kd)pp. Let P = I; ®p
where p is a nonsingular matrix in Z(7) & H. Then PGQPTQ ' =1, ®h
where h = pgrp’ 7! = —pgipi. First we choose p so that h € R. Suppose
that ¢ # 0. Take p = n — j where n = (a + vVa? + ¢?)/c, Then h = pgp =
a' + d'k, where d = (> + 1)d. If d # 0, then take p = o' — k where 7’
is defined like n replacing ¢ by d’. By normalizing p we may assume that
h = +1. If h = —1 take p = j and compute that —j(—1)i(—j)i = 1 thus
verifying the claim.

Aside from the case of zero eigenvalues when D = R, we have shown that
any pair (M, R) is equivalent to a normal form composed of the normal form
summands listed in Tables 1, 2 and 3. It remains to prove uniqueness. By the
uniqueness statement of Theorem 5.3, the only possibility of nonuniqueness
must stem from the choices p = 1. But these choices only occur when the
corresponding W-sum is of type II. Now apply Theorem 4.6(c).

5.3 The zero eigenvalue case over R

In this section we consider the exceptional case of zero eigenvalues when
D = R. Our methods are similar to those used in Section 4 but a priori we
must use a matrix () that is not skew-symmetric.
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T o) T Yy
. a+ifs 0 1 0 -1
(@) ( 0 —Oz+iﬂ)(ca’ﬂ>0 (0 —1)«: (1 O)C T
wl(5) (1) ) |
(iti) | B B>0| 1¢ eC X,
. a4+ 0 1 0 -1
(i) ( 0 —a+iﬂ>c >0 (0 —1>C (1 0>(C T
(v) v Ie e Xk
. a+if 0 1 0 -1
(v) ( 0 —a+iﬂ>Ha’ﬁ>0 (0 - )]HI (1 0)]1—]1 T
. o 0 1 0 -1
(v4) (O_O‘)]HI @0 (0— )]HI <1 0>]HI g
(UZZl) ZﬂH 6>0 1H eH X
(w;) OH 1H eH Xk

Table 4: W-sums over R, rows (i)—(iii), over C, rows(iv) and (v), and over
H, rows (vi)—(ix); e = 1 if k£ even, e =7 if k£ odd

33



Z(r) Z(m, )
(Z) a1 + ’Lbl 0 a—+ 1b 0
0 as + ’ibz C 0 a—1b C
.. a1 0
(17) ( 0 a ) al,
(iid) | a-+ib a
C C
. a; + ’ibl 0 a—+ 1b 0
(ZU) ( 0 02+ib2 )(C < 0 a—1b >(C
(v) a+ibo ac
. a; + ’ibl 0 a—+ 1b 0
(vi) ( 0 ap+iby )H ( 0 a—ib >H
(U’LZ) a, + lbl + jCl + kdl 0 a+ 1b + jC + kd 0
0 a2+ib2+j02+kd2 H 0 a-l—ib-l—jc-l—kd H
(viid) | a+ by af
(iz) a+ b+ jc + kdpg fa

Table 5: Algebraic data corresponding to the W-sums in Table 4; f = a if k
even, f =a+ jc+ kd if k odd

34



Suppose that (M, R) is a symplectic pair over R and that the eigenvalues
of M are zero. By the Jordan normal form theorem, M is similar to a matrix
L=L&---® L, where L; = N,. Hence (M, R) ~ (L, S) for some S € sk.
Define Q) = Q1 @ - - - & Qg where (); = Xj;. Observe that () is nonsingular,
and LQ + QLT = 0 so by Proposition 3.1, S = GQ where G € Z(L) is a
nonsingular matrix satisfying GQ = —Q*G™.

As usual, assume that ky > ko > --- > k,. Let c(k) be the number of j's
for which k; = k.

Lemma 5.7 Suppose that G € Z(L) is nonsingular and GQ = —QTGT.
(a) If k; is odd, then c(k;) is even.

(b) G~ H=H &---® H, where the blocks H; correspond to the blocks
of L: Ny,, k; even, or Ny, @ Ny,, k; odd.

Proof Let k= k;, ¢c = c(ky) so that
k= =ke=k, key <k
We claim the following:

1. If £ is even we can obtain a nonsingular block of size k£ in the top-left-
hand corner.

2. If k is odd then ¢ > 2 and we can obtain a nonsingular block of size 2k
in the top-left-hand corner.

In case 1, ()1 is skew-symmetric, and in case 2, ()1 @ )1 is symmetric. In
either case, we may apply Lemma 3.2 to obtain a new matrix G that has the
same nonsingular block, but with zero entries below and to the right of this
block. The lemma follows by induction.

It remains to verify the claim. Even though (L, @) is not a W-sum, certain
results are still valid. In particular, @) is nonsingular, LQ + QLT = 0, and
QI = (—1)%1Q;. In addition, Proposition 4.7 holds.

When £ is even we just follow the proof of Lemma 4.11 (the case S = R
and p = 1). This leaves the case k£ odd. The k x k blocks G;;, 1 <1i,j <,
have expansions

k—1

— S

Gij = E 9i5,s Nk
s=0
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where g;;, € R, 0 < s < k—1. Since @; = --- = (). is symmetric, the
equation GQ = —QTG” implies that
i NiXe = =i Xi(Ng)"
(=1)""gji,s Ng X

In particular the leading coefficients g;; = g;;0 satisfy
9i5 = —3Gji-

Hence ¢;; = 0 and (11 has zeros in the first column. In addition, for j > ¢,
Gj1 has zeros in the first column. Since G' is nonsingular, it follows that
c > 2 and g;j; # 0 for some j, 2 < j < c. Without loss of generality, we may
assume that go; # 0. Also we have g9 = —go1 and goo = 0. Define Hy; to

be the block ( Gu G ) The matrices G111, G12, Go1, Goo commute and
Ga1 Ga

the determinant of Hi; is given by (921)2’c # 0. Thus Hy; is the required

nonsingular block of size 2k. |

Corollary 5.8 The symplectic pair (M, R) is equivalent to a direct sum of
the normal form summands in rows 5 and 6 of Table 1.

Proof By Lemma 5.7, (M, R) ~ (L,GQ) where (L, GQ) has summands
of the form (N, G;Xy,), ki even, and (N, & Ny, Gi(Xy, ® Xk,)), ki odd.
Suppose that k; is even. Then (Ng,, Xj,) is a W-sum of type II (with 7 =
0, p=1,7=1) and H; ~ +1;. This produces the normal form summand in
row 5 of Table 1.

Next suppose that k; is odd. By Proposition 1.2(f),

(Nkl @ Nkiani @ Xkl) = (IQ ® Nk)p IQ ® Xkl) ~ (Nkl ® IQ’qu; ® -[2)
Hence we can replace the original summand by
(Nki X l(c, Gszl ® l(c) = (Nki ® 1@, G;Xkl ® i(c),

where G}(Iy; ® i) = Gi- But (N, ® 10, X, ® i) is a W-sum of type I

<With7rz<8 8),(/5:((1) (1)>TZ<(1) _é )).ByTheorem4.6(b),
|

G’ ~ I, yielding the normal form summand in row 6 of Table 1.
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It remains to prove uniqueness of the normal form described in Corol-
lary 5.8. Rewrite the summands of (L, Q) in the form (N, X,) and (1¢ ®
Ny, ic ® Xj;) and order so that ky > -+ > k,. Define Z(L,Q)° to consist
of those block-diagonal matrices H = H; @ --- & H, where H; = p;I};, or
l¢ ® Iy, respectively. Let indy = Zki:k Di.

Proposition 5.9 Suppose that G,H € Z(L,Q)° and that G ~ H. Then
indg(GQ) = indy(H) for all k.

Proof This has content only for £ even. The proof is almost identical to
that of Theorem 4.6(c) viewing blocks of the form (10 ® Ny,,ic ® Xy,) as
four blocks. |

6 Canonical symplectic forms

Suppose that R is a nonsingular skew-symmetric real m x m matrix. Then m
is even, m = 2n say, and there is an orthogonal matrix P such that PRPT =

J, where J,, = ( IO _OI " ). The matrix J, induces the standard symplectic

form w on R™ via the equation w(z,y) =< x, J,y > where <, > is the usual
inner product. The matrix P transforms the symplectic form induced by R
into w and the symplectic forms are said to be isomorphic.

The corresponding result for symplectic forms that are invariant under
the action of a compact Lie group was first stated in Montaldi, Roberts and
Stewart [12] and follows from Lie-theoretic results in [10]. The result is also
an immediate consequence of Theorem 2.4, as we show below. Of course the
Lie-theoretic proof is more direct and intrinsic.

Suppose that I' is a compact Lie group acting on a vector space V' and
that R and R' are nonsingular skew-symmetric matrices commuting with I,
so that R, R’ € skyr. The matrices R and R' are congruent if there is a ma-
trix P commuting with T" such that PRP? = R'. If R and R’ are congruent,
the I'-invariant symplectic forms induced by R and R’ on V are said to be
tsomorphic. Our goal is to define canonical representatives in skr so that
every matrix in skr is congruent to precisely one canonical representative.

Using the results in Subsection 2.1, in particular Proposition 2.1 and
Corollary 2.2, we can reduce to a single isotypic component D™ of dimen-
sion m. Recall that sk = skp= denotes the set of nonsingular skew-symmetric

37



m X m matrices with entries in the division ring D. This time two matrices
R and R’ are congruent if there is a matrix P with entries in D such that
PRPT = R

Theorem 6.1 Suppose that R € sk. Then R is congruent to precisely one
of the following matrices.

D =R, (i), n=m/2.
D=C, (il,®—il,)c,p,9>0,p+qg=m.
D=H, (il,)g-

Proof The main observation is that two matrices R, R’ € sk are congruent
if and only if the symplectic pairs (0, R) and (0, R') are equivalent. Hence we
need only write down the normal forms to which (0, R) can be equivalent. By
Theorem 2.4, such a normal form is a direct sum of normal form summands
with modulus/eigenvalue y = 0 and size £ = 1. In the case D = R there
is a single such summand (0, p(iX1)) where p = 1. Since X; = —1 it is
convenient to take instead p = —1 so that the summands take the form
(0,i¢). Taking a direct sum of summands yields the required form for R.
The case D = H is similar. Finally, in the case D = C there are addi-
tional factors p = 41 in each summand, and the sum of these is the index
indg 1 (0, R) which is an invariant. Hence the skew-symmetric matrices listed
in this case are not congruent. |

Definition 6.2 ([12]) A I'-symplectic representation of a compact Lie group I’
on a vector space V consists of an ordinary representation of I' on V, called
the underlying representation, and a I'-invariant symplectic form. Two I'-
symplectic representations on V' are isomorphic if both the underlying rep-
resentation and the symplectic form are isomorphic.

In this terminology, Theorem 6.1 takes the following form.

Corollary 6.3 Suppose that I' is a compact Lie group acting on V. There
erists a symplectic representation with this underlying representation if and
only if each real isotypic component has even dimension. In this case, the
symplectic representation is determined uniquely up to isomorphism if and
only if there are no complex isotypic components.
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Remark 6.4 (a) It follows from Corollary 6.3 that the equivariant version
of Darboux’s theorem described in [7] is incorrect whenever there are com-
plex isotypic components in the representation of I'. Theorem 6.1 implies
in particular that there are m + 1 nonisomorphic symplectic forms on each
complex isotypic component of dimension m. The two nonisomorphic sym-
plectic representations on C are called complex duals [12].

(b) In the cases D = R and D = H, Theorem 6.1 states that all matrices
in sk are congruent. Hence in these cases we may choose any matrix in sk
instead of the one given in the theorem. When D = R it is usual to take J,
as the canonical nonsingular skew-symmetric matrix. In the remaining cases,
there is no precedent for this choice. In Corollary 6.5 below we suggest some
choices that are convenient for our purposes.

Corollary 6.5 If R € sk then R is congruent to (J, ®pils)p, wherer,s > 0,
2r +s =m, p = +1. There is a unique choice of r, s and p satisfying the
following restrictions: if D=R, s =0, D=H, s=0 or 1 and p=1.

Proof If D =R orH, then all matrices in sk are congruent by Theorem 6.1
so it suffices to verify that the matrix (J, @ pil)p is indeed skew-symmetric.

Suppose that D = C and that R € sk is congruent to (il, ® —ily)c. Let
s=|p—q|,r=(m—s)/2 and p = sgn(p—¢q). Rearranging rows and columns
we can transform R into the matrix (if, & —il, @pﬂs)(c- Now we use the fact

. L (il I
that (il, @ —il, )¢ is congruent to (J,)¢. The matrix P = 7 ( I il )(C

defines such a congruency.

Suppose that K = (J,. & pils)p, and s and p satisfy the conditions in
Corollary 6.5. Then we say that K and the symplectic form induced on D™
by K are canonical over D. More generally, a [' symplectic form on V is
['-canonical if the restriction to each isotypic component is canonical.

Proposition 6.6 Suppose that (M, R) is a normal form summand over D.
Let K = (J, @ pils)p be the unique canonical skew-symmetric matriz over D
congruent to R. Then s =0 or 1, and s = 1 if and only if the summand lies
in row 3 of Table 2 or 3.

Proof The results for D = R and H follow from the uniqueness in Theo-
rem 6.1 and, in the case of H, a dimension count. In particular, the matrices
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( 70’ —(f)T g ) and p(Xy) are congruent to Ji (over R) so that the same is
k

true over C if the suffix C is added to each matrix. Hence we obtain the
required result when (M, R) lies in rows 1 and 2 of Table 2.

This leaves the case when (M, R) lies in row 3 of Table 2. The summand
has odd size k = 2¢ 4 1 and

0 0 1Xy
R=p(iXy)c=0p 0 (-4 0 .
(—1)£_IZ'Xg 0 0 C
We can rearrange rows and columns so that R has the form
_ 0 1Xy -1
Define P = Le 0 ® 1. Then (taking care with minus signs) a
0 —piX, Jo o ©
computation shows that PRP" = (J, & p(—1)*"4)¢. [

Corollary 6.7 If (M, R) is a normal form over D and R is congruent to
K = (J, & pily)p where K is canonical, then (M, R) contains at least s
summands from row 3 of Table 2 or 3.

7 Cyclospectral representations

Suppose that ' is a compact Lie group acting on V and that R € skr is a
nonsingular skew-symmetric matrix commuting with the action of I'.

Definition 7.1 The symplectic representation of I' is cyclospectral if the
eigenvalues of matrices M € spp(R) are forced to lie on the imaginary axis.
The representation is weakly cyclospectral if every matrix M € spp(R) has
some purely imaginary eigenvalues

Remark 7.2 The cyclospectral representations were defined and classified
in Montaldi, Roberts and Stewart [12]. They are of importance in the study of
linear stability of relative equilibria for equivariant Hamiltonian systems. In
particular, if p is a ['-invariant equilibrium and the action of I' is cyclospectral,
then p is automatically spectrally (and even linearly) stable.
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If the action of I' is weakly cyclospectral, then the equilibrium p need
not be spectrally stable, but generically there will exist periodic solutions
near p. To see this, observe that the guaranteed purely imaginary eigenvalues
will generically be nonzero [5] and nonresonant apart from resonances forced
by symmetry [3]. Hence the hypotheses of the equivariant version of the
Liapunov Center Theorem are satisfied (see for example [12]).

In this section we obtain classifications of both the cyclospectral and
weakly cyclospectral representations as easy consequences of our results in
Section 2. Recall from Subsection 2.1 that the space of ['-equivariant matrices
has the block-diagonal structure

Homp (V) =2 Hom(D") @ - - - @ Hom(D;"),

where for each j, D; = R, C or H and m; is the dimension of the isotypic
component D;nj . The matrix R has the corresponding block-diagonalization
R=R,® - -® R, where R; € sk m;.

J

Theorem 7.3 The representation of I' is cyclospectral if and only if
() D; #R for cach j,
(b) if Dj = H then m; =1, and
(¢c) if Dj = C then R; is congruent to p(ily,;)c where p = £1.

i
Theorem 7.4 The representation of I' is weakly cyclospectral if and only if
there is at least one 7, 1 < j < £ such that either

(i) D; =H and m; is odd, or
(i) Dj = C and R; is not congruent to (Jm,/2)C-

Observe that the representation on V is cyclospectral if and only if each
of the isotypic components D;nj is cyclospectral. Also the representation is
weakly cyclospectral if and only if at least one of the isotypic components is
weakly cyclospectral. Hence to prove Theorems 7.3 and 7.4 it is sufficient to
prove the following lemma.

Lemma 7.5 (a) The isotypic component D™ is cyclospectral if and only if
either D = H and m = 1, or D = C and R is congruent to p(iln)c,
p ==l
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(b) The isotypic component D,, is weakly cyclospectral if and only if either
D =H and m is odd, or D = C and R is not congruent to (Jpm/2)C-

Proof By Corollary 6.5, R is congruent to a matrix of the form (J,. @ pils)p
for a unique choice of integers r, s > 0 satisfying 2r + s = m and s = 0 if
D =R, s=0or1if D =H. We claim that the representation is cyclospectral
if and only if » = 0 and is weakly cyclospectral if and only if s > 1. The
lemma follows immediately from the claim.

Suppose that M € sp(R). Corollary 6.7 states that the normal form of
(M, R) must have at least s summands from row 3 of Table 2 or 3. Such
summands have purely imaginary eigenvalues proving sufficiency of the con-
ditions on 7 and s in the claim.

Next we prove necessity of these conditions. By Theorem 6.1 the matrix

S, = ( 79 _OT " > is congruent over R to J,. Hence (S,)p is congruent

over D to (J,)p. Thus we may assume that R = (S, & pil;)p. Consider the
matrix

I+ N, 0 .
M= ( 0 N )D@ (ils)p € sp(R).

If » > 1 then the eigenvalues of M include £1 and if s = 0 these are the only
eigenvalues as required. |

8 Normal forms for infinitesimally symplec-
tic matrices

As a special case of the normal theorem for symplectic pairs, Williamson
obtained a list of normal forms for infinitesimally symplectic matrices. In
this section we describe the normal forms in the equivariant context. Suppose
that I" is a compact Lie group acting on V' and that (M, R) is a [-symplectic
pair in normal form. By an orthogonal equivariant change of coordinates, we
can transform R into a matrix K as described in Corollary 6.5. The matrix K
induces on V' a canonical I'-symplectic form. If (M, R) is transformed into
(A, K), then A is the required normal form. We say that the I'-symplectic
pair (A4, K) is a ['-canonical pair-
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As usual we may factor out the symmetry and reduce to a problem over a
real division ring D. Accordingly we may assume that (M, R) is a symplectic
pair over D and is in normal form. By Theorem 2.4, (M, R) is a direct sum
of the normal form summands listed in Tables 1, 2 and 3. In Lemma 8.1
below we show how to reduce each normal form summand into a canonical
pair over D.

Lemma 8.1 Suppose that (M, R) is a normal form summand in Table 1, 2
or 8. Then (M,R) ~ (A, K) where the canonical pair (A, K) lies in the
corresponding row of Table 6, 7 or 8.

Proof The proof divides into four cases.

Case 1: rows 1 and 2 of Table 1 and row 1 of Tables 2 and 3

0 - . e .
We have R = k where R is a real division ring (not necessarily

T, O ?
(I O
equal to D). Define P = ( 0 T,
PM P! have the required form.
Case 2: rows 3 and 5 of Table 1 and row 2 of Tables 2 and 3
Since k =20, X;, =T)® < 0 —1

> . Then PRPT = (Jy)g and A =
R

1 0 ) By Proposition 1.2(f), X} can be trans-

— TZ
T, O

Ne=1;,® ( 01 )—{—Ng@( 00 ) becomes < ]8 L ) and we can write
¢

formed by an orthogonal change of coordinates into ( > . Similarly

0 0 10 0

(I, 0 .
Ik_(O Iﬁ).Thepalr

M = (’Lﬂfk + Nk)Ra R= (PXk)Ra

is transformed into
Z,@Ig Ig ) ( 0 —pTg )
M = . , R= :
( Ne ’lﬂ]g R pTe 0 R

Now apply the transformation P = ( L0 ) .
R

0 pTg
Case 3: rows 4 and 6 of Table 1

Write R = p(iXy)o = pXi ® ( 0 -l

10 ) and use Proposition 1.2(f) to
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0 —pXk
,OXk 0

transformed into ( Ne =Bl . Let P = ( L 0 )

transform R into < ) At the same time M = (i3I} + Ni) is

Bl Ny 0 pXg
Case 4: row 3 of Tables 2 and 3
In the proof of Proposition 6.6 we described how to transform R = p(iXy)c,
where k = 2¢, into (J, @ p(—1)* 'i)¢. Applying the same transformations

to M produces the matrix Sy 1)-1,. (The indices p in row 3 of Tables 2

and 7 differ by a factor of (—1)¢~'.) The case D = H is identical. [

A K | Size 7 P
1 (“I”Nk —ﬂIkO—NkT ><c Ju |keN [a+ip| 1
2 (‘””N’C —a]kO—NkT) Jo |[keN| o | 1
3 < p}i%g Z’?}i ) T k=20 ig |+1
4 < ngk __”]@X’C ) Jo |kodd | i3 |+1
5 ( o, pr ) Jo k=2 0 |41
6 ( ]\0[’9 —JOVkT ) Ji |kodd | 0 1

Table 6: Canonical pairs over R of size k£, modulus y and index p; o, 8 > 0

The matrix (Sg,)p that appears in row 3 of Tables 7 and 8 is defined for
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D =C or H to be

0\
iBL, + N, 0 :
0
1
S, = -
0 i6l, — Nf :
0
\0...0 0 -~ 0 —pi iﬂ)D

Now suppose that (M, R) is a symplectic pair over D and that (M, R) is in
normal form, with normal form summands (M;, R;), i = 1,...,£. Applying
Lemma 8.1, (M,R) ~ (A, K) where (A, K) is a direct sum of canonical
summands (A;, K;). Unfortunately, the direct sum of canonical pairs is not
canonical and further work is required to transform (A, K) into a canonical
pair. This is relatively straightforward for summands that do not lie in
row 3 of Tables 7 or 8. Suppose that (A, K) has no summands in these

rows. Then K; = Jp = ( ? _é

) and A; has the corresponding block
D

B, C;
D; E;
blocks. Rearrange these in the order 1,3,...,2¢ —1;2,4,... ,2¢. Then K is
transformed into Jp and A is transformed into the matrix

form ) . The symplectic pair (A, K) has 2¢ rows and columns of

( B, 0 (o 0
0 By 0 Cy
D, 0 Ey 0
\ 0 Dy | 0O E, )D
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A K Size 1 P
1 < 0 Al — NT )C (Jx)c |keN a+if| 1
lﬂ]g ,OT@ ) .
2 . J k=2¢ +1
( pTeNe ifle ) ¢ (Je)c W
3 (Sg,p)(c (Je® pi)C k=20+1 10 +1

Table 7: Canonical pairs over C of size £ and modulus u; o > 0, 8 € R. The
index is given by p in rows 1 and 2, and by (—1)*p in row 3.

The situation is a great deal more complicated when there are summands
from row 3 of Tables 7 and 8 present. Suppose there is one such summand,

0 -1 0
(Ag, Ky) say. Then K, = | I 0 0 . We can regard K as a block
00 pi

D
matrix with 2¢ 4+ 1 rows and columns, and applying the same operations as

before to all but the last of these rows and columns we transform (A, K) into
a canonical pair with K = (J & pi)p.

Next suppose that (A;, K1), (As, K3) are two summands from row 3 of
Table 8 so that A; = S, ,, and K; = (Jg;®pj;i)p for j = 1,2. We can combine
the two summands to form a canonical pair (A4, K) with K = (Jy4041)g
as follows. First rearrange rows and columns to transform K; @& K into
(Jo, ® Jo, ® p11® poi) - If p1 = po then we can apply the transformation P =
(Ie,+6,41® )y so suppose that p; = —p,. Now apply the transformation P =
<Ig1+e2 D % ( /’111 pii ))H to obtain the matrix (J,, @ Jy, ® J1)py. This
can be rearranged to produce the canonical matrix (Jp,1s+1)f- Applying
these transformations to the matrix A; @ A, yields the required normal form.

Finally, we consider the case of summands from row 3 of Table 7. Sum-
mands of opposite sign p (p as in Table 7, not the index p in Table 2 ) can be
paired off as in the case D = H. The remaining summands (suppose there
are s of them) have the same sign p and can be combined in the obvious way
to produce a canonical pair (A4, K) where K = (J @ pil,) -
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A K Size 1 P
( 0 I, — NT >]HI (Jo)| keN a+13 1
Zﬂ[g pTg ) .
. J, k=20 +1
< pTeNe i8Iy )y (o i
. . +1; >0
(Sg,p)H (Jg (&) pZ)H kE=20+1 10 1: B=0

Table 8: Canonical pairs over H of size £ and modulus p; o > 0, 8 > 0. The
index is given by p in rows 1 and 2, and by (—1)¢p in row 3.

By way of example, suppose that D = C and that (A;, K1), (As, K3) are

canonical pairs of index 1 from row 3 of Table 7, one of size 5, modulus 2
and the other of size 3, modulus —7i. Then K, = (J, ® —i)¢ and K, =

A Appendix

(J1 ® i) If we perform the transformations described above we end up
with the canonical pair (A, K) where K = (J;)¢ and
( 221 0 0 0 0 0 0 \
0 2 0 1/V/2 |0 0 0 —i/V2
0 0 -7 —i/v/2|0 0 0 1/v/2
4| 0 0 0 -—si/2)0 4/V2 1/V2  9/2
0 0 O 0 2 0 0 0
0 0 O 0 -1 2 0 0
0 0 O 0 0 0 =T 0
\ 00 0 —-9/2[0 -1/vV2 —i/v/2 -5i/2 ) C

In this appendix we prove Proposition 4.7. Recall that L is a direct sum of
summands L; = Iy, ® m + Ny, ® ¢ where m and ¢ are p X p matrices with
entries in D satisfying certain properties, see (H1)—-(H5). In particular, 7 is
semisimple, ¢ is nonsingular, and Z(7) C Z(¢).
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Lemma A.1 Suppose that g and h are matrices with entries in D such that
mg = gm and mh — hm = ¢g.
Then g = 0.

Proof The condition Z(7) C Z(¢) implies in particular that 7 commutes
with ¢. Replacing h by ¢h and using the fact that ¢ is nonsingular we may
reduce to the case where ¢ is the identity.

Regardless of D, we may regard 7w, g and h as m X m complex matrices,
where m = p if D =R or C, and m = 2p if D = H. Since 7 is semisimple,
we may assume that 7 is diagonal with entries 7y, ... , m,. Writing g = {g;;}
and h = {h;;} we have that

(mi = m5)gi; =0, (m — mj)hij = gij-

If m; # m; then g;; = 0 by the first equation. On the other hand, if m; = 7,
then g;; = 0 by the second equation. Hence each entry g;; = 0 as required. W

Proof of Proposition 4.7 Suppose that P = {F;;} € Z(L). We shall
compute the form of P;; for k; < k; The case k; > k; can be treated in a
similar way. To simplify the notation we set m = k;, n = k; and denote the
entries of Pj; by p, 5,7 =1,... ,m,s =1,... ,n. The condition P;;L; = L;F;;
can be written as

TPr;s — PrsT = _¢pr+1,s + pr,371¢a r=1,...,m, s=1,...,n, (AS)

where we have set py,11s = pro=0.
First, we show that p,; = 0 if 7 > s, and that p,, € Z (7). We proceed
by induction on s. When s =1 it follows from (A.3) and Lemma A.1 that

Pma = Pm-1,1=---=p21 =0 and p;; € Z(7).
Now assume that pm,,s = Pm-1s = -+ = Dst+1,s = 0 and p,s € Z(m) for
s=1,...,k. Then by (A.3)
TPmk+1 — Pmk+1T = 0
TPm—1k+1 — Pm—1 k41T = —OPm k+1
TDk4+2,k+1 — Ph42,k+1T = —ODkt3k+1
TPk+1,k+1 — Pe+1,k+1T = —¢pk+2,k+1
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and applying Lemma A.1 we have that p,y41 =0forr=£k+4+2,... ,m, and
that pgi1x+1 € Z(7) as required.

Next we apply (A.3) to the case where s = r + 1 and, using the fact that
Z(m) C Z(¢), we find that

TPrr+1 — Pro4+1T = ¢(pr,r - pr+1,r—|—1)-

Since prr, Pri1,41 € Z(w) we can conclude that p11 = poo = -+ = D
Moreover, Ty m+1 — Pmm+1T = Pmm@ and

P11 =P22=-..= Pmm = 0.

Again we argue inductively and assume that p1 s = post1 =+ = Pmstm—1 =0
fors=1,...,k. Then for r <m

TPrk+r — Prk+rT = _¢pr+1,k+r + pr,k—|—r—1¢ =0
and hence p, i, € Z(7), r =1,...,m. Moreover

TPr—1,k+r — Pr—1,k4+rT = _¢pr,k—|—r + prfl,k+rfl¢
and therefore p1 x 11 = pogy2 = - * = Prprm- Finally, T0m kimi1—Pmktm1™ =
Pmk+m® and we obtain p; y11 = pagyo = -+ = Pmi+m = 0 as desired.

So far we have shown that
prs =0for s <r+n-—m. (A.4)

In particular, part (a) of Proposition 4.7 is proved. It remains to show that
the matrix Fj; defined in Proposition 4.7 has the required structure. Again
we proceed inductively and show first that

Pin—m+1 = P2n—-m+2 = " " = Pmn € Z(ﬂ')

By (A.3) and (A.4)

Wpr,nfm-{—r - pr,nfm—f-TTr = _(ﬁpr-l—l,nfm—f—r + pr,nfm-f—rfl(ﬁ

- ¢(pr,r+(n—m—1) - pr+1,r+1+(n—m—1))
0

and therefore p, ,_mir € Z(7), r =1,...,m. Moreover,
TPrin—m4r+1 — Prin—m+4r+1T = d)(pr,n—m-f-r - pr+1,n—m+r+1)7 r= 17 cee, M — 1
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and hence p, n—mir = Pry1n—m+r+1 by Lemma A.1.
Now assume that

Pin—m+s = P2n—m+s+l =~ = Pm+1-s,n € Z(’/T)

fors =1,...,k—1. We have to show that pi p—m+r = Pon—mtkt1 = - =
Pm+1—kn € Z(m). We have forr=1,... , m+1—k

TPrin—m+k+r—1 — Pron—m+k4+r—1T = _¢pr+1,n—m+k+r—1 + pr,n—m+k+r—2¢
= ¢(pr,n7m+(k71)+r71 - pr+1,nfm+(k71)+(r+1)71)
= 0

and therefore p, n_mik+r—1 € Z (7). Finally,

TPrmn—m+k+r — Prin—m+k+rT = ¢(pr,n—m+k+r—1 - pr—|—1,n—m—|—k—|—r)

from which we can conclude that p, ,_mik+r—1 = Protn—mtktr- [ |
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