Ian Melbourne's Publication List
Publications on Lévy processes
-
I. Chevyrev, A. Korepanov and I. Melbourne.
Superdiffusive limits beyond the Marcus regime for deterministic fast-slow dynamical systems.
Comm. Amer. Math. Soc. 4 (2024) 746-786.
(abstract,
pdf file)
-
A. C. Freitas, J. Freitas, I. Melbourne and M. Todd.
Convergence to decorated Lévy processes in non-Skorohod topologies for dynamical systems.
Electron. J. Probab. 29 paper no. 170 (2024) 1-24.
(abstract,
pdf file)
-
P. Jung, I. Melbourne, F. Pène, P. Varandas and H.-K. Zhang.
Necessary and sufficient condition for M2-convergence to a Lévy process
for billiards with cusps at flat points.
Stoch. Dyn. 21 (2021) 2150024, 8 pages.
(abstract,
pdf file)
-
G. Gottwald and I. Melbourne.
Simulation of non-Lipschitz α-stable stochastic differential equations: a method based on deterministic homogenisation.
Multiscale Modeling and Simulation 19 (2021) 665-687.
(abstract,
pdf file)
-
I. Chevyrev, P. K. Friz, A. Korepanov and I. Melbourne.
Superdiffusive limits for deterministic fast-slow dynamical systems.
Probab. Theory Related Fields 178 (2020) 735-770.
(abstract,
pdf file)
-
I. Melbourne and P. Varandas.
Convergence to a Lévy process in the Skorohod M1 and M2 topologies for nonuniformly hyperbolic systems,
including billiards with cusps.
Commun. Math. Phys. 375 (2020) 653-678.
(abstract,
pdf file,
View only of published version)
-
G. Gottwald and I. Melbourne.
On the detection of superdiffusive behaviour in time series.
J. Stat. Mech. (2016) 123205 (14 pages)
(abstract,
pdf file)
-
G. Gottwald and I. Melbourne.
Central limit theorems and suppression of anomalous diffusion for systems with symmetry.
Nonlinearity 29 (2016) 2941-2960.
(abstract,
pdf file)
-
G. Gottwald and I. Melbourne.
Broadband nature of power spectra for intermittent maps with summable and nonsummable decay of correlations.
J. Phys. A 49 (2016) 174003 (17 pages)
(abstract,
pdf file)
-
I. Melbourne and R. Zweimüller.
Weak convergence to stable Lévy processes for nonuniformly hyperbolic
dynamical systems.
Ann. Inst. H. Poincaré Probab. Statist.
51 (2015) 545-556.
(abstract,
pdf file)
-
G. Gottwald and I. Melbourne.
Homogenization for deterministic maps and multiplicative noise.
Proc. Roy. Soc. London A 469 (2013) 20130201
(abstract,
pdf file,
corrected version, April 2015)
-
G. Gottwald and I. Melbourne.
A Huygens principle for diffusion and anomalous diffusion in spatially extended systems.
Proc. Natl. Acad. Sci. USA 110 (2013) 8411-8416.
(abstract,
pdf file)
Supplementary information 1
(pdf file)
Supplementary information 2
(pdf file)